wxGlade manual

wxGlade manual

wxGlade manual ii
Contents

Preface viii

1 Introduction to wxGlade 1

1.1 Whatis wxGlade? e 1

1.2 What can youdo with wxGlade? e 2

1.3 Whatis wxGlade NOT? o e 2

1.4 Requirements and Supported Platforms L 2

1.5 Installation e e 2

1.5.1 Download o 3

1.5.2 Installing at Microsoft Windows 3

1.5.3 Installing at Unix/Unix-like Operating Systems it 3

1.5.4 Installing from Source L 3

1.6 Configuring wxGlade 5

1.6.1 Preferences Dialog e 5

1.6.2 Configuration files and Configuration directory e 5

1.6.3 Environment Variables L. 5

1.6.4 Logging o e e e e 6

1.7 HowtoReportaBug e 6

1.8 Deprecated features e 7

2 Exploring wxGlade 8

2.1 Quickexample e e e 8

2.2 Basicsof wxGlade L e 9

2.3 EsCape SEqUENCES v v v ot i e e e e e e e e e e e e e e e 9

24 BestPractice e e 9

2.5 Language specific peculiarities e e e e e e e e 10

2.5.1 Python e 10

252 LiSP . . o o 10

2.6 Command lineinvocation L e e e e e 10

277 Usingthesourcecode L e e 11

27.1 Fullcontrolby wxGlade e 11

wxGlade manual

2.7.2 Sharedcontrol
2.7.3 Outputpath and filenames L
2.7.4 Automatically created wxApp INSLANCE o e e e e e e e e e e e
275 Compiling C++code oL
2.8 Handling XRCAfiles o

3 wxGlade User Interface

3.1 MainPalette e e
32 Tree WIndow L e e
3.3 Design WIndow oL e e e e e e e e
3.4 Properties WIndow L e e e
34.1 Application Properties e e
34.2 Common Properties e e e e e e e
343 LayoutProperties e
344 Widget Properties e e e e
345 Events Properties e e e e e e e
34.6 CodeProperties e e e e
3.5 ThewxGlade Menu L e e e
351 TheFILEmenu o o i e e e e e e e
352 The VIEW MENU oot ittt e e e e e e e
353 TheHELPmenu o e e e e e
3.6 ShOrtcuts e

4 Supported widgets

4.1 Introduction L e e
4.2 Specifying the path of bitmaps e e e
43 Widget List o L e e e e e
431 Frame e e e e
432 DialogorPanel e
433 Panel e
43.4 Splitter Window L e e
435 Notebook L e e
43.6 BUttons e
437 GaUZE e e e e e e e
43.8 Hyperlink Control e e
439 RadioBox e
4.3.10 Spin Control L e e e e e e e
4311 SHder e

4.3.12 Static TEXt e e e e

wxGlade manual iv
4313 TextControl L e e e 34

4.3.14 Check BoX o o e 34

4315 ChoiCe o o i e 34

43.16 ComboBOX e e 34

4317 ListBoX . . . o o e 34

43.18 StaticLine e 34

4.3.19 StaticBitmap e e 35

4320 ListControl e e 35

4321 Tree Control o L L e e e e e 35

4322 Grid 35

4323 Custom Widget L 35

4324 SPaCer. o i e e 35

5 Menu, Statusbar and Toolbar 36
5.1 Introduction e e e 36
5.2 MenUo e e 36

5.3 Statusbar . ..o 37
54 Toolbar L e 37

6 wxGlade technical notes 39
6.1 Startup e 39
6.2 Adding atoplevel widget L. e e e 39

6.3 Adding atoplevel sizer L e e e e e e 40

6.4 Adding anormal widget/sizer L e e e 40

6.5 Changingthe value of aProperty L e 40

6.6 Savingtheapp. L 41

6.7 LoadinganappfromaXMLfile 41

6.8 Generating the source code L e e e e e e 41
6.9 Forcontributors L e e e e 41

7 Installing and Designing own Widget Plugins 43
7.1 Widgets packages L e e 43
7.1.1 Create ZIP package e e e e e 44

7.2 Installing Widget Plugins locally e 44

7.3 Designing own Widget Plugins L e e 44
7.3.1 Widget Initialisation L e 45

A Abbreviations 46
B Copyrights and Trademarks 47
C wxGlade License Agreement 48
D Licenses and Acknowledgements for Incorporated Software 49
D.1 OrderedDict o L e e e e e e e 49

wxGlade manual v

List of Figures

1.1
1.2
1.3

3.1
32
33
34
3.5
3.6
3.7
3.8
39
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18

5.1
52
53

wxGlade Windows L L e e e e e 1
wxGlade preferences dialog L 5
Anerror dialogexample L L L e e e e e 7
The Main Palette e 15
The Tree Window L L L e e 16
The menu forawidget e e 16
The menu forasizer e e 17
The Design Window L L 0 e 17
Project Properties - Application Settings L e e e e e e e e 19
Project Properties - Language settingso e e e 21
Common Properties e 22
Changing Common Properties e e e e e e e e e e 23
Common Properties of a subclassed widget (default behaviour) 23
Common Properties with Base class(es) entry e 24
Common Properties with a variable assignment L 24
Layout Properties e e e e e e e e 26
Widget Properties e e e e e e 27
Events Properties e e e 28
Events Properties with entered event handlername 28
Properties for extra code and extra propertieso ol e e e e e e 29
Set exXtra ProPerty v v o i e 30
Menu editor L e e e e e e e e 36
Statusbar properties L e e e e e e e e e e 37
Toolbar editor L e e 38

wxGlade manual vi
List of Tables
2.1 Interaction between properties to generate different types of startcodeo L. 12

wxGlade manual vii

List of Examples

1.1
1.2
2.1
22
23
24
2.5
2.6
2.7
3.1
32
33
34
35
7.1
1.2

Installing wxGlade at fopt/wxglade e 4
Starting wxGlade at /opt/wxglade/bin/wxglade 4
Correct entered WX CONStANE L 9
Detailed application start code in Perl 12
Simplified application start code in Perl L 13
Compiling a single file C++ projecton Linux L 13
Compiling a multi file C++ projecton Linux 13
Converting a XRC file into a wxGlade project e 14
wxPython code to load and show a XRCresource 14
Generated Python code of a subclassed widget 23
Generated Python code of a widget with two baseclasses 24
Generated Python code for a variable assignment L oL 24
Generated Python code of an EVT_TEXT event handler stubatline 12 28
Generated Python code for setting property MaxLength to 10 atline 14 30
Directory package e e e e 43

ZIPpackage e 43

wxGlade manual viii

Preface

This manual describes the programm wxGlade, initially written by Alberto Griggio. wxGlade is a Python, Perl, Lisp, C++ and
XRC Graphical User Interface (“GUI”) editor for Unix and Microsoft Windows. Each of the chapters in this manual is designed
as a tutorial for using wxGlade and a reference for widgets supported until now.

Contact
Check the project homepage http://wxglade.sourceforge.net for the mailing list to discuss the project. Use the lists for questions,

proposals, bug reports and collaboration. Information, support and bug reports can be addressed to the wxGlade mailing list too.

Any kind of feedback is always welcome.

License

wxGlade is copyright 2002-2007 by Alberto Griggio and 2011-2014 by Carsten Grohmann.

Use and distribution of wxGlade is governed by the MIT license, located in Appendix C, wxGlade License Agreement.

http://wxglade.sourceforge.net

wxGlade manual 1/49

Chapter 1

Introduction to wxGlade

1.1 What is wxGlade?

wxGlade is an open source graphical user interface builder written in Python using popular widget toolkit wxWidgets.

= wxGla — O X | wxGlade: Tree (fhome/; B E i, Properties - <ar B 5
File wiew Help * m Application Applicationl 5ettin|_:|s|

1 |4 b [E] Mp3_To_0gg (PyOgg2_MyDialog)
b [T7] FrameOggCompressionDetails (PyC
Class] |
o sl @
Encoding [IS0-8859-15

Lz

Marme IPyOggE_app

o
=

>
&

(B O Enable gettext support
Top

window ol LI

o
5
L
i

_ -Code Generation
mc R & == (> single file

() Separate file for each class

-Language

O c++ O Lisp & Perl
[+ HL
E 33 (&} Python O XRC

R

Figure 1.1: wxGlade windows

wxGlade allows to create graphical user interfaces using wxWidgets. The designer can arrange different widgets using a drag and
drop WYSIWYG editor. This simplifies the creation of a graphical user interface in comparison with manual coded graphical
user interfaces.

wxGlade is able to generate source code for Python, Perl, Lisp, C++ and XRC based on the designed GUI.

As you can guess by the name, its model is Glade, the famous GTK+/GNOME GUI builder, with which wxGlade shares the
philosophy and the look & feel (but not a line of code).

wxGlade manual 2/49

1.2 What can you do with wxGlade?

With wxGlade you can:

* Design the whole GUI of your application inclusive simple or complex dialogs as well as menu bars, different kinds of buttons
and text widgets, bitmaps, ...

* Use the graphical editor for editing, cutting and pasting widgets
* Convert your design in source code of your favorite language

* Run wxGlade on a wide variety of operation systems since it is written in Python

1.3 What is wxGlade NOT?

wxGlade is not a full featured IDE and will never be one. wxGlade is just a graphical user interface builder. The generated code
does nothing apart from displaying the created widgets.

If you are looking for a complete IDE, maybe Boa Constructor or PythonCard is the right tool.

wxGlade isn’t a tool to learn programming with wxWidgets. You can’t use wxGlade if you do not have any basic understanding
of programming. You need to know the basics of wxWidgets, as well as the basics of C++, Python, Perl or Lisp.

1.4 Requirements and Supported Platforms

wxGlade has been tested and run on Microsoft Windows, Linux, OS X.
Because wxGlade is written in Python using wxPython, it can also be run on any platform that supports Python and wxPython.

Especially the wxGlade requirements are:

e Python 2 - at least 2.4 or any later version of Python 2

* wxPython 2.8 or 3.0

Sometimes the wxPython module “wxversion” is packaged separately e.g. in Debian. Please install the “wxversion” package
manually in such case,

* wxWidgets 2.8 or 3.0, the wxWidgets are often bundled with wxPython

wxWidgets is available at http://www.wxwidgets.org and wxPython at http://www.wxpython.org.

1.5 Installation

wxGlade is available in 4 different package types:

* the sources packages (. zip and .tar.gz)
« the full installer at Microsoft Windows (wxGlade—-VERSION-setup.exe)
« the installer of the Standalone Edition at Microsoft Windows (wxGlade—SAE-VERSION-setup.exe)

 development version fetched with Mercurial or downloaded the current packaged development version from https://bitbucket.org

http://boa-constructor.sourceforge.net
http://pythoncard.sourceforge.net
http://www.wxwidgets.org
http://www.wxpython.org
https://bitbucket.org

wxGlade manual 3/49

1.5.1 Download

Source and binary packages for stable versions are available at http://sourceforge.net/projects/wxglade.

You can get the development version from Bitbucket.org at https://bitbucket.org/agriggio/wxglade/overview using anonymous
Mercurial (hg) access.

1.5.2 Installing at Microsoft Windows
The default installer requires a local installation Python and wxPython. The wxWidgets are bundled with wxPython on Microsoft
Windows. Thereby you don’t need to install wxWidgets separately.

There is no need to install additional packages for the standalone edition, because the standalone edition includes the required
parts of Python, wxPython and wxWidgets.

The installation process is quite simple. Just download the installer file, execute it and follow the installer instructions.

1.5.3 Installing at Unix/Unix-like Operating Systems
Current Linux distributions provide wxGlade packages already. Use the distribution specific install mechanism to install the
wxGlade package and all dependencies.

You may install wxGlade from the source package if your distribution doesn’t provide any package or the package is out-of-date.

1.5.4 Installing from Source

The installation from scratch requires Python, wxPython and wxWidgets. Those three components have to be installed first.
Maybe you could use already packaged versions of those components for your operating system. Otherwise read the installation
documentation of the missing components and follow the instructions.

There are two ways for installing wxGlade from source - single or multi user installation.

Download a source package or a development package in a first step.

Single user installation

Extract the downloaded package into a separate directory e.g. a subdirectory below user’s home directory. Change in this
directory and execute the wxglade file on Unix operating systems or wxglade.pyw on Microsoft Windows.

