libstdc++
std::exponential_distribution< _RealType > Class Template Reference

Classes

struct  param_type
 

Public Types

typedef _RealType result_type
 

Public Member Functions

 exponential_distribution ()
 
 exponential_distribution (_RealType __lambda)
 
 exponential_distribution (const param_type &__p)
 
template<typename _ForwardIterator , typename _UniformRandomNumberGenerator >
void __generate (_ForwardIterator __f, _ForwardIterator __t, _UniformRandomNumberGenerator &__urng)
 
template<typename _ForwardIterator , typename _UniformRandomNumberGenerator >
void __generate (_ForwardIterator __f, _ForwardIterator __t, _UniformRandomNumberGenerator &__urng, const param_type &__p)
 
template<typename _UniformRandomNumberGenerator >
void __generate (result_type *__f, result_type *__t, _UniformRandomNumberGenerator &__urng, const param_type &__p)
 
_RealType lambda () const
 
result_type max () const
 
result_type min () const
 
template<typename _UniformRandomNumberGenerator >
result_type operator() (_UniformRandomNumberGenerator &__urng)
 
template<typename _UniformRandomNumberGenerator >
result_type operator() (_UniformRandomNumberGenerator &__urng, const param_type &__p)
 
param_type param () const
 
void param (const param_type &__param)
 
void reset ()
 

Friends

bool operator== (const exponential_distribution &__d1, const exponential_distribution &__d2)
 

Detailed Description

template<typename _RealType = double>
class std::exponential_distribution< _RealType >

An exponential continuous distribution for random numbers.

The formula for the exponential probability density function is $p(x|\lambda) = \lambda e^{-\lambda x}$.

Distribution Statistics
Mean$\frac{1}{\lambda}$
Median$\frac{\ln 2}{\lambda}$
Mode$zero$
Range$[0, \infty]$
Standard Deviation$\frac{1}{\lambda}$

Definition at line 4647 of file random.h.


The documentation for this class was generated from the following files: