Safe Haskell | None |
---|---|
Language | Haskell2010 |
BasicPrelude
Description
BasicPrelude mostly re-exports several key libraries in their entirety. The exception is Data.List, where various functions are replaced by similar versions that are either generalized, operate on Text, or are implemented strictly.
Synopsis
- module CorePrelude
- group :: Eq a => [a] -> [[a]]
- all :: Foldable t => (a -> Bool) -> t a -> Bool
- and :: Foldable t => t Bool -> Bool
- any :: Foldable t => (a -> Bool) -> t a -> Bool
- concatMap :: Foldable t => (a -> [b]) -> t a -> [b]
- length :: Foldable t => t a -> Int
- null :: Foldable t => t a -> Bool
- notElem :: (Foldable t, Eq a) => a -> t a -> Bool
- or :: Foldable t => t Bool -> Bool
- (!!) :: HasCallStack => [a] -> Int -> a
- break :: (a -> Bool) -> [a] -> ([a], [a])
- cycle :: HasCallStack => [a] -> [a]
- drop :: Int -> [a] -> [a]
- dropWhile :: (a -> Bool) -> [a] -> [a]
- filter :: (a -> Bool) -> [a] -> [a]
- head :: HasCallStack => [a] -> a
- init :: HasCallStack => [a] -> [a]
- iterate :: (a -> a) -> a -> [a]
- last :: HasCallStack => [a] -> a
- lookup :: Eq a => a -> [(a, b)] -> Maybe b
- repeat :: a -> [a]
- replicate :: Int -> a -> [a]
- reverse :: [a] -> [a]
- scanl :: (b -> a -> b) -> b -> [a] -> [b]
- scanl1 :: (a -> a -> a) -> [a] -> [a]
- scanr :: (a -> b -> b) -> b -> [a] -> [b]
- scanr1 :: (a -> a -> a) -> [a] -> [a]
- span :: (a -> Bool) -> [a] -> ([a], [a])
- splitAt :: Int -> [a] -> ([a], [a])
- tail :: HasCallStack => [a] -> [a]
- take :: Int -> [a] -> [a]
- takeWhile :: (a -> Bool) -> [a] -> [a]
- unzip :: [(a, b)] -> ([a], [b])
- unzip3 :: [(a, b, c)] -> ([a], [b], [c])
- zip :: [a] -> [b] -> [(a, b)]
- zip3 :: [a] -> [b] -> [c] -> [(a, b, c)]
- zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]
- zipWith3 :: (a -> b -> c -> d) -> [a] -> [b] -> [c] -> [d]
- zipWith4 :: (a -> b -> c -> d -> e) -> [a] -> [b] -> [c] -> [d] -> [e]
- zipWith5 :: (a -> b -> c -> d -> e -> f) -> [a] -> [b] -> [c] -> [d] -> [e] -> [f]
- zipWith6 :: (a -> b -> c -> d -> e -> f -> g) -> [a] -> [b] -> [c] -> [d] -> [e] -> [f] -> [g]
- (!?) :: [a] -> Int -> Maybe a
- elemIndex :: Eq a => a -> [a] -> Maybe Int
- elemIndices :: Eq a => a -> [a] -> [Int]
- find :: Foldable t => (a -> Bool) -> t a -> Maybe a
- findIndex :: (a -> Bool) -> [a] -> Maybe Int
- findIndices :: (a -> Bool) -> [a] -> [Int]
- foldl1' :: HasCallStack => (a -> a -> a) -> [a] -> a
- groupBy :: (a -> a -> Bool) -> [a] -> [[a]]
- partition :: (a -> Bool) -> [a] -> ([a], [a])
- scanl' :: (b -> a -> b) -> b -> [a] -> [b]
- singleton :: a -> [a]
- uncons :: [a] -> Maybe (a, [a])
- unfoldr :: (b -> Maybe (a, b)) -> b -> [a]
- unsnoc :: [a] -> Maybe ([a], a)
- zip4 :: [a] -> [b] -> [c] -> [d] -> [(a, b, c, d)]
- zip5 :: [a] -> [b] -> [c] -> [d] -> [e] -> [(a, b, c, d, e)]
- zip6 :: [a] -> [b] -> [c] -> [d] -> [e] -> [f] -> [(a, b, c, d, e, f)]
- unzip4 :: [(a, b, c, d)] -> ([a], [b], [c], [d])
- unzip5 :: [(a, b, c, d, e)] -> ([a], [b], [c], [d], [e])
- unzip6 :: [(a, b, c, d, e, f)] -> ([a], [b], [c], [d], [e], [f])
- mapAccumL :: Traversable t => (s -> a -> (s, b)) -> s -> t a -> (s, t b)
- mapAccumR :: Traversable t => (s -> a -> (s, b)) -> s -> t a -> (s, t b)
- dropWhileEnd :: (a -> Bool) -> [a] -> [a]
- inits :: [a] -> [[a]]
- intersperse :: a -> [a] -> [a]
- isInfixOf :: Eq a => [a] -> [a] -> Bool
- isPrefixOf :: Eq a => [a] -> [a] -> Bool
- isSuffixOf :: Eq a => [a] -> [a] -> Bool
- sort :: Ord a => [a] -> [a]
- stripPrefix :: Eq a => [a] -> [a] -> Maybe [a]
- tails :: [a] -> [[a]]
- transpose :: [[a]] -> [[a]]
- genericTake :: Integral i => i -> [a] -> [a]
- (\\) :: Eq a => [a] -> [a] -> [a]
- delete :: Eq a => a -> [a] -> [a]
- insert :: Ord a => a -> [a] -> [a]
- union :: Eq a => [a] -> [a] -> [a]
- sortBy :: (a -> a -> Ordering) -> [a] -> [a]
- sortOn :: Ord b => (a -> b) -> [a] -> [a]
- deleteBy :: (a -> a -> Bool) -> a -> [a] -> [a]
- deleteFirstsBy :: (a -> a -> Bool) -> [a] -> [a] -> [a]
- genericDrop :: Integral i => i -> [a] -> [a]
- genericIndex :: Integral i => [a] -> i -> a
- genericLength :: Num i => [a] -> i
- genericReplicate :: Integral i => i -> a -> [a]
- genericSplitAt :: Integral i => i -> [a] -> ([a], [a])
- insertBy :: (a -> a -> Ordering) -> a -> [a] -> [a]
- intersect :: Eq a => [a] -> [a] -> [a]
- intersectBy :: (a -> a -> Bool) -> [a] -> [a] -> [a]
- nub :: Eq a => [a] -> [a]
- nubBy :: (a -> a -> Bool) -> [a] -> [a]
- permutations :: [a] -> [[a]]
- subsequences :: [a] -> [[a]]
- unionBy :: (a -> a -> Bool) -> [a] -> [a] -> [a]
- unzip7 :: [(a, b, c, d, e, f, g)] -> ([a], [b], [c], [d], [e], [f], [g])
- zip7 :: [a] -> [b] -> [c] -> [d] -> [e] -> [f] -> [g] -> [(a, b, c, d, e, f, g)]
- zipWith7 :: (a -> b -> c -> d -> e -> f -> g -> h) -> [a] -> [b] -> [c] -> [d] -> [e] -> [f] -> [g] -> [h]
- iterate' :: (a -> a) -> a -> [a]
- isSubsequenceOf :: Eq a => [a] -> [a] -> Bool
- class Applicative m => Monad (m :: Type -> Type) where
- class Functor (f :: Type -> Type) where
- (=<<) :: Monad m => (a -> m b) -> m a -> m b
- (>=>) :: Monad m => (a -> m b) -> (b -> m c) -> a -> m c
- class Monad m => MonadFail (m :: Type -> Type) where
- mapM_ :: (Foldable t, Monad m) => (a -> m b) -> t a -> m ()
- sequence_ :: (Foldable t, Monad m) => t (m a) -> m ()
- join :: Monad m => m (m a) -> m a
- filterM :: Applicative m => (a -> m Bool) -> [a] -> m [a]
- foldM :: (Foldable t, Monad m) => (b -> a -> m b) -> b -> t a -> m b
- foldM_ :: (Foldable t, Monad m) => (b -> a -> m b) -> b -> t a -> m ()
- forM :: (Traversable t, Monad m) => t a -> (a -> m b) -> m (t b)
- forM_ :: (Foldable t, Monad m) => t a -> (a -> m b) -> m ()
- replicateM :: Applicative m => Int -> m a -> m [a]
- zipWithM :: Applicative m => (a -> b -> m c) -> [a] -> [b] -> m [c]
- zipWithM_ :: Applicative m => (a -> b -> m c) -> [a] -> [b] -> m ()
- class (Alternative m, Monad m) => MonadPlus (m :: Type -> Type) where
- liftM :: Monad m => (a1 -> r) -> m a1 -> m r
- ap :: Monad m => m (a -> b) -> m a -> m b
- liftM2 :: Monad m => (a1 -> a2 -> r) -> m a1 -> m a2 -> m r
- msum :: (Foldable t, MonadPlus m) => t (m a) -> m a
- void :: Functor f => f a -> f ()
- liftM3 :: Monad m => (a1 -> a2 -> a3 -> r) -> m a1 -> m a2 -> m a3 -> m r
- liftM4 :: Monad m => (a1 -> a2 -> a3 -> a4 -> r) -> m a1 -> m a2 -> m a3 -> m a4 -> m r
- liftM5 :: Monad m => (a1 -> a2 -> a3 -> a4 -> a5 -> r) -> m a1 -> m a2 -> m a3 -> m a4 -> m a5 -> m r
- when :: Applicative f => Bool -> f () -> f ()
- (<$!>) :: Monad m => (a -> b) -> m a -> m b
- (<=<) :: Monad m => (b -> m c) -> (a -> m b) -> a -> m c
- replicateM_ :: Applicative m => Int -> m a -> m ()
- unless :: Applicative f => Bool -> f () -> f ()
- forever :: Applicative f => f a -> f b
- mapAndUnzipM :: Applicative m => (a -> m (b, c)) -> [a] -> m ([b], [c])
- mfilter :: MonadPlus m => (a -> Bool) -> m a -> m a
- guard :: Alternative f => Bool -> f ()
- class Foldable (t :: Type -> Type) where
- elem :: (Foldable t, Eq a) => a -> t a -> Bool
- maximum :: (Foldable t, Ord a) => t a -> a
- minimum :: (Foldable t, Ord a) => t a -> a
- traverse_ :: (Foldable t, Applicative f) => (a -> f b) -> t a -> f ()
- sequenceA_ :: (Foldable t, Applicative f) => t (f a) -> f ()
- for_ :: (Foldable t, Applicative f) => t a -> (a -> f b) -> f ()
- maximumBy :: Foldable t => (a -> a -> Ordering) -> t a -> a
- minimumBy :: Foldable t => (a -> a -> Ordering) -> t a -> a
- class (Functor t, Foldable t) => Traversable (t :: Type -> Type) where
- traverse :: Applicative f => (a -> f b) -> t a -> f (t b)
- sequenceA :: Applicative f => t (f a) -> f (t a)
- mapM :: Monad m => (a -> m b) -> t a -> m (t b)
- sequence :: Monad m => t (m a) -> m (t a)
- for :: (Traversable t, Applicative f) => t a -> (a -> f b) -> f (t b)
- map :: Functor f => (a -> b) -> f a -> f b
- empty :: Monoid w => w
- (++) :: Monoid w => w -> w -> w
- concat :: Monoid w => [w] -> w
- intercalate :: Monoid w => w -> [w] -> w
- sum :: (Foldable f, Num a) => f a -> a
- product :: (Foldable f, Num a) => f a -> a
- tshow :: Show a => a -> Text
- fromShow :: (Show a, IsString b) => a -> b
- read :: Read a => Text -> a
- readIO :: (MonadIO m, Read a) => Text -> m a
- readFile :: MonadIO m => FilePath -> m Text
- writeFile :: MonadIO m => FilePath -> Text -> m ()
- appendFile :: MonadIO m => FilePath -> Text -> m ()
- lines :: Text -> [Text]
- words :: Text -> [Text]
- unlines :: [Text] -> Text