That’s all. Installations below users home directory don’t require administrative permissions.
Multi user installation - variant 1
The first variant of a multi user installation is very similar to Section 1.5.4, “Single user installation” except the installation direc-

tory. And probably you need administrative permissions. You could extract the wxGlade source package e.g. into c:\program
file\wxglade on Microsoft Windows or into /opt/wxglade on Unix.

Multi user installation - variant 2

Extract the downloaded package into a temporary directory. Change in this directory and execute the Python setup script using
python setup.py in a terminal window.

http://sourceforge.net/projects/wxglade
https://bitbucket.org
https://bitbucket.org/agriggio/wxglade/overview
http://mercurial.selenic.com

wxGlade manual 4/49

Example 1.1 Installing wxGlade at /opt/wxglade

python setup.py install —--prefix /opt/wxglade

running install

running build

running build_py

creating build

creating build/lib.linux-1686-2.7

creating build/lib.linux-1686-2.7/wxglade

creating build/lib.linux-1686-2.7/wxglade/widgets

creating build/lib.1linux-1686-2.7/wxglade/widgets/combo_box

[...]

copying docs/html/ch04s23.html -> /opt/wxglade/share/doc/wxglade/doc/html
copying docs/html/ch04s26.html —-> /opt/wxglade/share/doc/wxglade/doc/html
copying docs/html/ch05s02.html —-> /opt/wxglade/share/doc/wxglade/doc/html
copying docs/html/pr0l.html -> /opt/wxglade/share/doc/wxglade/doc/html
creating /opt/wxglade/share/doc/wxglade/doc/pdf

copying docs/pdf/manual.pdf —-> /opt/wxglade/share/doc/wxglade/doc/pdf
creating /opt/share/man

creating /opt/share/man/manl

copying docs/man/wxglade.l —-> /opt/wxglade/share/man/manl

copying docs/man/manpage.xml —> /opt/wxglade/share/doc/wxglade

copying docs/src/manual.xml -> /opt/wxglade/share/doc/wxglade

running install_egg_info

Writing /opt/wxglade/lib/python2.7/site-packages/wxGlade-0.6.5_-py2.7.egg-info

After the installation has finished the wxGlade main script wxglade is located at <install directory>/bin.

Execute the script to start wxGlade

Example 1.2 Starting wxGlade at /opt/wxglade/bin/wxglade

/opt/wxglade/bin/wxglade
Starting wxGlade version 0.6.5 on Python 2.7.2+

Base directory: /opt/wxglade/lib/python2.7/site-packages/wxglade
Documentation directory: /opt/wxglade/lib/python2.7/site-packages/wxglade/docs

Icons directory: /opt/wxglade/lib/python2.7/site-packages/wxglade/icons
Build-in widgets directory: /opt/wxglade/lib/python2.7/site-packages/wxglade/widgets
Template directory: /opt/wxglade/lib/python2.7/site-packages/wxglade/templates
Credits file: /opt/wxglade/share/doc/wxglade/credits.txt

License file: /opt/wxglade/share/doc/wxglade/license.txt

Tutorial file: /opt/wxglade/lib/python2.7/site-packages/wxglade/docs/html/ <«

index.html
Using wxPython 2.8.12.1
loaded code generator for perl
loaded code generator for XRC
loaded code generator for python
loaded code generator for lisp
loaded code generator for C++
Found widgets listing —-> /opt/wxglade/lib/python2.7/site-packages/wxglade/widgets/widgets.
txt
loading widget modules:
frame
dialog

wxGlade manual 5/49

1.6 Configuring wxGlade

1.6.1 Preferences Dialog

You can access the Preferences Dialog with the menu item View — Preferences. You can choose some decoration options, like
whether to show icons in menus or not, but also something more effective. For example, you can modify the number of buttons
in the Main Palette. If you type a value of 15 or 30, you get a long toolbar-like Main Palette. You can also choose the default
path where you save wxGlade files or generate source code.

Another useful option is to enable a default border of 3 around some widgets. In many cases this can be useful to have set.

You need to restart wxGlade for changes to take effect.

(= preferences + x |l
Interface | other [Interface | Other
] Use icons in menu items _ [] Use dialog units by default for size properties
] Show properties and tree windows as small frames] Create backup files for generated source
] Show progress dialog when loading wxg files [] Default border width for widgets |3 3]
1 Remember position and size of wxGlade windows W Log additional debug information
& Show "handles" of sizers Wl Auto save wxg files every @I@ seconds

[Use native file dialogs on KDE [Insert timestamp on generated source files

[J Show success message for code generation [Insert .wxg file name on generated source files

Initial path for

file opening/saving dialogs: [fhomejcarsten ‘ ¥ Create backup wxg files

Initial path for

[fhomejcarsten ‘ Backup options
code generation file dialogs: @ append ~ to filename O append .bak to filename
MNumber of items in file history [4 |:| Local widget path
MNumber of buttons per row [5 |A| [,fhomefcarstenf.wxglademidgeiis ‘ | o
in the main palette hd —
| -Cﬂgl(| | ! ﬁbbrechen‘ | -Cﬂgl(| ‘ ! &bbrechen‘

Figure 1.2: wxGlade preferences dialog

1.6.2 Configuration files and Configuration directory

wxGlade stores user related information in a own directory. The directory is named “~/.wxglade” on Unix or
in “Application Data/wxglade” on Microsoft Windows. The name of the directory “Application Data” will be
translated to users langauge by Windows automatically.

The configuration file wxgladerc on Unix or wxglade.ini on Microsoft Windows contains users configuration. It’s a text
file. Be carefully if you are changing the file manually. The last open files are listed in file_history.txt. The subdirectors
templates contains wxGlade templates generated by the user itself.

The directory contains the log files also. The log files are detailed described in Section 1.6.4, “Logging”.

1.6.3 Environment Variables

wxGlade supportes only one environment variable “WXGLADE_CONFIG_PATH”.

wxGlade manual 6/49

If you want to store the whole configuration data inclusive user generated templates and log files in a non-default directory, then
store the full path of the alternative directory in the environment variable “WXGLADE_CONFIG_PATH” and start wxGlade
with the new environment.

1.6.4 Logging

wxGlade writes always a small error log file wxglade . 1log. The file size is limited to 100 KB. wxGlade will keep at most two
log files wxglade.log and wxglade.log.1l. The roll over from wxglade.log to wxglade.log.1l will occur if the
file size limit is reached. An already existing file wxglade.log. 1 will be deleted automatically. The log file is a text file in
Unicode.

The log file location is described in Section 1.6.2, “Configuration files and Configuration directory”.

1.7 How to Report a Bug

Writing a helpful bug report is easy if you follow some hints. The items below should help you to integrate useful information.
They are not an absolute rule - it’s more like a guideline.

e What did you? May you want to include a screenshot.
e What do you want to happen?
* What actually happened?

* Provide a short example to reproduce the issue.

Include the internal error log file “wxglade.log” always.

May you read How to Report Bugs Effectively additionally.

Please open a new bug in the wxGlade bug tracker at Sourceforge. Alternatively you can send the bug report to the wxGlade
mailing list. Keep in mind that you need a subscription for sending emails to this mailing list.

http://www.chiark.greenend.org.uk/~sgtatham/bugs.html

wxGlade manual 7/49

Error Dialog

An internal error occurred while loading file "bugdialog_uiwxg"

Error type: NotimplementedError
Error summary: That's just a test

This is a bug - please report it.

Error Summary | Error Details ‘ How to Report a Bug |

| %Eﬂpieren ‘ ‘ @gh ‘

Figure 1.3: An error dialog example

1.8 Deprecated features

wxGlade can change code inside existing source files to reflect changed designs. This feature is deprecated now und will be
removed within the next releases.

wxGlade manual 8/49

Chapter 2

Exploring wxGlade

2.1 Quick example

We will design a simple form.
Start wxGlade by running the wxglade program on Unix or the wxglade.pyw program on Microsoft Windows.

You will see a Main Palette with several buttons, and a Tree Window with an icon marked Application. A Properties Window
shows the properties of the Application.

If you move the mouse over a button in the main window, a tooltip will display its function.

To add a frame in the design window, from the Main Palette choose the first button: “Add a frame”.

Then choose wxFrame as the base class.

Look at the tree window and see that two icons are generated under the application icon, a frame icon and a sizer icon.

If you double click with the mouse on the frame icon, the designer window appears. Notice that the sizer is displayed as a set of
gray boxes: they are the “slots” of the grid sizer where you will place the widgets.

You put a widget on a sizer by selecting it on the main window, then click on an empty slot on the frame on the designer window.
Try adding a static text, a text control and a button.

If you want to add something else, add empty slots on the sizer by right-clicking on the sizer on the tree window and selecting
“Add slot”.

Play around, adding four or five widgets on the frame.

Now look at the properties form; there are three tabs. In the “Common” tab you can specify the name, size and color of the
widget.

In the “Layout” tab you can adjust borders and alignments.

In the “Widget” tab you find the properties depending on the widget.

You can select the properties of a widget by clicking on the designer window or the corresponding icon on the tree window.
Try adjusting widgets with the properties form until you know you have played enough.

Now let’s generate the code.

Select the Application icon on the tree window and go to the properties window.

Check Name and Class, choose a “Top window”, check “Single file” and choose the language and set the “Output path” by
pushing the button for selecting a path and a filename.

Finally press the “Generate code” button, and the code is generated.

Compile and enjoy.

wxGlade manual 9/49

2.2 Basics of wxGlade

The program wxGlade is a tool for designing Graphical User Interfaces (GUI). It is intended to be used with the wxWidgets
framework in all its flavors: C++, Lisp, Perl, Python and XRC.

You use a visual editor for creating forms, menus and toolbars with the mouse.

Your design is saved in a . wxg file, which is the wxGlade file format. Then you generate source code or XRC by using visual
tools or invoking wxGlade at the command line. You can also use wxGlade in your makefile by generating source code only
when the . wxg file changes.

A .wxg file can contain multiple forms, panels, menus and toolbars and generate either a single file containing all classes or
multiple files containing one class each.

wxGlade does not manage events, file inclusion, function names, stubs or anything else but graphic interface code.

2.3 Escape Sequences

Escape sequences are used to define certain special characters within string literals. wxGlade supports escape sequences gen-
erally. The only exception is the null byte (“0”) and the escape sequence (‘\0”) belonging to it. wxGlade can’t handle null
bytes.

Escape sequences like “\” or “\r”” will not touched by wxGlade. Thereby the generated source code contains excatly the same
sequence as entered. The language interpreter or compiler will interpret and probably convert the sequence into control characters.
For example “\n” will be converted into a line break.

Escape sequences with at least two leading backslashes e.g. ‘“\\n” will be escaped to show exact the same sequence and don’t
convert it into control characters. Question marks especially double quotes will be escaped also.

2.4 Best Practice

The main goal of the recommendations is to improve the usability and maintainability of code generated by wxGlade. The
recommendations combine the experience of many wxGlade users.

Always overwrite existing sources wxGlade can change code inside existing source files to reflect changed designs. This
feature have some limitations e.g. in case of name changes and changed dependencies. Thereby it’s recommended to
overwrite existing sources always and extend derived classes with your functionality.

Note
This feature is deprecated now und will be removed within the next releases.

Use the C++ naming convention Use the C++ names for all wx identifies like classes, colours or events of the wx framework.
Please don’t enter identifiers already formatted in a language specific form. wxGlade is able to transform the entered
original identifiers in language-specific terms. You can use your own style for your object certainly.

Example 2.1 Correct entered wx constant
Enter “wxID_CANCEL” even for wxPython instead of “wx.ID_CANCEL”

Always use UTF-8 encoding It’s generally recommended to use Unicode encoding for all non-ASCII character sets.

Always use gettext support Enable internationalisation support. There are no disadvantages if internationalization is active but
not used.

It’s hard to add i118n and Unicode afterwards from project point of view.

wxGlade manual 10/ 49

Suggestion on naming The wxWidgets are written in C++ and follow the C++ naming convention. This naming convention
may differ from the language specific and / or project specific naming convention.

For consistency’s sake, it’s recommended to use the wxWidgets style.