- unwords :: [Text] -> Text
- textToString :: Text -> String
- ltextToString :: LText -> String
- fpToText :: FilePath -> Text
- fpFromText :: Text -> FilePath
- fpToString :: FilePath -> String
- encodeUtf8 :: Text -> ByteString
- decodeUtf8 :: ByteString -> Text
- getLine :: MonadIO m => m Text
- getContents :: MonadIO m => m LText
- interact :: MonadIO m => (LText -> LText) -> m ()
- gcd :: Integral a => a -> a -> a
- lcm :: Integral a => a -> a -> a
- class Show a where
- type ShowS = String -> String
- shows :: Show a => a -> ShowS
- showChar :: Char -> ShowS
- showString :: String -> ShowS
- showParen :: Bool -> ShowS -> ShowS
- type ReadS a = String -> [(a, String)]
- readsPrec :: Read a => Int -> ReadS a
- readList :: Read a => ReadS [a]
- reads :: Read a => ReadS a
- readParen :: Bool -> ReadS a -> ReadS a
- lex :: ReadS String
- readMay :: Read a => Text -> Maybe a
- getChar :: MonadIO m => m Char
- putChar :: MonadIO m => Char -> m ()
- readLn :: (MonadIO m, Read a) => m a
Module exports
module CorePrelude
elemIndices :: Eq a => a -> [a] -> [Int] #
findIndices :: (a -> Bool) -> [a] -> [Int] #
mapAccumL :: Traversable t => (s -> a -> (s, b)) -> s -> t a -> (s, t b) #
mapAccumR :: Traversable t => (s -> a -> (s, b)) -> s -> t a -> (s, t b) #
dropWhileEnd :: (a -> Bool) -> [a] -> [a] #
intersperse :: a -> [a] -> [a] #
isPrefixOf :: Eq a => [a] -> [a] -> Bool #
isSuffixOf :: Eq a => [a] -> [a] -> Bool #
stripPrefix :: Eq a => [a] -> [a] -> Maybe [a] #
genericTake :: Integral i => i -> [a] -> [a] #
deleteFirstsBy :: (a -> a -> Bool) -> [a] -> [a] -> [a] #
genericDrop :: Integral i => i -> [a] -> [a] #
genericIndex :: Integral i => [a] -> i -> a #
genericLength :: Num i => [a] -> i #
genericReplicate :: Integral i => i -> a -> [a] #
genericSplitAt :: Integral i => i -> [a] -> ([a], [a]) #
intersectBy :: (a -> a -> Bool) -> [a] -> [a] -> [a] #
permutations :: [a] -> [[a]] #
subsequences :: [a] -> [[a]] #
zipWith7 :: (a -> b -> c -> d -> e -> f -> g -> h) -> [a] -> [b] -> [c] -> [d] -> [e] -> [f] -> [g] -> [h] #
isSubsequenceOf :: Eq a => [a] -> [a] -> Bool #
class Applicative m => Monad (m :: Type -> Type) where #
Minimal complete definition
Instances
Monad Complex | |
Monad Identity | |
Monad First | |
Monad Last | |
Monad Down | |
Monad First | |
Monad Last | |
Monad Max | |
Monad Min | |
Monad NonEmpty | |
Monad STM | |
Monad NoIO | |
Monad Par1 | |
Monad P | |
Monad ReadP | |
Monad ReadPrec | |
Monad Put | |
Monad Seq | |
Monad Tree | |
Monad IO | |
Monad Array | |
Monad SmallArray | |
Monad Vector | |
Monad Id | |
Monad Vector | |
Monad Maybe | |
Monad Solo | |
Monad [] | |
Monad m => Monad (WrappedMonad m) | |
ArrowApply a => Monad (ArrowMonad a) | |
Monad (Either e) | |
Monad (Proxy :: Type -> Type) | |
Monad (U1 :: Type -> Type) | |
Monad (ST s) | |
Monad (SetM s) | |
Monad (IParser t) | |
Monad m => Monad (MaybeT m) | |
Monoid a => Monad ((,) a) | |
Monad m => Monad (Kleisli m a) | |
Monad f => Monad (Ap f) | |
Monad f => Monad (Rec1 f) | |
(Applicative f, Monad f) => Monad (WhenMissing f x) | |
(Monoid w, Functor m, Monad m) => Monad (AccumT w m) | |
Monad m => Monad (ExceptT e m) | |
Monad m => Monad (IdentityT m) | |
Monad m => Monad (ReaderT r m) | |
Monad m => Monad (SelectT r m) | |
Monad m => Monad (StateT s m) | |
Monad m => Monad (StateT s m) | |
Monad m => Monad (WriterT w m) | |
(Monoid w, Monad m) => Monad (WriterT w m) | |
(Monoid w, Monad m) => Monad (WriterT w m) | |
Monad m => Monad (Reverse m) | |
(Monoid a, Monoid b) => Monad ((,,) a b) | |
(Monad f, Monad g) => Monad (Product f g) | |
(Monad f, Monad g) => Monad (f :*: g) | |
(Monad f, Applicative f) => Monad (WhenMatched f x y) | |
(Applicative f, Monad f) => Monad (WhenMissing f k x) | |
Monad (ContT r m) | |
(Monoid a, Monoid b, Monoid c) => Monad ((,,,) a b c) | |
Monad ((->) r) | |
Monad f => Monad (M1 i c f) | |
(Monad f, Applicative f) => Monad (WhenMatched f k x y) | |
Monad m => Monad (RWST r w s m) | |
(Monoid w, Monad m) => Monad (RWST r w s m) | |
(Monoid w, Monad m) => Monad (RWST r w s m) | |
class Functor (f :: Type -> Type) where #
Minimal complete definition
Instances
class Monad m => MonadFail (m :: Type -> Type) where #
Instances
filterM :: Applicative m => (a -> m Bool) -> [a] -> m [a] #
forM :: (Traversable t, Monad m) => t a -> (a -> m b) -> m (t b) #
replicateM :: Applicative m => Int -> m a -> m [a] #
zipWithM :: Applicative m => (a -> b -> m c) -> [a] -> [b] -> m [c] #
zipWithM_ :: Applicative m => (a -> b -> m c) -> [a] -> [b] -> m () #
class (Alternative m, Monad m) => MonadPlus (m :: Type -> Type) where #
Minimal complete definition
Nothing
Instances
liftM5 :: Monad m => (a1 -> a2 -> a3 -> a4 -> a5 -> r) -> m a1 -> m a2 -> m a3 -> m a4 -> m a5 -> m r #
when :: Applicative f => Bool -> f () -> f () #
replicateM_ :: Applicative m => Int -> m a -> m () #
unless :: Applicative f => Bool -> f () -> f () #
forever :: Applicative f => f a -> f b #
mapAndUnzipM :: Applicative m => (a -> m (b, c)) -> [a] -> m ([b], [c]) #
Folds and traversals
class Foldable (t :: Type -> Type) where #
Methods
foldMap :: Monoid m => (a -> m) -> t a -> m #
foldr :: (a -> b -> b) -> b -> t a -> b #
foldr' :: (a -> b -> b) -> b -> t a -> b #
foldl :: (b -> a -> b) -> b -> t a -> b #
foldl' :: (b -> a -> b) -> b -> t a -> b #
Instances
Foldable ZipList | |
Defined in Control.Applicative Methods fold :: Monoid m => ZipList m -> m foldMap :: Monoid m => (a -> m) -> ZipList a -> m # foldMap' :: Monoid m => (a -> m) -> ZipList a -> m foldr :: (a -> b -> b) -> b -> ZipList a -> b # foldr' :: (a -> b -> b) -> b -> ZipList a -> b # foldl :: (b -> a -> b) -> b -> ZipList a -> b # foldl' :: (b -> a -> b) -> b -> ZipList a -> b # foldr1 :: (a -> a -> a) -> ZipList a -> a # foldl1 :: (a -> a -> a) -> ZipList a -> a # toList :: ZipList a -> [a] elem :: Eq a => a -> ZipList a -> Bool # maximum :: Ord a => ZipList a -> a # minimum :: Ord a => ZipList a -> a # | |
Foldable Complex | |
Defined in Data.Complex Methods fold :: Monoid m => Complex m -> m foldMap :: Monoid m => (a -> m) -> Complex a -> m # foldMap' :: Monoid m => (a -> m) -> Complex a -> m foldr :: (a -> b -> b) -> b -> Complex a -> b # foldr' :: (a -> b -> b) -> b -> Complex a -> b # foldl :: (b -> a -> b) -> b -> Complex a -> b # foldl' :: (b -> a -> b) -> b -> Complex a -> b # foldr1 :: (a -> a -> a) -> Complex a -> a # foldl1 :: (a -> a -> a) -> Complex a -> a # toList :: Complex a -> [a] elem :: Eq a => a -> Complex a -> Bool # maximum :: Ord a => Complex a -> a # minimum :: Ord a => Complex a -> a # | |
Foldable Identity | |
Defined in Data.Functor.Identity Methods fold :: Monoid m => Identity m -> m foldMap :: Monoid m => (a -> m) -> Identity a -> m # foldMap' :: Monoid m => (a -> m) -> Identity a -> m foldr :: (a -> b -> b) -> b -> Identity a -> b # foldr' :: (a -> b -> b) -> b -> Identity a -> b # foldl :: (b -> a -> b) -> b -> Identity a -> b # foldl' :: (b -> a -> b) -> b -> Identity a -> b # foldr1 :: (a -> a -> a) -> Identity a -> a # foldl1 :: (a -> a -> a) -> Identity a -> a # toList :: Identity a -> [a] elem :: Eq a => a -> Identity a -> Bool # maximum :: Ord a => Identity a -> a # minimum :: Ord a => Identity a -> a # | |
Foldable First | |
Defined in Data.Foldable Methods fold :: Monoid m => First m -> m foldMap :: Monoid m => (a -> m) -> First a -> m # foldMap' :: Monoid m => (a -> m) -> First a -> m foldr :: (a -> b -> b) -> b -> First a -> b # foldr' :: (a -> b -> b) -> b -> First a -> b # foldl :: (b -> a -> b) -> b -> First a -> b # foldl' :: (b -> a -> b) -> b -> First a -> b # foldr1 :: (a -> a -> a) -> First a -> a # foldl1 :: (a -> a -> a) -> First a -> a # toList :: First a -> [a] elem :: Eq a => a -> First a -> Bool # maximum :: Ord a => First a -> a # | |
Foldable Last | |
Defined in Data.Foldable Methods fold :: Monoid m => Last m -> m foldMap :: Monoid m => (a -> m) -> Last a -> m # foldMap' :: Monoid m => (a -> m) -> Last a -> m foldr :: (a -> b -> b) -> b -> Last a -> b # foldr' :: (a -> b -> b) -> b -> Last a -> b # foldl :: (b -> a -> b) -> b -> Last a -> b # foldl' :: (b -> a -> b) -> b -> Last a -> b # foldr1 :: (a -> a -> a) -> Last a -> a # foldl1 :: (a -> a -> a) -> Last a -> a # toList :: Last a -> [a] elem :: Eq a => a -> Last a -> Bool # maximum :: Ord a => Last a -> a # | |
Foldable Down | |
Defined in Data.Foldable Methods fold :: Monoid m => Down m -> m foldMap :: Monoid m => (a -> m) -> Down a -> m # foldMap' :: Monoid m => (a -> m) -> Down a -> m foldr :: (a -> b -> b) -> b -> Down a -> b # foldr' :: (a -> b -> b) -> b -> Down a -> b # foldl :: (b -> a -> b) -> b -> Down a -> b # foldl' :: (b -> a -> b) -> b -> Down a -> b # foldr1 :: (a -> a -> a) -> Down a -> a # foldl1 :: (a -> a -> a) -> Down a -> a # elem :: Eq a => a -> Down a -> Bool # maximum :: Ord a => Down a -> a # | |
Foldable First | |
Defined in Data.Semigroup Methods fold :: Monoid m => First m -> m foldMap :: Monoid m => (a -> m) -> First a -> m # foldMap' :: Monoid m => (a -> m) -> First a -> m foldr :: (a -> b -> b) -> b -> First a -> b # foldr' :: (a -> b -> b) -> b -> First a -> b # foldl :: (b -> a -> b) -> b -> First a -> b # foldl' :: (b -> a -> b) -> b -> First a -> b # foldr1 :: (a -> a -> a) -> First a -> a # foldl1 :: (a -> a -> a) -> First a -> a # toList :: First a -> [a] elem :: Eq a => a -> First a -> Bool # maximum :: Ord a => First a -> a # | |
Foldable Last | |
Defined in Data.Semigroup Methods fold :: Monoid m => Last m -> m foldMap :: Monoid m => (a -> m) -> Last a -> m # foldMap' :: Monoid m => (a -> m) -> Last a -> m foldr :: (a -> b -> b) -> b -> Last a -> b # foldr' :: (a -> b -> b) -> b -> Last a -> b # foldl :: (b -> a -> b) -> b -> Last a -> b # foldl' :: (b -> a -> b) -> b -> Last a -> b # foldr1 :: (a -> a -> a) -> Last a -> a # foldl1 :: (a -> a -> a) -> Last a -> a # toList :: Last a -> [a] elem :: Eq a => a -> Last a -> Bool # maximum :: Ord a => Last a -> a # | |
Foldable Max | |
Defined in Data.Semigroup Methods fold :: Monoid m => Max m -> m foldMap :: Monoid m => (a -> m) -> Max a -> m # foldMap' :: Monoid m => (a -> m) -> Max a -> m foldr :: (a -> b -> b) -> b -> Max a -> b # foldr' :: (a -> b -> b) -> b -> Max a -> b # foldl :: (b -> a -> b) -> b -> Max a -> b # foldl' :: (b -> a -> b) -> b -> Max a -> b # foldr1 :: (a -> a -> a) -> Max a -> a # foldl1 :: (a -> a -> a) -> Max a -> a # toList :: Max a -> [a] elem :: Eq a => a -> Max a -> Bool # maximum :: Ord a => Max a -> a # | |
Foldable Min | |
Defined in Data.Semigroup Methods fold :: Monoid m => Min m -> m foldMap :: Monoid m => (a -> m) -> Min a -> m # foldMap' :: Monoid m => (a -> m) -> Min a -> m foldr :: (a -> b -> b) -> b -> Min a -> b # foldr' :: (a -> b -> b) -> b -> Min a -> b # foldl :: (b -> a -> b) -> b -> Min a -> b # foldl' :: (b -> a -> b) -> b -> Min a -> b # foldr1 :: (a -> a -> a) -> Min a -> a # foldl1 :: (a -> a -> a) -> Min a -> a # toList :: Min a -> [a] elem :: Eq a => a -> Min a -> Bool # maximum :: Ord a => Min a -> a # | |
Foldable Dual | |
Defined in Data.Foldable Methods fold :: Monoid m => Dual m -> m foldMap :: Monoid m => (a -> m) -> Dual a -> m # foldMap' :: Monoid m => (a -> m) -> Dual a -> m foldr :: (a -> b -> b) -> b -> Dual a -> b # foldr' :: (a -> b -> b) -> b -> Dual a -> b # foldl :: (b -> a -> b) -> b -> Dual a -> b # foldl' :: (b -> a -> b) -> b -> Dual a -> b # foldr1 :: (a -> a -> a) -> Dual a -> a # foldl1 :: (a -> a -> a) -> Dual a -> a # toList :: Dual a -> [a] elem :: Eq a => a -> Dual a -> Bool # maximum :: Ord a => Dual a -> a # | |
Foldable Product | |
Defined in Data.Foldable Methods fold :: Monoid m => Product m -> m foldMap :: Monoid m => (a -> m) -> Product a -> m # foldMap' :: Monoid m => (a -> m) -> Product a -> m foldr :: (a -> b -> b) -> b -> Product a -> b # foldr' :: (a -> b -> b) -> b -> Product a -> b # foldl :: (b -> a -> b) -> b -> Product a -> b # foldl' :: (b -> a -> b) -> b -> Product a -> b # foldr1 :: (a -> a -> a) -> Product a -> a # foldl1 :: (a -> a -> a) -> Product a -> a # toList :: Product a -> [a] elem :: Eq a => a -> Product a -> Bool # maximum :: Ord a => Product a -> a # minimum :: Ord a => Product a -> a # | |
Foldable Sum | |
Defined in Data.Foldable Methods fold :: Monoid m => Sum m -> m foldMap :: Monoid m => (a -> m) -> Sum a -> m # foldMap' :: Monoid m => (a -> m) -> Sum a -> m foldr :: (a -> b -> b) -> b -> Sum a -> b # foldr' :: (a -> b -> b) -> b -> Sum a -> b # foldl :: (b -> a -> b) -> b -> Sum a -> b # foldl' :: (b -> a -> b) -> b -> Sum a -> b # foldr1 :: (a -> a -> a) -> Sum a -> a # foldl1 :: (a -> a -> a) -> Sum a -> a # toList :: Sum a -> [a] elem :: Eq a => a -> Sum a -> Bool # maximum :: Ord a => Sum a -> a # | |
Foldable NonEmpty | |
Defined in Data.Foldable Methods fold :: Monoid m => NonEmpty m -> m foldMap :: Monoid m => (a -> m) -> NonEmpty a -> m # foldMap' :: Monoid m => (a -> m) -> NonEmpty a -> m foldr :: (a -> b -> b) -> b -> NonEmpty a -> b # foldr' :: (a -> b -> b) -> b -> NonEmpty a -> b # foldl :: (b -> a -> b) -> b -> NonEmpty a -> b # foldl' :: (b -> a -> b) -> b -> NonEmpty a -> b # foldr1 :: (a -> a -> a) -> NonEmpty a -> a # foldl1 :: (a -> a -> a) -> NonEmpty a -> a # toList :: NonEmpty a -> [a] elem :: Eq a => a -> NonEmpty a -> Bool # maximum :: Ord a => NonEmpty a -> a # minimum :: Ord a => NonEmpty a -> a # | |
Foldable Par1 | |
Defined in Data.Foldable Methods fold :: Monoid m => Par1 m -> m foldMap :: Monoid m => (a -> m) -> Par1 a -> m # foldMap' :: Monoid m => (a -> m) -> Par1 a -> m foldr :: (a -> b -> b) -> b -> Par1 a -> b # foldr' :: (a -> b -> b) -> b -> Par1 a -> b # foldl :: (b -> a -> b) -> b -> Par1 a -> b # foldl' :: (b -> a -> b) -> b -> Par1 a -> b # foldr1 :: (a -> a -> a) -> Par1 a -> a # foldl1 :: (a -> a -> a) -> Par1 a -> a # toList :: Par1 a -> [a] elem :: Eq a => a -> Par1 a -> Bool # maximum :: Ord a => Par1 a -> a # | |
Foldable SCC | |
Defined in Data.Graph Methods fold :: Monoid m => SCC m -> m foldMap :: Monoid m => (a -> m) -> SCC a -> m # foldMap' :: Monoid m => (a -> m) -> SCC a -> m foldr :: (a -> b -> b) -> b -> SCC a -> b # foldr' :: (a -> b -> b) -> b -> SCC a -> b # foldl :: (b -> a -> b) -> b -> SCC a -> b # foldl' :: (b -> a -> b) -> b -> SCC a -> b # foldr1 :: (a -> a -> a) -> SCC a -> a # foldl1 :: (a -> a -> a) -> SCC a -> a # toList :: SCC a -> [a] elem :: Eq a => a -> SCC a -> Bool # maximum :: Ord a => SCC a -> a # | |
Foldable IntMap | |
Defined in Data.IntMap.Internal Methods fold :: Monoid m => IntMap m -> m foldMap :: Monoid m => (a -> m) -> IntMap a -> m # foldMap' :: Monoid m => (a -> m) -> IntMap a -> m foldr :: (a -> b -> b) -> b -> IntMap a -> b # foldr' :: (a -> b -> b) -> b -> IntMap a -> b # foldl :: (b -> a -> b) -> b -> IntMap a -> b # foldl' :: (b -> a -> b) -> b -> IntMap a -> b # foldr1 :: (a -> a -> a) -> IntMap a -> a # foldl1 :: (a -> a -> a) -> IntMap a -> a # elem :: Eq a => a -> IntMap a -> Bool # maximum :: Ord a => IntMap a -> a # | |
Foldable Digit | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => Digit m -> m foldMap :: Monoid m => (a -> m) -> Digit a -> m # foldMap' :: Monoid m => (a -> m) -> Digit a -> m foldr :: (a -> b -> b) -> b -> Digit a -> b # foldr' :: (a -> b -> b) -> b -> Digit a -> b # foldl :: (b -> a -> b) -> b -> Digit a -> b # foldl' :: (b -> a -> b) -> b -> Digit a -> b # foldr1 :: (a -> a -> a) -> Digit a -> a # foldl1 :: (a -> a -> a) -> Digit a -> a # toList :: Digit a -> [a] elem :: Eq a => a -> Digit a -> Bool # maximum :: Ord a => Digit a -> a # | |
Foldable Elem | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => Elem m -> m foldMap :: Monoid m => (a -> m) -> Elem a -> m # foldMap' :: Monoid m => (a -> m) -> Elem a -> m foldr :: (a -> b -> b) -> b -> Elem a -> b # foldr' :: (a -> b -> b) -> b -> Elem a -> b # foldl :: (b -> a -> b) -> b -> Elem a -> b # foldl' :: (b -> a -> b) -> b -> Elem a -> b # foldr1 :: (a -> a -> a) -> Elem a -> a # foldl1 :: (a -> a -> a) -> Elem a -> a # toList :: Elem a -> [a] elem :: Eq a => a -> Elem a -> Bool # maximum :: Ord a => Elem a -> a # | |
Foldable FingerTree | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => FingerTree m -> m foldMap :: Monoid m => (a -> m) -> FingerTree a -> m # foldMap' :: Monoid m => (a -> m) -> FingerTree a -> m foldr :: (a -> b -> b) -> b -> FingerTree a -> b # foldr' :: (a -> b -> b) -> b -> FingerTree a -> b # foldl :: (b -> a -> b) -> b -> FingerTree a -> b # foldl' :: (b -> a -> b) -> b -> FingerTree a -> b # foldr1 :: (a -> a -> a) -> FingerTree a -> a # foldl1 :: (a -> a -> a) -> FingerTree a -> a # toList :: FingerTree a -> [a] null :: FingerTree a -> Bool # length :: FingerTree a -> Int # elem :: Eq a => a -> FingerTree a -> Bool # maximum :: Ord a => FingerTree a -> a # minimum :: Ord a => FingerTree a -> a # | |