Prevent language specific statements Usage of language specific codes e.g. for “Extra code for this widget” or in generic input
fields complicated changing the output langauge later e.g. to re-use GUI elements in another project too.

2.5 Language specific peculiarities

2.5.1 Python

It’s not recommended to use nested classed and functions in combination with disabled feature “Overwrite existing sources”.
Use derived classes to implement your functionality. See Section 2.4, “Best Practice” also.

2.5.2 Lisp

The Lisp code generated by wxGlade may or may not working with a current Lisp dialect. Help to improve the Lisp support is
really welcome.

Unsupported features in Lisp:

¢ Unicode support

 Support for wxWidgets 3.0

2.6 Command line invocation

You can run wxGlade without parameters to start the GUI on an empty application as follows:
wxglade

Run wxGlade GUI on an existing application specifying the . wxg file as follow:

wxglade <WXG File>

If you only want to generate the code without starting the GUI, use the —g or ——generate-code option with the language as
argument as follows:

wxglade -g <LANGUAGE> <WXG File>

wxglade --generate-code=<LANGUAGE> <WXG File>

Possible values for LANGUAGE are "XRC", "python", "perl", "lisp" or "C++".

You can also specify the destination of the generated code with —o or ——output option:
wxglade -g <LANGUAGE> -0 <DESTINATION> <WXG File>

The DESTINATION argument can be a file or a directory. If DESTINATION is a file, wxGlade will generate single-file source
code. In case DESTINATION is a directory wxGlade will generate multiple-file source code.

This is the complete description of the command line:

wxglade —--help

Usage: wxglade <WXG File> start the wxGlade GUI

or: wxglade <Options> <WXG File> generate code from command line

or: wxglade —--version show programs version number and exit
or: wxglade -h|--help show this help message and exit
Options:

——version show program’s version number and exit

wxGlade manual 11/49

-h, --help show this help message and exit
-g LANG, —--generate-code=LANG
(required) output language, valid languages are: C++,
XRC, lisp, perl, python
-o PATH, --output=PATH
(optional) output file in single-file mode or output
directory in multi-file mode
Example: Generate Python code out of myapp.wxg
wxglade -o temp -g python myapp.wxg
Report bugs to: <wxglade-general@lists.sourceforge.net> or at
<http://sourceforge.net/projects/wxglade/>
wxGlade home page: <http://wxglade.sourceforge.net/>

Note
Use wxglade.pyw instead of wxglade on Microsoft Windows.

2.7 Using the source code

There are a lot of options to control the source code generation process. They are bundled in the “Application” page of the
“Properties” window (see Figure 3.6, “Project Properties - Application settings”). Let’s talk about three of those options -“Single
file”, “Separate file for each class” and “Overwrite existing sources”.

The first two options triggers wxGlade to generate one file with all classes inside or multiple files - one per class/widget. The
“Single file”option includes source and header file for C++ certainly.

The third option “Overwrite existing sources” is just about control - “Full control by wxGlade” and “Shared control”. It separated
the two ways to work with wxGlade.

2.7.1 Full control by wxGlade

If “Overwrite existing sources” is set, wxGlade will re-generated all source files and drop potential manual changes. You’ve to
include the generated source files and use derived classes for implementing changes.

The files written by wxGlade are consistent always. Also if e.g. classes or attributes are renamed. Rewriting the whole files is
less error-prone in comparison with Section 2.7.2, “Shared control”. That is the advantages of this method.

This method is the recommended one.

2.7.2 Shared control

Manual changes in the source files won’t be overwritten if “Overwrite existing sources” isn’t set. You can safely edit the source
code of the generated class. This is because wxGlade marks the untouchable code with the special comments “begin wxGlade”
and “end wxGlade”. So you can edit all you need outside these two tags. When you make changes in your forms, a new code
generation will not modify the user code. wxGlade is applying most of the changes but not all changes. Especially renamed
classes and attributes need additional attention.

Note
Overwriting multiple files is not recommended as well as overwriting of files with percent character (“%”) inside is not supported.

Note
This feature is deprecated now und will be removed within the next releases.

wxGlade manual 12 /49

2.7.3 Output path and filenames

“Output path” specifies the name of the output file for “Single file” projects or the output directory for multi-file projects (“Sep-
arate file for each class”). The filename has to include the appropriate suffix of the programming language always. An exception
is the “Output path” for “Single file” C++ projects. Filename don’t contains the filename extension now. The extension for C++
source and header files will be appended later automatically.

2.7.4 Automatically created wxApp instance

wxGlade can create an additional code to start an instance of projects “Top window”.
There are two types of application start code:

* simplified application start code

¢ detailed application start code
The application start code generation is controlled by three properties:

1. Name
2. Class
3. Top window
Those properties are explained in Section 3.4.1, “Application Properties”. Different combinations of those attributes generated

different application start code. The table below shows the type of application start code resulting from different combinations
of the three properties. The “Enable gettext support” property just triggers i18n-enabled source code.

Name Class Top window Type of application start code to generate
not selected not selected not selected not generated

selected not selected not selected not generated

not selected selected not selected not generated

selected selected not selected not generated

selected not selected selected simplified start code

not selected selected selected not generated

selected selected selected detailed start code

Table 2.1: Interaction between properties to generate different types of start code

The application start code of a multi-file project will be recreated every time the code generation is running.

In opposition the application start code of single-file projects will not updated if the name of the “Top window” has changed and
“Overwrite existing sources” is not set.

Example 2.2 Detailed application start code in Perl

package MyApp;

use base qw (Wx::App);

use strict;

sub OnInit {
my ($Sself) = shift;
Wx::InitAllImageHandlers () ;
my S$frame_1 = MyFrame->new () ;
Sself->SetTopWindow ($frame_1);
Sframe_1->Show (1) ;
return 1;

wxGlade manual

end of class MyApp
package main;
unless (caller) {

my S$local =

$local->AddCatalog ("app") ;

my S$app =

MyApp->new () ;

Sapp->MainLoop () ;

Wx::Locale—>new ("English",

"en",

"en") g

Example 2.3 Simplified application start code in Perl

package main;
unless (caller) {

replace with ?2?
replace with the appropriate catalog name

my $local = Wx::Locale->new("English", "en", "en"); # replace with 2?7
$local->AddCatalog ("P10ggl_app"); # replace with the appropriate catalog
local xWx::App::0nInit = sub{l};

my $P10ggl_app = Wx::App->new();

Wx::InitAllImageHandlers () ;

my $Mp3_To_Ogg = P1lOggl_MyDialog->new () ;

name

$P10ggl_app—>SetTopWindow ($SMp3_To_0gg) ;
SMp3_To_0gg—>Show (1) ;
$SP10ggl_app->MainLoop () ;

2.7.5 Compiling C++ code

You can compile your wxGlade project after the generation of the C++ source and header files. The following examples demon-
strate compiling on Linux command line using g++.