Foldable Node | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => Node m -> m foldMap :: Monoid m => (a -> m) -> Node a -> m # foldMap' :: Monoid m => (a -> m) -> Node a -> m foldr :: (a -> b -> b) -> b -> Node a -> b # foldr' :: (a -> b -> b) -> b -> Node a -> b # foldl :: (b -> a -> b) -> b -> Node a -> b # foldl' :: (b -> a -> b) -> b -> Node a -> b # foldr1 :: (a -> a -> a) -> Node a -> a # foldl1 :: (a -> a -> a) -> Node a -> a # toList :: Node a -> [a] elem :: Eq a => a -> Node a -> Bool # maximum :: Ord a => Node a -> a # | |
Foldable Seq | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => Seq m -> m foldMap :: Monoid m => (a -> m) -> Seq a -> m # foldMap' :: Monoid m => (a -> m) -> Seq a -> m foldr :: (a -> b -> b) -> b -> Seq a -> b # foldr' :: (a -> b -> b) -> b -> Seq a -> b # foldl :: (b -> a -> b) -> b -> Seq a -> b # foldl' :: (b -> a -> b) -> b -> Seq a -> b # foldr1 :: (a -> a -> a) -> Seq a -> a # foldl1 :: (a -> a -> a) -> Seq a -> a # elem :: Eq a => a -> Seq a -> Bool # maximum :: Ord a => Seq a -> a # | |
Foldable ViewL | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => ViewL m -> m foldMap :: Monoid m => (a -> m) -> ViewL a -> m # foldMap' :: Monoid m => (a -> m) -> ViewL a -> m foldr :: (a -> b -> b) -> b -> ViewL a -> b # foldr' :: (a -> b -> b) -> b -> ViewL a -> b # foldl :: (b -> a -> b) -> b -> ViewL a -> b # foldl' :: (b -> a -> b) -> b -> ViewL a -> b # foldr1 :: (a -> a -> a) -> ViewL a -> a # foldl1 :: (a -> a -> a) -> ViewL a -> a # toList :: ViewL a -> [a] elem :: Eq a => a -> ViewL a -> Bool # maximum :: Ord a => ViewL a -> a # | |
Foldable ViewR | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => ViewR m -> m foldMap :: Monoid m => (a -> m) -> ViewR a -> m # foldMap' :: Monoid m => (a -> m) -> ViewR a -> m foldr :: (a -> b -> b) -> b -> ViewR a -> b # foldr' :: (a -> b -> b) -> b -> ViewR a -> b # foldl :: (b -> a -> b) -> b -> ViewR a -> b # foldl' :: (b -> a -> b) -> b -> ViewR a -> b # foldr1 :: (a -> a -> a) -> ViewR a -> a # foldl1 :: (a -> a -> a) -> ViewR a -> a # toList :: ViewR a -> [a] elem :: Eq a => a -> ViewR a -> Bool # maximum :: Ord a => ViewR a -> a # | |
Foldable Set | |
Defined in Data.Set.Internal Methods fold :: Monoid m => Set m -> m foldMap :: Monoid m => (a -> m) -> Set a -> m # foldMap' :: Monoid m => (a -> m) -> Set a -> m foldr :: (a -> b -> b) -> b -> Set a -> b # foldr' :: (a -> b -> b) -> b -> Set a -> b # foldl :: (b -> a -> b) -> b -> Set a -> b # foldl' :: (b -> a -> b) -> b -> Set a -> b # foldr1 :: (a -> a -> a) -> Set a -> a # foldl1 :: (a -> a -> a) -> Set a -> a # elem :: Eq a => a -> Set a -> Bool # maximum :: Ord a => Set a -> a # | |
Foldable Tree | |
Defined in Data.Tree Methods fold :: Monoid m => Tree m -> m foldMap :: Monoid m => (a -> m) -> Tree a -> m # foldMap' :: Monoid m => (a -> m) -> Tree a -> m foldr :: (a -> b -> b) -> b -> Tree a -> b # foldr' :: (a -> b -> b) -> b -> Tree a -> b # foldl :: (b -> a -> b) -> b -> Tree a -> b # foldl' :: (b -> a -> b) -> b -> Tree a -> b # foldr1 :: (a -> a -> a) -> Tree a -> a # foldl1 :: (a -> a -> a) -> Tree a -> a # toList :: Tree a -> [a] elem :: Eq a => a -> Tree a -> Bool # maximum :: Ord a => Tree a -> a # | |
Foldable Hashed | |
Defined in Data.Hashable.Class Methods fold :: Monoid m => Hashed m -> m foldMap :: Monoid m => (a -> m) -> Hashed a -> m # foldMap' :: Monoid m => (a -> m) -> Hashed a -> m foldr :: (a -> b -> b) -> b -> Hashed a -> b # foldr' :: (a -> b -> b) -> b -> Hashed a -> b # foldl :: (b -> a -> b) -> b -> Hashed a -> b # foldl' :: (b -> a -> b) -> b -> Hashed a -> b # foldr1 :: (a -> a -> a) -> Hashed a -> a # foldl1 :: (a -> a -> a) -> Hashed a -> a # toList :: Hashed a -> [a] elem :: Eq a => a -> Hashed a -> Bool # maximum :: Ord a => Hashed a -> a # | |
Foldable Array | |
Defined in Data.Primitive.Array Methods fold :: Monoid m => Array m -> m foldMap :: Monoid m => (a -> m) -> Array a -> m # foldMap' :: Monoid m => (a -> m) -> Array a -> m foldr :: (a -> b -> b) -> b -> Array a -> b # foldr' :: (a -> b -> b) -> b -> Array a -> b # foldl :: (b -> a -> b) -> b -> Array a -> b # foldl' :: (b -> a -> b) -> b -> Array a -> b # foldr1 :: (a -> a -> a) -> Array a -> a # foldl1 :: (a -> a -> a) -> Array a -> a # toList :: Array a -> [a] elem :: Eq a => a -> Array a -> Bool # maximum :: Ord a => Array a -> a # | |
Foldable SmallArray | |
Defined in Data.Primitive.SmallArray Methods fold :: Monoid m => SmallArray m -> m foldMap :: Monoid m => (a -> m) -> SmallArray a -> m # foldMap' :: Monoid m => (a -> m) -> SmallArray a -> m foldr :: (a -> b -> b) -> b -> SmallArray a -> b # foldr' :: (a -> b -> b) -> b -> SmallArray a -> b # foldl :: (b -> a -> b) -> b -> SmallArray a -> b # foldl' :: (b -> a -> b) -> b -> SmallArray a -> b # foldr1 :: (a -> a -> a) -> SmallArray a -> a # foldl1 :: (a -> a -> a) -> SmallArray a -> a # toList :: SmallArray a -> [a] null :: SmallArray a -> Bool # length :: SmallArray a -> Int # elem :: Eq a => a -> SmallArray a -> Bool # maximum :: Ord a => SmallArray a -> a # minimum :: Ord a => SmallArray a -> a # | |
Foldable HashSet | |
Defined in Data.HashSet.Internal Methods fold :: Monoid m => HashSet m -> m foldMap :: Monoid m => (a -> m) -> HashSet a -> m # foldMap' :: Monoid m => (a -> m) -> HashSet a -> m foldr :: (a -> b -> b) -> b -> HashSet a -> b # foldr' :: (a -> b -> b) -> b -> HashSet a -> b # foldl :: (b -> a -> b) -> b -> HashSet a -> b # foldl' :: (b -> a -> b) -> b -> HashSet a -> b # foldr1 :: (a -> a -> a) -> HashSet a -> a # foldl1 :: (a -> a -> a) -> HashSet a -> a # elem :: Eq a => a -> HashSet a -> Bool # maximum :: Ord a => HashSet a -> a # minimum :: Ord a => HashSet a -> a # | |
Foldable Vector | |
Defined in Data.Vector Methods fold :: Monoid m => Vector m -> m foldMap :: Monoid m => (a -> m) -> Vector a -> m # foldMap' :: Monoid m => (a -> m) -> Vector a -> m foldr :: (a -> b -> b) -> b -> Vector a -> b # foldr' :: (a -> b -> b) -> b -> Vector a -> b # foldl :: (b -> a -> b) -> b -> Vector a -> b # foldl' :: (b -> a -> b) -> b -> Vector a -> b # foldr1 :: (a -> a -> a) -> Vector a -> a # foldl1 :: (a -> a -> a) -> Vector a -> a # elem :: Eq a => a -> Vector a -> Bool # maximum :: Ord a => Vector a -> a # | |
Foldable Vector | |
Defined in Data.Vector.Strict Methods fold :: Monoid m => Vector m -> m foldMap :: Monoid m => (a -> m) -> Vector a -> m # foldMap' :: Monoid m => (a -> m) -> Vector a -> m foldr :: (a -> b -> b) -> b -> Vector a -> b # foldr' :: (a -> b -> b) -> b -> Vector a -> b # foldl :: (b -> a -> b) -> b -> Vector a -> b # foldl' :: (b -> a -> b) -> b -> Vector a -> b # foldr1 :: (a -> a -> a) -> Vector a -> a # foldl1 :: (a -> a -> a) -> Vector a -> a # toList :: Vector a -> [a] elem :: Eq a => a -> Vector a -> Bool # maximum :: Ord a => Vector a -> a # | |
Foldable Maybe | |
Defined in Data.Foldable Methods fold :: Monoid m => Maybe m -> m foldMap :: Monoid m => (a -> m) -> Maybe a -> m # foldMap' :: Monoid m => (a -> m) -> Maybe a -> m foldr :: (a -> b -> b) -> b -> Maybe a -> b # foldr' :: (a -> b -> b) -> b -> Maybe a -> b # foldl :: (b -> a -> b) -> b -> Maybe a -> b # foldl' :: (b -> a -> b) -> b -> Maybe a -> b # foldr1 :: (a -> a -> a) -> Maybe a -> a # foldl1 :: (a -> a -> a) -> Maybe a -> a # elem :: Eq a => a -> Maybe a -> Bool # maximum :: Ord a => Maybe a -> a # | |
Foldable Solo | |
Defined in Data.Foldable Methods fold :: Monoid m => Solo m -> m foldMap :: Monoid m => (a -> m) -> Solo a -> m # foldMap' :: Monoid m => (a -> m) -> Solo a -> m foldr :: (a -> b -> b) -> b -> Solo a -> b # foldr' :: (a -> b -> b) -> b -> Solo a -> b # foldl :: (b -> a -> b) -> b -> Solo a -> b # foldl' :: (b -> a -> b) -> b -> Solo a -> b # foldr1 :: (a -> a -> a) -> Solo a -> a # foldl1 :: (a -> a -> a) -> Solo a -> a # toList :: Solo a -> [a] elem :: Eq a => a -> Solo a -> Bool # maximum :: Ord a => Solo a -> a # | |
Foldable [] | |
Defined in Data.Foldable Methods foldMap :: Monoid m => (a -> m) -> [a] -> m # foldMap' :: Monoid m => (a -> m) -> [a] -> m foldr :: (a -> b -> b) -> b -> [a] -> b # foldr' :: (a -> b -> b) -> b -> [a] -> b # foldl :: (b -> a -> b) -> b -> [a] -> b # foldl' :: (b -> a -> b) -> b -> [a] -> b # foldr1 :: (a -> a -> a) -> [a] -> a # foldl1 :: (a -> a -> a) -> [a] -> a # toList :: [a] -> [a] elem :: Eq a => a -> [a] -> Bool # maximum :: Ord a => [a] -> a # | |
Foldable (Either a) | |
Defined in Data.Foldable Methods fold :: Monoid m => Either a m -> m foldMap :: Monoid m => (a0 -> m) -> Either a a0 -> m # foldMap' :: Monoid m => (a0 -> m) -> Either a a0 -> m foldr :: (a0 -> b -> b) -> b -> Either a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> Either a a0 -> b # foldl :: (b -> a0 -> b) -> b -> Either a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> Either a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> Either a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> Either a a0 -> a0 # length :: Either a a0 -> Int # elem :: Eq a0 => a0 -> Either a a0 -> Bool # maximum :: Ord a0 => Either a a0 -> a0 # minimum :: Ord a0 => Either a a0 -> a0 # | |
Foldable (Proxy :: Type -> Type) | |
Defined in Data.Foldable Methods fold :: Monoid m => Proxy m -> m foldMap :: Monoid m => (a -> m) -> Proxy a -> m # foldMap' :: Monoid m => (a -> m) -> Proxy a -> m foldr :: (a -> b -> b) -> b -> Proxy a -> b # foldr' :: (a -> b -> b) -> b -> Proxy a -> b # foldl :: (b -> a -> b) -> b -> Proxy a -> b # foldl' :: (b -> a -> b) -> b -> Proxy a -> b # foldr1 :: (a -> a -> a) -> Proxy a -> a # foldl1 :: (a -> a -> a) -> Proxy a -> a # toList :: Proxy a -> [a] elem :: Eq a => a -> Proxy a -> Bool # maximum :: Ord a => Proxy a -> a # | |
Foldable (Arg a) | |
Defined in Data.Semigroup Methods fold :: Monoid m => Arg a m -> m foldMap :: Monoid m => (a0 -> m) -> Arg a a0 -> m # foldMap' :: Monoid m => (a0 -> m) -> Arg a a0 -> m foldr :: (a0 -> b -> b) -> b -> Arg a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> Arg a a0 -> b # foldl :: (b -> a0 -> b) -> b -> Arg a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> Arg a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> Arg a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> Arg a a0 -> a0 # toList :: Arg a a0 -> [a0] elem :: Eq a0 => a0 -> Arg a a0 -> Bool # maximum :: Ord a0 => Arg a a0 -> a0 # minimum :: Ord a0 => Arg a a0 -> a0 # | |
Foldable (Array i) | |
Defined in Data.Foldable Methods fold :: Monoid m => Array i m -> m foldMap :: Monoid m => (a -> m) -> Array i a -> m # foldMap' :: Monoid m => (a -> m) -> Array i a -> m foldr :: (a -> b -> b) -> b -> Array i a -> b # foldr' :: (a -> b -> b) -> b -> Array i a -> b # foldl :: (b -> a -> b) -> b -> Array i a -> b # foldl' :: (b -> a -> b) -> b -> Array i a -> b # foldr1 :: (a -> a -> a) -> Array i a -> a # foldl1 :: (a -> a -> a) -> Array i a -> a # toList :: Array i a -> [a] elem :: Eq a => a -> Array i a -> Bool # maximum :: Ord a => Array i a -> a # minimum :: Ord a => Array i a -> a # | |
Foldable (U1 :: Type -> Type) | |
Defined in Data.Foldable Methods foldMap :: Monoid m => (a -> m) -> U1 a -> m # foldMap' :: Monoid m => (a -> m) -> U1 a -> m foldr :: (a -> b -> b) -> b -> U1 a -> b # foldr' :: (a -> b -> b) -> b -> U1 a -> b # foldl :: (b -> a -> b) -> b -> U1 a -> b # foldl' :: (b -> a -> b) -> b -> U1 a -> b # foldr1 :: (a -> a -> a) -> U1 a -> a # foldl1 :: (a -> a -> a) -> U1 a -> a # toList :: U1 a -> [a] elem :: Eq a => a -> U1 a -> Bool # maximum :: Ord a => U1 a -> a # | |
Foldable (UAddr :: Type -> Type) | |
Defined in Data.Foldable Methods fold :: Monoid m => UAddr m -> m foldMap :: Monoid m => (a -> m) -> UAddr a -> m # foldMap' :: Monoid m => (a -> m) -> UAddr a -> m foldr :: (a -> b -> b) -> b -> UAddr a -> b # foldr' :: (a -> b -> b) -> b -> UAddr a -> b # foldl :: (b -> a -> b) -> b -> UAddr a -> b # foldl' :: (b -> a -> b) -> b -> UAddr a -> b # foldr1 :: (a -> a -> a) -> UAddr a -> a # foldl1 :: (a -> a -> a) -> UAddr a -> a # toList :: UAddr a -> [a] elem :: Eq a => a -> UAddr a -> Bool # maximum :: Ord a => UAddr a -> a # | |
Foldable (UChar :: Type -> Type) | |
Defined in Data.Foldable Methods fold :: Monoid m => UChar m -> m foldMap :: Monoid m => (a -> m) -> UChar a -> m # foldMap' :: Monoid m => (a -> m) -> UChar a -> m foldr :: (a -> b -> b) -> b -> UChar a -> b # foldr' :: (a -> b -> b) -> b -> UChar a -> b # foldl :: (b -> a -> b) -> b -> UChar a -> b # foldl' :: (b -> a -> b) -> b -> UChar a -> b # foldr1 :: (a -> a -> a) -> UChar a -> a # foldl1 :: (a -> a -> a) -> UChar a -> a # toList :: UChar a -> [a] elem :: Eq a => a -> UChar a -> Bool # maximum :: Ord a => UChar a -> a # | |
Foldable (UDouble :: Type -> Type) | |
Defined in Data.Foldable Methods fold :: Monoid m => UDouble m -> m foldMap :: Monoid m => (a -> m) -> UDouble a -> m # foldMap' :: Monoid m => (a -> m) -> UDouble a -> m foldr :: (a -> b -> b) -> b -> UDouble a -> b # foldr' :: (a -> b -> b) -> b -> UDouble a -> b # foldl :: (b -> a -> b) -> b -> UDouble a -> b # foldl' :: (b -> a -> b) -> b -> UDouble a -> b # foldr1 :: (a -> a -> a) -> UDouble a -> a # foldl1 :: (a -> a -> a) -> UDouble a -> a # toList :: UDouble a -> [a] elem :: Eq a => a -> UDouble a -> Bool # maximum :: Ord a => UDouble a -> a # minimum :: Ord a => UDouble a -> a # | |
Foldable (UFloat :: Type -> Type) | |
Defined in Data.Foldable Methods fold :: Monoid m => UFloat m -> m foldMap :: Monoid m => (a -> m) -> UFloat a -> m # foldMap' :: Monoid m => (a -> m) -> UFloat a -> m foldr :: (a -> b -> b) -> b -> UFloat a -> b # foldr' :: (a -> b -> b) -> b -> UFloat a -> b # foldl :: (b -> a -> b) -> b -> UFloat a -> b # foldl' :: (b -> a -> b) -> b -> UFloat a -> b # foldr1 :: (a -> a -> a) -> UFloat a -> a # foldl1 :: (a -> a -> a) -> UFloat a -> a # toList :: UFloat a -> [a] elem :: Eq a => a -> UFloat a -> Bool # maximum :: Ord a => UFloat a -> a # | |
Foldable (UInt :: Type -> Type) | |
Defined in Data.Foldable Methods fold :: Monoid m => UInt m -> m foldMap :: Monoid m => (a -> m) -> UInt a -> m # foldMap' :: Monoid m => (a -> m) -> UInt a -> m foldr :: (a -> b -> b) -> b -> UInt a -> b # foldr' :: (a -> b -> b) -> b -> UInt a -> b # foldl :: (b -> a -> b) -> b -> UInt a -> b # foldl' :: (b -> a -> b) -> b -> UInt a -> b # foldr1 :: (a -> a -> a) -> UInt a -> a # foldl1 :: (a -> a -> a) -> UInt a -> a # toList :: UInt a -> [a] elem :: Eq a => a -> UInt a -> Bool # maximum :: Ord a => UInt a -> a # | |
Foldable (UWord :: Type -> Type) | |
Defined in Data.Foldable Methods fold :: Monoid m => UWord m -> m foldMap :: Monoid m => (a -> m) -> UWord a -> m # foldMap' :: Monoid m => (a -> m) -> UWord a -> m foldr :: (a -> b -> b) -> b -> UWord a -> b # foldr' :: (a -> b -> b) -> b -> UWord a -> b # foldl :: (b -> a -> b) -> b -> UWord a -> b # foldl' :: (b -> a -> b) -> b -> UWord a -> b # foldr1 :: (a -> a -> a) -> UWord a -> a # foldl1 :: (a -> a -> a) -> UWord a -> a # toList :: UWord a -> [a] elem :: Eq a => a -> UWord a -> Bool # maximum :: Ord a => UWord a -> a # | |
Foldable (V1 :: Type -> Type) | |
Defined in Data.Foldable Methods foldMap :: Monoid m => (a -> m) -> V1 a -> m # foldMap' :: Monoid m => (a -> m) -> V1 a -> m foldr :: (a -> b -> b) -> b -> V1 a -> b # foldr' :: (a -> b -> b) -> b -> V1 a -> b # foldl :: (b -> a -> b) -> b -> V1 a -> b # foldl' :: (b -> a -> b) -> b -> V1 a -> b # foldr1 :: (a -> a -> a) -> V1 a -> a # foldl1 :: (a -> a -> a) -> V1 a -> a # toList :: V1 a -> [a] elem :: Eq a => a -> V1 a -> Bool # maximum :: Ord a => V1 a -> a # | |
Foldable (Map k) | |
Defined in Data.Map.Internal Methods fold :: Monoid m => Map k m -> m foldMap :: Monoid m => (a -> m) -> Map k a -> m # foldMap' :: Monoid m => (a -> m) -> Map k a -> m foldr :: (a -> b -> b) -> b -> Map k a -> b # foldr' :: (a -> b -> b) -> b -> Map k a -> b # foldl :: (b -> a -> b) -> b -> Map k a -> b # foldl' :: (b -> a -> b) -> b -> Map k a -> b # foldr1 :: (a -> a -> a) -> Map k a -> a # foldl1 :: (a -> a -> a) -> Map k a -> a # elem :: Eq a => a -> Map k a -> Bool # maximum :: Ord a => Map k a -> a # | |
Foldable f => Foldable (Lift f) | |
Defined in Control.Applicative.Lift Methods fold :: Monoid m => Lift f m -> m foldMap :: Monoid m => (a -> m) -> Lift f a -> m # foldMap' :: Monoid m => (a -> m) -> Lift f a -> m foldr :: (a -> b -> b) -> b -> Lift f a -> b # foldr' :: (a -> b -> b) -> b -> Lift f a -> b # foldl :: (b -> a -> b) -> b -> Lift f a -> b # foldl' :: (b -> a -> b) -> b -> Lift f a -> b # foldr1 :: (a -> a -> a) -> Lift f a -> a # foldl1 :: (a -> a -> a) -> Lift f a -> a # toList :: Lift f a -> [a] elem :: Eq a => a -> Lift f a -> Bool # maximum :: Ord a => Lift f a -> a # | |
Foldable f => Foldable (MaybeT f) | |