Example 2.4 Compiling a single file C++ project on Linux

g++ FontColour.cpp $ (wx—-config —--cxxflags) -o FontColour
11 FontColour=*
—-rwxr—-xr-x 1 carsten

—-rwxr—-xr—-x 1 carsten

$ (wx—-config —--1ibs)

carsten 72493 Jun 15 09:22 FontColour
carsten 1785 Mai 11 19:24 FontColour.cpp

—rwxr—-xr—-x 1 carsten carsten 1089 Jun 11 07:09 FontColour.h

Example 2.5 Compiling a multi file C++ project on Linux

CPPOgg2_main.cpp $ (wx-config —--1libs) $(wx-config --cxxflags) \
-0 CPPOgg2_main CPPOgg2_MyDialog.cpp CPPOgg2_MyFrame.cpp
11 CPPOgg2x

gt++

—rwxr—-xr—-x 1 carsten carsten 108354 Jun 15 09:33 CPPOgg2_main
—-rwxr—-xr—-x 1 carsten carsten 844 Mai 11 19:25 CPPOgg2_main.cpp
-rw—-r—-r—— 1 carsten carsten 5287 Mai 18 19:06 CPPOgg2_MyDialog.cpp
-rw—r——r—— 1 carsten carsten 1829 Jun 11 07:11 CPPOgg2_MyDialog.h
—-rw-r——-r—— 1 carsten carsten 1785 Mai 11 19:25 CPPOgg2_MyFrame.cpp
-rw—-r—-r—— 1 carsten carsten 1290 Jun 11 07:10 CPPOgg2_MyFrame.h

2.8 Handling XRC files

wxGlade is able to save projects as XRC files and to convert XRC files into wxGlade projects.

One way for converting XRC files is the usage of the Python script xrc2wxg.py at command line. The script is part of wxGlade.

wxGlade manual

14 /49

Example 2.6 Converting a XRC file into a wxGlade project

./xrc2wxg.py FontColour.xrc

1s -1 FontColour.x
—-rw—-r——-r—— 1 carsten carsten 5554 Dez 4 20:36 FontColour.wxg
—-rw-r——-r—— 1 carsten carsten 4992 Dez 4 20:13 FontColour.xrc

The “File” menu provides a menu item “Import from XRC...” to import and open a XRC file directly.

The following example shows how to load and show the frame “Main” from XRC file test .xrc.

Example 2.7 wxPython code to load and show a XRC resource

#!/usr/bin/env python2

import wx
from wx import xrc

GUI_FILENAME = "test.xrc"
GUI_MAINFRAME_NAME = "Main"

class MyApp (wx.App) :
def OnInit (self):
self.res = xrc.XmlResource (GUI_FILENAME)
self.frame = self.res.LoadFrame (None, GUI_MAINFRAME_NAME)
self.frame.Show ()
return True
if _ name_ == '_ _main__ ’:
app = MyApp ()
app.MainLoop ()

wxGlade manual 15/ 49

Chapter 3

wxGlade User Interface

3.1 Main Palette

The main window is a palette that hosts the menu and the widget choice buttons.

I® O wxGlade v0.6.5

File view Help

o = I B T [ol = =
& O AR & & [E8
e —DPEEE]IR #
o = 3

| %

Figure 3.1: The Main Palette

If you pass the mouse pointer over a button a tooltip shows the button’s description.

The “Add a Frame” button and the “Add a Dialog/Panel” button bring up a dialog to add a frame, a dialog or a panel to your
project.

The “Add a MenuBar” button asks you for the name of the class then adds a menu bar to your project.
The “Add a ToolBar” button asks you for the name of the class then adds a toolbar to your project.

The other buttons in the main window add widgets to a form. When you click on one, the mouse pointer changes to an arrow.
Then you can click on a sizer’s empty cell to add the widget to it.

3.2 Tree Window

The tree window shows the logical hierarchy of widgets and its child-widgets. For example you can see a panel as a tree’s node
and the widgets on it as child nodes.

wxGlade manual 16/ 49

IW, wxGlade: Tree ((home/carsten/Proji * = X

- | Application
- dialog_1 (MyDialog)

= —sizer_1

A label 1

== sizer_2
A label 2
[abl text ctrl 1
ok | button_1

Figure 3.2: The Tree Window

You can show or hide the tree window by the menu item View/Show Tree.

Usually a frame or a panel contains a sizer, so you often see a sort of panel-sizer-widgets structure. The tree gets more complex
when you nest sizers within sizers.

You can navigate the visual presentation of your widget tree by mouse, expand and collapse sizers, and copy, cut or remove
widgets.

A click on an icon in the tree window displays the properties of the corresponding element in the properties window. A double
click in a frame, dialog or panel icon makes the designer window show it as it appears. Clicking with the right button of the
mouse gives you a pop-up menu.

label 2
Copy Strg+C
g Cut Strg+X
Preview (dialog_1) Strg+pP

Figure 3.3: The menu for a widget

wxGlade manual 17 /49

sizer_1

&) rRemove Entf
Insert slot...

% Copy strg+C

& Cut Strg+x
Preview (frame_1) Strg+P

Figure 3.4: The menu for a sizer

The pop-up menu for a widget allows you to copy, cut or remove the element. The pop-up menu for a sizer allows you to copy,
cut or remove the element, or add or insert an empty slot.

Note
Often when you add an empty slot, you have to make the designer window larger, to show the new slot.

3.3 Design Window

The design window shows the frame or panel you are creating in WYSIWYG mode and allows you to select a widget from the
main palette and to put it on an empty slot of a sizer. You can show the design window by double-clicking on the icon of a frame
or dialog in the tree window.