Defined in Control.Monad.Trans.Maybe Methods fold :: Monoid m => MaybeT f m -> m foldMap :: Monoid m => (a -> m) -> MaybeT f a -> m # foldMap' :: Monoid m => (a -> m) -> MaybeT f a -> m foldr :: (a -> b -> b) -> b -> MaybeT f a -> b # foldr' :: (a -> b -> b) -> b -> MaybeT f a -> b # foldl :: (b -> a -> b) -> b -> MaybeT f a -> b # foldl' :: (b -> a -> b) -> b -> MaybeT f a -> b # foldr1 :: (a -> a -> a) -> MaybeT f a -> a # foldl1 :: (a -> a -> a) -> MaybeT f a -> a # toList :: MaybeT f a -> [a] elem :: Eq a => a -> MaybeT f a -> Bool # maximum :: Ord a => MaybeT f a -> a # minimum :: Ord a => MaybeT f a -> a # | |
Foldable (HashMap k) | |
Defined in Data.HashMap.Internal Methods fold :: Monoid m => HashMap k m -> m foldMap :: Monoid m => (a -> m) -> HashMap k a -> m # foldMap' :: Monoid m => (a -> m) -> HashMap k a -> m foldr :: (a -> b -> b) -> b -> HashMap k a -> b # foldr' :: (a -> b -> b) -> b -> HashMap k a -> b # foldl :: (b -> a -> b) -> b -> HashMap k a -> b # foldl' :: (b -> a -> b) -> b -> HashMap k a -> b # foldr1 :: (a -> a -> a) -> HashMap k a -> a # foldl1 :: (a -> a -> a) -> HashMap k a -> a # length :: HashMap k a -> Int # elem :: Eq a => a -> HashMap k a -> Bool # maximum :: Ord a => HashMap k a -> a # minimum :: Ord a => HashMap k a -> a # | |
Foldable ((,) a) | |
Defined in Data.Foldable Methods fold :: Monoid m => (a, m) -> m foldMap :: Monoid m => (a0 -> m) -> (a, a0) -> m # foldMap' :: Monoid m => (a0 -> m) -> (a, a0) -> m foldr :: (a0 -> b -> b) -> b -> (a, a0) -> b # foldr' :: (a0 -> b -> b) -> b -> (a, a0) -> b # foldl :: (b -> a0 -> b) -> b -> (a, a0) -> b # foldl' :: (b -> a0 -> b) -> b -> (a, a0) -> b # foldr1 :: (a0 -> a0 -> a0) -> (a, a0) -> a0 # foldl1 :: (a0 -> a0 -> a0) -> (a, a0) -> a0 # toList :: (a, a0) -> [a0] elem :: Eq a0 => a0 -> (a, a0) -> Bool # maximum :: Ord a0 => (a, a0) -> a0 # minimum :: Ord a0 => (a, a0) -> a0 # | |
Foldable (Const m :: Type -> Type) | |
Defined in Data.Functor.Const Methods fold :: Monoid m0 => Const m m0 -> m0 foldMap :: Monoid m0 => (a -> m0) -> Const m a -> m0 # foldMap' :: Monoid m0 => (a -> m0) -> Const m a -> m0 foldr :: (a -> b -> b) -> b -> Const m a -> b # foldr' :: (a -> b -> b) -> b -> Const m a -> b # foldl :: (b -> a -> b) -> b -> Const m a -> b # foldl' :: (b -> a -> b) -> b -> Const m a -> b # foldr1 :: (a -> a -> a) -> Const m a -> a # foldl1 :: (a -> a -> a) -> Const m a -> a # toList :: Const m a -> [a] elem :: Eq a => a -> Const m a -> Bool # maximum :: Ord a => Const m a -> a # minimum :: Ord a => Const m a -> a # | |
Foldable f => Foldable (Ap f) | |
Defined in Data.Foldable Methods fold :: Monoid m => Ap f m -> m foldMap :: Monoid m => (a -> m) -> Ap f a -> m # foldMap' :: Monoid m => (a -> m) -> Ap f a -> m foldr :: (a -> b -> b) -> b -> Ap f a -> b # foldr' :: (a -> b -> b) -> b -> Ap f a -> b # foldl :: (b -> a -> b) -> b -> Ap f a -> b # foldl' :: (b -> a -> b) -> b -> Ap f a -> b # foldr1 :: (a -> a -> a) -> Ap f a -> a # foldl1 :: (a -> a -> a) -> Ap f a -> a # toList :: Ap f a -> [a] elem :: Eq a => a -> Ap f a -> Bool # maximum :: Ord a => Ap f a -> a # | |
Foldable f => Foldable (Alt f) | |
Defined in Data.Foldable Methods fold :: Monoid m => Alt f m -> m foldMap :: Monoid m => (a -> m) -> Alt f a -> m # foldMap' :: Monoid m => (a -> m) -> Alt f a -> m foldr :: (a -> b -> b) -> b -> Alt f a -> b # foldr' :: (a -> b -> b) -> b -> Alt f a -> b # foldl :: (b -> a -> b) -> b -> Alt f a -> b # foldl' :: (b -> a -> b) -> b -> Alt f a -> b # foldr1 :: (a -> a -> a) -> Alt f a -> a # foldl1 :: (a -> a -> a) -> Alt f a -> a # toList :: Alt f a -> [a] elem :: Eq a => a -> Alt f a -> Bool # maximum :: Ord a => Alt f a -> a # | |
Foldable f => Foldable (Rec1 f) | |
Defined in Data.Foldable Methods fold :: Monoid m => Rec1 f m -> m foldMap :: Monoid m => (a -> m) -> Rec1 f a -> m # foldMap' :: Monoid m => (a -> m) -> Rec1 f a -> m foldr :: (a -> b -> b) -> b -> Rec1 f a -> b # foldr' :: (a -> b -> b) -> b -> Rec1 f a -> b # foldl :: (b -> a -> b) -> b -> Rec1 f a -> b # foldl' :: (b -> a -> b) -> b -> Rec1 f a -> b # foldr1 :: (a -> a -> a) -> Rec1 f a -> a # foldl1 :: (a -> a -> a) -> Rec1 f a -> a # toList :: Rec1 f a -> [a] elem :: Eq a => a -> Rec1 f a -> Bool # maximum :: Ord a => Rec1 f a -> a # | |
Foldable f => Foldable (Backwards f) | |
Defined in Control.Applicative.Backwards Methods fold :: Monoid m => Backwards f m -> m foldMap :: Monoid m => (a -> m) -> Backwards f a -> m # foldMap' :: Monoid m => (a -> m) -> Backwards f a -> m foldr :: (a -> b -> b) -> b -> Backwards f a -> b # foldr' :: (a -> b -> b) -> b -> Backwards f a -> b # foldl :: (b -> a -> b) -> b -> Backwards f a -> b # foldl' :: (b -> a -> b) -> b -> Backwards f a -> b # foldr1 :: (a -> a -> a) -> Backwards f a -> a # foldl1 :: (a -> a -> a) -> Backwards f a -> a # toList :: Backwards f a -> [a] null :: Backwards f a -> Bool # length :: Backwards f a -> Int # elem :: Eq a => a -> Backwards f a -> Bool # maximum :: Ord a => Backwards f a -> a # minimum :: Ord a => Backwards f a -> a # | |
Foldable f => Foldable (ExceptT e f) | |
Defined in Control.Monad.Trans.Except Methods fold :: Monoid m => ExceptT e f m -> m foldMap :: Monoid m => (a -> m) -> ExceptT e f a -> m # foldMap' :: Monoid m => (a -> m) -> ExceptT e f a -> m foldr :: (a -> b -> b) -> b -> ExceptT e f a -> b # foldr' :: (a -> b -> b) -> b -> ExceptT e f a -> b # foldl :: (b -> a -> b) -> b -> ExceptT e f a -> b # foldl' :: (b -> a -> b) -> b -> ExceptT e f a -> b # foldr1 :: (a -> a -> a) -> ExceptT e f a -> a # foldl1 :: (a -> a -> a) -> ExceptT e f a -> a # toList :: ExceptT e f a -> [a] null :: ExceptT e f a -> Bool # length :: ExceptT e f a -> Int # elem :: Eq a => a -> ExceptT e f a -> Bool # maximum :: Ord a => ExceptT e f a -> a # minimum :: Ord a => ExceptT e f a -> a # | |
Foldable f => Foldable (IdentityT f) | |
Defined in Control.Monad.Trans.Identity Methods fold :: Monoid m => IdentityT f m -> m foldMap :: Monoid m => (a -> m) -> IdentityT f a -> m # foldMap' :: Monoid m => (a -> m) -> IdentityT f a -> m foldr :: (a -> b -> b) -> b -> IdentityT f a -> b # foldr' :: (a -> b -> b) -> b -> IdentityT f a -> b # foldl :: (b -> a -> b) -> b -> IdentityT f a -> b # foldl' :: (b -> a -> b) -> b -> IdentityT f a -> b # foldr1 :: (a -> a -> a) -> IdentityT f a -> a # foldl1 :: (a -> a -> a) -> IdentityT f a -> a # toList :: IdentityT f a -> [a] null :: IdentityT f a -> Bool # length :: IdentityT f a -> Int # elem :: Eq a => a -> IdentityT f a -> Bool # maximum :: Ord a => IdentityT f a -> a # minimum :: Ord a => IdentityT f a -> a # | |
Foldable f => Foldable (WriterT w f) | |
Defined in Control.Monad.Trans.Writer.Lazy Methods fold :: Monoid m => WriterT w f m -> m foldMap :: Monoid m => (a -> m) -> WriterT w f a -> m # foldMap' :: Monoid m => (a -> m) -> WriterT w f a -> m foldr :: (a -> b -> b) -> b -> WriterT w f a -> b # foldr' :: (a -> b -> b) -> b -> WriterT w f a -> b # foldl :: (b -> a -> b) -> b -> WriterT w f a -> b # foldl' :: (b -> a -> b) -> b -> WriterT w f a -> b # foldr1 :: (a -> a -> a) -> WriterT w f a -> a # foldl1 :: (a -> a -> a) -> WriterT w f a -> a # toList :: WriterT w f a -> [a] null :: WriterT w f a -> Bool # length :: WriterT w f a -> Int # elem :: Eq a => a -> WriterT w f a -> Bool # maximum :: Ord a => WriterT w f a -> a # minimum :: Ord a => WriterT w f a -> a # | |
Foldable f => Foldable (WriterT w f) | |
Defined in Control.Monad.Trans.Writer.Strict Methods fold :: Monoid m => WriterT w f m -> m foldMap :: Monoid m => (a -> m) -> WriterT w f a -> m # foldMap' :: Monoid m => (a -> m) -> WriterT w f a -> m foldr :: (a -> b -> b) -> b -> WriterT w f a -> b # foldr' :: (a -> b -> b) -> b -> WriterT w f a -> b # foldl :: (b -> a -> b) -> b -> WriterT w f a -> b # foldl' :: (b -> a -> b) -> b -> WriterT w f a -> b # foldr1 :: (a -> a -> a) -> WriterT w f a -> a # foldl1 :: (a -> a -> a) -> WriterT w f a -> a # toList :: WriterT w f a -> [a] null :: WriterT w f a -> Bool # length :: WriterT w f a -> Int # elem :: Eq a => a -> WriterT w f a -> Bool # maximum :: Ord a => WriterT w f a -> a # minimum :: Ord a => WriterT w f a -> a # | |
Foldable (Constant a :: Type -> Type) | |
Defined in Data.Functor.Constant Methods fold :: Monoid m => Constant a m -> m foldMap :: Monoid m => (a0 -> m) -> Constant a a0 -> m # foldMap' :: Monoid m => (a0 -> m) -> Constant a a0 -> m foldr :: (a0 -> b -> b) -> b -> Constant a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> Constant a a0 -> b # foldl :: (b -> a0 -> b) -> b -> Constant a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> Constant a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> Constant a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> Constant a a0 -> a0 # toList :: Constant a a0 -> [a0] null :: Constant a a0 -> Bool # length :: Constant a a0 -> Int # elem :: Eq a0 => a0 -> Constant a a0 -> Bool # maximum :: Ord a0 => Constant a a0 -> a0 # minimum :: Ord a0 => Constant a a0 -> a0 # | |
Foldable f => Foldable (Reverse f) | |
Defined in Data.Functor.Reverse Methods fold :: Monoid m => Reverse f m -> m foldMap :: Monoid m => (a -> m) -> Reverse f a -> m # foldMap' :: Monoid m => (a -> m) -> Reverse f a -> m foldr :: (a -> b -> b) -> b -> Reverse f a -> b # foldr' :: (a -> b -> b) -> b -> Reverse f a -> b # foldl :: (b -> a -> b) -> b -> Reverse f a -> b # foldl' :: (b -> a -> b) -> b -> Reverse f a -> b # foldr1 :: (a -> a -> a) -> Reverse f a -> a # foldl1 :: (a -> a -> a) -> Reverse f a -> a # toList :: Reverse f a -> [a] length :: Reverse f a -> Int # elem :: Eq a => a -> Reverse f a -> Bool # maximum :: Ord a => Reverse f a -> a # minimum :: Ord a => Reverse f a -> a # | |
(Foldable f, Foldable g) => Foldable (Product f g) | |
Defined in Data.Functor.Product Methods fold :: Monoid m => Product f g m -> m foldMap :: Monoid m => (a -> m) -> Product f g a -> m # foldMap' :: Monoid m => (a -> m) -> Product f g a -> m foldr :: (a -> b -> b) -> b -> Product f g a -> b # foldr' :: (a -> b -> b) -> b -> Product f g a -> b # foldl :: (b -> a -> b) -> b -> Product f g a -> b # foldl' :: (b -> a -> b) -> b -> Product f g a -> b # foldr1 :: (a -> a -> a) -> Product f g a -> a # foldl1 :: (a -> a -> a) -> Product f g a -> a # toList :: Product f g a -> [a] null :: Product f g a -> Bool # length :: Product f g a -> Int # elem :: Eq a => a -> Product f g a -> Bool # maximum :: Ord a => Product f g a -> a # minimum :: Ord a => Product f g a -> a # | |
(Foldable f, Foldable g) => Foldable (Sum f g) | |
Defined in Data.Functor.Sum Methods fold :: Monoid m => Sum f g m -> m foldMap :: Monoid m => (a -> m) -> Sum f g a -> m # foldMap' :: Monoid m => (a -> m) -> Sum f g a -> m foldr :: (a -> b -> b) -> b -> Sum f g a -> b # foldr' :: (a -> b -> b) -> b -> Sum f g a -> b # foldl :: (b -> a -> b) -> b -> Sum f g a -> b # foldl' :: (b -> a -> b) -> b -> Sum f g a -> b # foldr1 :: (a -> a -> a) -> Sum f g a -> a # foldl1 :: (a -> a -> a) -> Sum f g a -> a # toList :: Sum f g a -> [a] elem :: Eq a => a -> Sum f g a -> Bool # maximum :: Ord a => Sum f g a -> a # minimum :: Ord a => Sum f g a -> a # | |
(Foldable f, Foldable g) => Foldable (f :*: g) | |
Defined in Data.Foldable Methods fold :: Monoid m => (f :*: g) m -> m foldMap :: Monoid m => (a -> m) -> (f :*: g) a -> m # foldMap' :: Monoid m => (a -> m) -> (f :*: g) a -> m foldr :: (a -> b -> b) -> b -> (f :*: g) a -> b # foldr' :: (a -> b -> b) -> b -> (f :*: g) a -> b # foldl :: (b -> a -> b) -> b -> (f :*: g) a -> b # foldl' :: (b -> a -> b) -> b -> (f :*: g) a -> b # foldr1 :: (a -> a -> a) -> (f :*: g) a -> a # foldl1 :: (a -> a -> a) -> (f :*: g) a -> a # toList :: (f :*: g) a -> [a] length :: (f :*: g) a -> Int # elem :: Eq a => a -> (f :*: g) a -> Bool # maximum :: Ord a => (f :*: g) a -> a # minimum :: Ord a => (f :*: g) a -> a # | |
(Foldable f, Foldable g) => Foldable (f :+: g) | |
Defined in Data.Foldable Methods fold :: Monoid m => (f :+: g) m -> m foldMap :: Monoid m => (a -> m) -> (f :+: g) a -> m # foldMap' :: Monoid m => (a -> m) -> (f :+: g) a -> m foldr :: (a -> b -> b) -> b -> (f :+: g) a -> b # foldr' :: (a -> b -> b) -> b -> (f :+: g) a -> b # foldl :: (b -> a -> b) -> b -> (f :+: g) a -> b # foldl' :: (b -> a -> b) -> b -> (f :+: g) a -> b # foldr1 :: (a -> a -> a) -> (f :+: g) a -> a # foldl1 :: (a -> a -> a) -> (f :+: g) a -> a # toList :: (f :+: g) a -> [a] length :: (f :+: g) a -> Int # elem :: Eq a => a -> (f :+: g) a -> Bool # maximum :: Ord a => (f :+: g) a -> a # minimum :: Ord a => (f :+: g) a -> a # | |
Foldable (K1 i c :: Type -> Type) | |
Defined in Data.Foldable Methods fold :: Monoid m => K1 i c m -> m foldMap :: Monoid m => (a -> m) -> K1 i c a -> m # foldMap' :: Monoid m => (a -> m) -> K1 i c a -> m foldr :: (a -> b -> b) -> b -> K1 i c a -> b # foldr' :: (a -> b -> b) -> b -> K1 i c a -> b # foldl :: (b -> a -> b) -> b -> K1 i c a -> b # foldl' :: (b -> a -> b) -> b -> K1 i c a -> b # foldr1 :: (a -> a -> a) -> K1 i c a -> a # foldl1 :: (a -> a -> a) -> K1 i c a -> a # toList :: K1 i c a -> [a] elem :: Eq a => a -> K1 i c a -> Bool # maximum :: Ord a => K1 i c a -> a # | |
(Foldable f, Foldable g) => Foldable (Compose f g) | |
Defined in Data.Functor.Compose Methods fold :: Monoid m => Compose f g m -> m foldMap :: Monoid m => (a -> m) -> Compose f g a -> m # foldMap' :: Monoid m => (a -> m) -> Compose f g a -> m foldr :: (a -> b -> b) -> b -> Compose f g a -> b # foldr' :: (a -> b -> b) -> b -> Compose f g a -> b # foldl :: (b -> a -> b) -> b -> Compose f g a -> b # foldl' :: (b -> a -> b) -> b -> Compose f g a -> b # foldr1 :: (a -> a -> a) -> Compose f g a -> a # foldl1 :: (a -> a -> a) -> Compose f g a -> a # toList :: Compose f g a -> [a] null :: Compose f g a -> Bool # length :: Compose f g a -> Int # elem :: Eq a => a -> Compose f g a -> Bool # maximum :: Ord a => Compose f g a -> a # minimum :: Ord a => Compose f g a -> a # | |
(Foldable f, Foldable g) => Foldable (f :.: g) | |
Defined in Data.Foldable Methods fold :: Monoid m => (f :.: g) m -> m foldMap :: Monoid m => (a -> m) -> (f :.: g) a -> m # foldMap' :: Monoid m => (a -> m) -> (f :.: g) a -> m foldr :: (a -> b -> b) -> b -> (f :.: g) a -> b # foldr' :: (a -> b -> b) -> b -> (f :.: g) a -> b # foldl :: (b -> a -> b) -> b -> (f :.: g) a -> b # foldl' :: (b -> a -> b) -> b -> (f :.: g) a -> b # foldr1 :: (a -> a -> a) -> (f :.: g) a -> a # foldl1 :: (a -> a -> a) -> (f :.: g) a -> a # toList :: (f :.: g) a -> [a] length :: (f :.: g) a -> Int # elem :: Eq a => a -> (f :.: g) a -> Bool # maximum :: Ord a => (f :.: g) a -> a # minimum :: Ord a => (f :.: g) a -> a # | |
Foldable f => Foldable (M1 i c f) | |
Defined in Data.Foldable Methods fold :: Monoid m => M1 i c f m -> m foldMap :: Monoid m => (a -> m) -> M1 i c f a -> m # foldMap' :: Monoid m => (a -> m) -> M1 i c f a -> m foldr :: (a -> b -> b) -> b -> M1 i c f a -> b # foldr' :: (a -> b -> b) -> b -> M1 i c f a -> b # foldl :: (b -> a -> b) -> b -> M1 i c f a -> b # foldl' :: (b -> a -> b) -> b -> M1 i c f a -> b # foldr1 :: (a -> a -> a) -> M1 i c f a -> a # foldl1 :: (a -> a -> a) -> M1 i c f a -> a # toList :: M1 i c f a -> [a] elem :: Eq a => a -> M1 i c f a -> Bool # maximum :: Ord a => M1 i c f a -> a # minimum :: Ord a => M1 i c f a -> a # |
traverse_ :: (Foldable t, Applicative f) => (a -> f b) -> t a -> f () #
sequenceA_ :: (Foldable t, Applicative f) => t (f a) -> f () #
for_ :: (Foldable t, Applicative f) => t a -> (a -> f b) -> f () #
class (Functor t, Foldable t) => Traversable (t :: Type -> Type) where #
Methods
traverse :: Applicative f => (a -> f b) -> t a -> f (t b) #
sequenceA :: Applicative f => t (f a) -> f (t a) #
Instances
for :: (Traversable t, Applicative f) => t a -> (a -> f b) -> f (t b) #
Enhanced exports
Simpler name for a typeclassed operation
intercalate :: Monoid w => w -> [w] -> w Source #
intercalate = mconcat .: intersperse
Strict implementation
Text for Read and Show operations
readIO :: (MonadIO m, Read a) => Text -> m a Source #
The readIO function is similar to read except that it signals parse failure to the IO monad instead of terminating the program.
Since: 0.7.0
FilePath for file operations
readFile :: MonadIO m => FilePath -> m Text Source #
Read a file and return the contents of the file as Text. The entire file is read strictly.
Since: 0.7.0
writeFile :: MonadIO m => FilePath -> Text -> m () Source #
Write Text to a file. The file is truncated to zero length before writing begins.
Since: 0.7.0
appendFile :: MonadIO m => FilePath -> Text -> m () Source #
Write Text to the end of a file.
Since: 0.7.0
Text exports
Text operations (Pure)
textToString :: Text -> String Source #
ltextToString :: LText -> String Source #
fpToText :: FilePath -> Text Source #
Deprecated: Use Data.Text.pack
This function assumes file paths are encoded in UTF8. If it
cannot decode the FilePath
, the result is just an approximation.