B O =Design> - dialog_ 1
Personal Data

Type here your name:

Your Mame:

Figure 3.5: The Design Window

By clicking with the right mouse button on a widget you can access the context menu. Notice that the sizers, which are invisible
elements, have a little gray “handle,” that you can click to select the sizer or let the pop-up menu appear.

The pop-up menu is the same as the one you get in the Tree Window, as shown in Figure 3.3, “The menu for a widget” or in
Figure 3.4, “The menu for a sizer”.

wxGlade manual 18 /49

3.4 Properties Window

The properties window lets you see and edit the properties that apply to the selected element. This window consists up to six
different tabs. All six tabs are not always present. The visibility of the single tabs depends on the widget type. Most widgets
have a “Common” tab and a “Code” tab. The combination of presented tabs depends on the widget type.

For example:

* wxFrame widgets have “Common”, “Widget” and “Code” tabs
 Spacers have the tabs “Layout” and “Code”
* wxGridSizer widgets have “Common” and “Grid”

* wxBoxSizer widgets only have the “Common” tab

Editing properties is quite simple; Properties are represented by buttons, text boxes, checks and other controls. Usually they are
referenced by the same name or symbol that you find writing C++ code.

Usually you get the changes in the design window in real time. In some cases you have to push the “Apply” button. For example,
the wxNotebook widget shows in its properties window a list of child wxPanels. You have to press the “Apply” button to
show changes you make when you add or remove panels.

You can show or hide the properties window by the menu item View — Show Properties.

3.4.1 Application Properties

The page “Application” contains the general settings of the active wxGlade project.

wxGlade manual 19/49

Properties - <app=

|App|icatinn| Settings |

MName L] [app

Class L] [M}-‘App

Encoding |L.ITF-E

Enable gettext support

L

Top window |

Code Generation
@ Single file

() Separate file for each class

Language
O Cc++ O Lisp O Perl

@ Python () XRC

wixWidgets compatibility
(2.8 @ 3.0

Owverwrite existing sources

Output path |'u.u'n.r:-uzlg;Ial:ie_n::nl.Jt.;::t}.-r | m

Generate code ‘

Figure 3.6: Project Properties - Application settings

“Name”
Name of the instance created from “Class”

Section 2.7.4, “Automatically created wxApp instance” provides more information

“Class”
Name of the automatically generated class derived from wxApp

Section 2.7.4, “Automatically created wxApp instance” provides more information

wxGlade manual

20/49

“Encoding”
Encoding of the generated source files.
The encoding to use with new projects will be determined automatically based on the machine settings
used if the automatic detection fails.
“Enable gettext support”
Enable internationalisation and localisation for the generated source files

Section 2.7.4, “Automatically created wxApp instance” provides more information

“Top window”
This widget is used as top window in the wxApp start code

Section 2.7.4, “Automatically created wxApp instance” provides more information

“Code Generation”
Write all source code in one file or split the source into one file per class / widget

Section 2.7, “Using the source code” provides more information
“Language”

Programming language to generate the source files in
“wxWidgets compatibility”

Generate source files for the selected wxWidgets version
“Overwrite existing sources”

Overwrite existing source files or modify the code sequences generated by wxGlade in place

Section 2.7, “Using the source code” provides more information

. “UTF-8” will be

Note
This feature is deprecated now und will be removed within the next releases.

“Output path”
Output file or directory

Section 2.7.3, “Output path and filenames” provides more information

“Generate code”

Start generating source files

The page “Settings” contains the language specific settings of the active wxGlade project.

wxGlade manual 21/49

Application | Settings

-General Settings
Fndentatinn mode

() Tabs @ |

Indent amount | il

£

-C++ Settings

source ext |cpp |

Header ext |h |

Figure 3.7: Project Properties - Language settings

“Indentation mode”

Use spaces or tabs for indentation within the generated source files.

“Indentation amount”

Number of spaces or tabs used for one indentation level.

“Source ext”
Extension of the source file.

The extension doesn’t has a leading dot.

wxGlade manual

22/49

“Header ext”
Extension of the header file.

The extension doesn’t has a leading dot.

3.4.2 Common Properties

The first tab contains the common properties that apply to all widgets. As shown in Figure 3.8, “Common Properties” the

common properties are related to name, class, size, colors, fonts and tooltip.

Im O Properties - <text_ctrl_1>

MName

Class

Id

Size
Background

Foreground

Font

Tooltip
Disabled
Focused

Hidden

Figure 3.8: Common Properties

- O

Commen | Layout | Widget | Ewvents | Code |

[text_ctrl_1

waText Ctrl

L]

I I B I

The property name is a mangled version of the wxWidgets property name. The property input field is disabled by default.

wxGlade won’t use disabled properties for code generation. wxWidgets defaults are used instead.

Enable the property in the wxGlade GUI to set non-default values (see Figure 3.9, “Changing Common Properties”).

woeE W o =

wxGlade manual

23/49

“Name”

|W, 2 Properties - <text ctrl 1> — O

Common | Layout | Widget | Events | Code |

Name |te:-ct_ctr|_l Enter different value
7

Class Iw::cTe:-:tCtrI /

Id D|

I NN

Property name Enable ; disable input field
Background [| |

Figure 3.9: Changing Common Properties

Name of the instance created from “Class”

“Class”

Name of the subclass of the widget. How this name affects code generation depends on the output language.