Since 0.3.13
fpFromText :: Text -> FilePath Source #
Deprecated: Use Data.Text.unpack
Since 0.3.13
fpToString :: FilePath -> String Source #
Deprecated: Use id
Since 0.3.13
encodeUtf8 :: Text -> ByteString #
decodeUtf8 :: ByteString -> Text Source #
Note that this is not the standard Data.Text.Encoding.decodeUtf8
. That
function will throw impure exceptions on any decoding errors. This function
instead uses decodeLenient
.
Text operations (IO)
getContents :: MonadIO m => m LText Source #
Since: 0.7.0
Miscellaneous prelude re-exports
Math
Show and Read
Instances
Show NestedAtomically | |
Show NoMatchingContinuationPrompt | |
Show NoMethodError | |
Show NonTermination | |
Show PatternMatchFail | |
Show RecConError | |
Show RecSelError | |
Show RecUpdError | |
Show TypeError | |
Show ByteArray | |
Show Constr | |
Show ConstrRep | |
Show DataRep | |
Show DataType | |
Show Fixity | |
Show Dynamic | |
Show SomeTypeRep | |
Show Version | |
Show CBool | |
Show CChar | |
Show CClock | |
Show CDouble | |
Show CFloat | |
Show CInt | |
Show CIntMax | |
Show CIntPtr | |
Show CLLong | |
Show CLong | |
Show CPtrdiff | |
Show CSChar | |
Show CSUSeconds | |
Show CShort | |
Show CSigAtomic | |
Show CSize | |
Show CTime | |
Show CUChar | |
Show CUInt | |
Show CUIntMax | |
Show CUIntPtr | |
Show CULLong | |
Show CULong | |
Show CUSeconds | |
Show CUShort | |
Show CWchar | |
Show IntPtr | |
Show WordPtr | |
Show Void | |
Show ByteOrder | |
Show BlockReason | |
Show ThreadId | |
Show ThreadStatus | |
Show ErrorCall | |
Show ArithException | |
Show SomeException | |
Defined in GHC.Exception.Type Methods showsPrec :: Int -> SomeException -> ShowS # show :: SomeException -> String # showList :: [SomeException] -> ShowS # | |
Show Fingerprint | |
Show Associativity | |
Show DecidedStrictness | |
Show Fixity | |
Show SourceStrictness | |
Show SourceUnpackedness | |
Show MaskingState | |
Show SeekMode | |
Show CodingFailureMode | |
Show CodingProgress | |
Show TextEncoding | |
Show AllocationLimitExceeded | |
Show ArrayException | |
Show AssertionFailed | |
Show AsyncException | |
Show BlockedIndefinitelyOnMVar | |
Show BlockedIndefinitelyOnSTM | |
Show CompactionFailed | |
Show Deadlock | |
Show ExitCode | |
Show FixIOException | |
Show IOErrorType | |
Defined in GHC.IO.Exception Methods showsPrec :: Int -> IOErrorType -> ShowS # show :: IOErrorType -> String # showList :: [IOErrorType] -> ShowS # | |
Show IOException | |
Defined in GHC.IO.Exception Methods showsPrec :: Int -> IOException -> ShowS # show :: IOException -> String # showList :: [IOException] -> ShowS # | |
Show SomeAsyncException | |
Show FD | |
Show HandlePosn | |
Show BufferMode | |
Show Handle | |
Show HandleType | |
Show Newline | |
Show NewlineMode | |
Show IOMode | |
Show IOPortException | |
Show InfoProv | |
Show Int16 | |
Show Int32 | |
Show Int64 | |
Show Int8 | |
Show CCFlags | |
Show ConcFlags | |
Show DebugFlags | |
Show DoCostCentres | |
Show DoHeapProfile | |
Show DoTrace | |
Show GCFlags | |
Show GiveGCStats | |
Show IoSubSystem | |
Show MiscFlags | |
Show ParFlags | |
Show ProfFlags | |
Show RTSFlags | |
Show TickyFlags | |
Show TraceFlags | |
Show FractionalExponentBase | |
Show StackEntry | |
Show CallStack | |
Show SrcLoc | |
Show StaticPtrInfo | |
Show GCDetails | |
Show RTSStats | |
Show SomeChar | |
Show SomeSymbol | |
Show SomeNat | |
Show GeneralCategory | |
Show Word16 | |
Show Word32 | |
Show Word64 | |
Show Word8 | |
Show CBlkCnt | |
Show CBlkSize | |
Show CCc | |
Show CClockId | |
Show CDev | |
Show CFsBlkCnt | |
Show CFsFilCnt | |
Show CGid | |
Show CId | |
Show CIno | |
Show CKey | |
Show CMode | |
Show CNfds | |
Show CNlink | |
Show COff | |
Show CPid | |
Show CRLim | |
Show CSocklen | |
Show CSpeed | |
Show CSsize | |
Show CTcflag | |
Show CTimer | |
Show CUid | |
Show Fd | |
Show Timeout | |
Show Lexeme | |
Show Number | |
Show FormatMode | |
Show ByteString | |
Defined in Data.ByteString.Internal.Type Methods showsPrec :: Int -> ByteString -> ShowS # show :: ByteString -> String # showList :: [ByteString] -> ShowS # | |
Show SizeOverflowException | |
Show ByteString | |
Show ShortByteString | |
Show IntSet | |
Show BitQueue | |
Show BitQueueB | |
Show OsChar | |
Show OsString | |
Show PosixChar | |
Show PosixString | |
Show WindowsChar | |
Show WindowsString | |
Show KindRep | |
Show Module | |
Show Ordering | |
Show TrName | |
Show TyCon | |
Show TypeLitSort | |
Show OsChar | |
Show OsString | |
Show PosixChar | |
Show PosixString | |
Show WindowsChar | |
Show WindowsString | |
Show Mode | |
Show Style | |
Show TextDetails | |
Show Doc | |
Show Decoding | |
Show UnicodeException | |
Show I8 | |
Show Builder | |
Show PartialUtf8CodePoint | |
Show Utf8State | |
Show DecoderState | |
Show Size | |
Show FPFormat | |
Show Iter | |
Show SubHashPath | |
Show Size | |
Show Integer | |
Show Natural | |
Show () | |
Show Bool | |
Show Char | |
Show Int | |
Show Levity | |
Show RuntimeRep | |
Show VecCount | |
Show VecElem | |
Show Word | |
Show a => Show (ZipList a) | |
Show a => Show (And a) | |
Show a => Show (Iff a) | |
Show a => Show (Ior a) | |
Show a => Show (Xor a) | |
Show a => Show (Complex a) | |
Show a => Show (Identity a) | |
Show a => Show (First a) | |
Show a => Show (Last a) | |
Show a => Show (Down a) | |
Show a => Show (First a) | |
Show a => Show (Last a) | |
Show a => Show (Max a) | |
Show a => Show (Min a) | |
Show m => Show (WrappedMonoid m) | |
Show (ConstPtr a) | |
Show a => Show (NonEmpty a) | |
Show (ForeignPtr a) | |
Show p => Show (Par1 p) | |
Show (FunPtr a) | |
Show (Ptr a) | |
Show a => Show (Ratio a) | |
Show (SChar c) | |
Show (SSymbol s) | |
Show (SNat n) | |
Show vertex => Show (SCC vertex) | |
Show a => Show (IntMap a) | |
Show a => Show (Seq a) | |
Show a => Show (ViewL a) | |
Show a => Show (ViewR a) | |
Show a => Show (Intersection a) | |
Show a => Show (Set a) | |
Show a => Show (Tree a) | |
Show a => Show (Hashed a) | |
Show a => Show (AnnotDetails a) | |
Show (Doc a) | |
Show a => Show (Span a) | |
Show a => Show (Array a) | |
(Show a, Prim a) => Show (PrimArray a) | |
Show a => Show (SmallArray a) | |
Show a => Show (Array a) | |
Show k => Show (Error k) | |
Show k => Show (Validity k) | |
Show a => Show (HashSet a) | |
Show a => Show (Vector a) | |
(Show a, Prim a) => Show (Vector a) | |
(Show a, Storable a) => Show (Vector a) | |
Show a => Show (Vector a) | |
Show a => Show (Maybe a) | |
Show a => Show (Solo a) | |
Show a => Show [a] | |
(Show a, Show b) => Show (Either a b) | |
HasResolution a => Show (Fixed a) | |
Show (Proxy s) | |
(Show a, Show b) => Show (Arg a b) | |
Show (TypeRep a) | |
(Ix a, Show a, Show b) => Show (Array a b) | |
Show (U1 p) | |
Show (V1 p) | |
Show (ST s a) | |
(Show k, Show a) => Show (Map k a) | |
(Show1 f, Show a) => Show (Lift f a) | |
(Show1 m, Show a) => Show (MaybeT m a) | |
(Show k, Show v) => Show (HashMap k v) | |
(Show a, Show b) => Show (a, b) | |
Show a => Show (Const a b) | |
Show (f a) => Show (Ap f a) | |
Show (Coercion a b) | |
Show (a :~: b) | |
Show (OrderingI a b) | |
Show (f p) => Show (Rec1 f p) | |
Show (URec Char p) | |
Show (URec Double p) | |
Show (URec Float p) | |
Show (URec Int p) | |
Show (URec Word p) | |
(Show1 f, Show a) => Show (Backwards f a) | |
(Show e, Show1 m, Show a) => Show (ExceptT e m a) | |
(Show1 f, Show a) => Show (IdentityT f a) | |
(Show w, Show1 m, Show a) => Show (WriterT w m a) | |
(Show w, Show1 m, Show a) => Show (WriterT w m a) | |
Show a => Show (Constant a b) | |
(Show1 f, Show a) => Show (Reverse f a) | |
(Show a, Show b, Show c) => Show (a, b, c) | |
(Show (f a), Show (g a)) => Show (Product f g a) | |
(Show (f a), Show (g a)) => Show (Sum f g a) | |
Show (a :~~: b) | |
(Show (f p), Show (g p)) => Show ((f :*: g) p) | |
(Show (f p), Show (g p)) => Show ((f :+: g) p) | |
Show c => Show (K1 i c p) | |
(Show a, Show b, Show c, Show d) => Show (a, b, c, d) | |
Show (f (g a)) => Show (Compose f g a) | |
Show (f (g p)) => Show ((f :.: g) p) | |
Show (f p) => Show (M1 i c f p) | |
(Show a, Show b, Show c, Show d, Show e) => Show (a, b, c, d, e) | |
(Show a, Show b, Show c, Show d, Show e, Show f) => Show (a, b, c, d, e, f) | |
(Show a, Show b, Show c, Show d, Show e, Show f, Show g) => Show (a, b, c, d, e, f, g) | |
(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h) => Show (a, b, c, d, e, f, g, h) | |
(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i) => Show (a, b, c, d, e, f, g, h, i) | |
(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j) => Show (a, b, c, d, e, f, g, h, i, j) | |
(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j, Show k) => Show (a, b, c, d, e, f, g, h, i, j, k) | |
(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j, Show k, Show l) => Show (a, b, c, d, e, f, g, h, i, j, k, l) | |
(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j, Show k, Show l, Show m) => Show (a, b, c, d, e, f, g, h, i, j, k, l, m) | |
(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j, Show k, Show l, Show m, Show n) => Show (a, b, c, d, e, f, g, h, i, j, k, l, m, n) | |
(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j, Show k, Show l, Show m, Show n, Show o) => Show (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) | |
showString :: String -> ShowS #