I® O Properties - <dialog_1>

Camrmon | Widget | Code |

MName Idialag_l

Class IMyDiaIug

Base class(es) [I

Figure 3.10: Common Properties of a subclassed widget (default behaviour)

Example 3.1 Generated Python code of a subclassed widget

class MyDialog (wxDialog) :
def _ _init__ (self,

*args, xxkwds) :

begin wxGlade: MyDialog.__init_
kwds["style"] = wxDEFAULT_DIALOG_STYLE
wxDialog.__init__ (self, =xargs, =xxkwds)

“Base class(es)”’

A comma-separated list of custom base classes. The first will be invoked with the same parameters as this class, while for
the others the default constructor will be used. This property will be shown only for non-managed widgets for instance
wxFrame, wxDialog, wxNotebook, wxPanel and wxSplitterWindow. You should probably not use this if
“overwrite existing sources” is not set.

wxGlade manual 24 /49

I® O Properties - <frame_1>

Common | Widget | Code |

Mame Iframe_l

Class IMyFrame

Base class(es) ImyFrameMixin, wxFrame|

Figure 3.11: Common Properties with Base class(es) entry

Example 3.2 Generated Python code of a widget with two base classes

class MyFrame (myFrameMixin, wxFrame) :

def __init__ (self, xargs, xxkwds):
begin wxGlade: MyFrame.__init_
kwds["style"] = wx.DEFAULT_FRAME_STYLE
myFrameMixin.__init__ (self, =xargs, =*x*kwds)
wxFrame.__init__ (self)
“Id”
This property could be

* a constant numeric value
* apredefined identifier e.g. wxID_ANY
* a predefined variable like a class member e.g. self.myButtonID

* a variable assignment e.g. “self.myButtonID=?" The pattern of a variable assignment is always “variable=value”.
The value could be again a numeric value, a predefined identifier, another predefined variable or “?” a shortcut for
“wxNewld()”

I® O Properties - <button_1>

Common | Layout | Widget | Events | Code |
Mame Ibuttun_l

Class Iw:-cButtun

Id Iself.myButtcnlD:?l

Figure 3.12: Common Properties with a variable assignment

Example 3.3 Generated Python code for a variable assignment

class MyFrame (wx.Frame) :
def __init__ (self, =xargs, =*+*kwds):

begin wxGlade: MyFrame.__init_
kwds["style"] = wx.DEFAULT_FRAME_STYLE
wx.Frame.__init__ (self, xargs, =xxkwds)
self.myButtonID = wx.NewId()
self.button_1 = wx.Button(self, self.myButtonID, "button_1")
self.__set_properties()
self.__do_layout ()
end wxGlade

wxGlade manual

25/49

“SizeQ’
Set the widget size in pixels.

“Background”

Set the background colour of the widget.

“Foreground”

Set the foreground colour of the widget.

“Font”

Set the font for widgets text elements.

“Tooltip”
Set a tooltip for this widget.

“Disabled”
Disable the widget.
“Focused”

Sets the widget to receive keyboard input.

“Hidden”
Hide the widget.

3.4.3 Layout Properties

The second tab is related to layout properties that control position and resizing within the sizer.

wxGlade manual

26/49

|W & Properties - <text_ctrl_1>

Common Layout | Widget | Ewvents | Code |

- O

Fasition |1

Propartion |1

Border |3

-Border

WxALL

] wxLEFT

O] wxRIGHT
[] wxTOP

] wxBOTTOM

-Alignrment

] wxEXPAND

] wxALIGN_RIGHT

[] wxALIGN_BOTTOM

[wxALIGN_CENTER_HORIZONTAL
] wxALIGN_CENTER_VERTICAL

[] wxSHAPED

] wxADJUST_MINSIZE

] wxFIXED_MINSIZE

Figure 3.13: Layout Properties

These properties apply to any widget. You can check or uncheck any option related to the placement in the sizer. Many widgets
may have a default value of 3 in the “Border” property in the Preferences Dialog (see Section 1.6.1, “Preferences Dialog”). If
you let a widget have a default border, the wxA11 option is also checked.

3.4.4 Widget Properties

The third tab, named “Widget” is different for each widget, and lets you edit properties for the specific element you have selected.

wxGlade manual

27749

|W, 2 Properties - <text ctrl 1> — O

Cormrmmaon | Layout Widget | Ewvents | Code |

Walue |

-Style

] wxTE_PROCESS_ENTER
[] wxTE_PROCESS_TAB
O wxTE_MULTILINE

] wxTE_PASSWORD
[] wxTE_READOMNLY

] wxHSCROLL

] wxTE_RICH

] wxTE_RICHZ

] wxTE_AUTO_URL

[] wxTE_NOHIDESEL
[wxTE_CENTRE

] wxTE_RIGHT

[] wxTE_LINEWRAP

] wxTE_WORDWRAP
] wxNO_BORDER

Figure 3.14: Widget Properties

The set of options may also be quite complex in the case of widgets that have a great deal of methods and properties (such as

grids and tree views). In this case, wxGlade greatly simplifies the process of designing forms.

3.4.5 Events Properties

The fourth tab, named “Events” lists the widgets events. wxGlade generates an event handler stub and binds the event for each

added handler name.

1

2

3

wxGlade manual

28/49

Im O Properties - <text_ctrl_1> - 0
common | Layout | widget Events | code |
-Events
Event | Handler|
EVT TEXT

EVT_TEXT_ENTER
EWT_TEXT_URL
EWT_TEXT_MAXLEN

Figure 3.15: Events Properties

IW O Properties - <text_ctrl_1>

common Loy | wiget eers | cose|

-Events

Event | Handler |

EVT_TEXT [rryEVTTEXT |

EVT_TEXT_ENTER
EWT_TEXT_URL
EVT_TEXT_MAXLEN

Figure 3.16: Events Properties with entered event handler name

Example 3.4 Generated Python code of an EVT_TEXT event handler stub at line 12

class MyFrame (wx.Frame) :
def _ _init__ (self, =xargs, =*xkwds):
begin wxGlade: MyFrame.__init_

wxGlade manual

29/49

def

kwds["style"] = wx.DEFAULT_FRAME_STYLE

wx.Frame.__init__ (self, =xargs, =xxkwds)
self.text_ctrl_1 = wx.TextCtrl(self, -1, "")
self.__set_properties ()

self.__do_layout ()

self.Bind (wx.EVT_TEXT, self.myEVTTEXT, self.text_ctrl_1)

end wxGlade

myEVTTEXT (self, event): # wxGlade: MyFrame.<event_handler>
print "Event handler ‘myEVTTEXT’ not implemented!"

event .Skip ()

3.4.6 Code Properties

The fifth and last tab is named “Code” and has two parts.

|N, 2 Properties - <text_ctrl 1> — O X

Commaon | Layout | Widget | Events Code

Extra code for this widget]

-Extra properties for this widget
Add | Remove

Pruperty| Value |

Figure 3.17: Properties for extra code and extra properties

The upper part provides the ability to add additional code for that widget e.g. for importing a custom class. This “Extra code”
will be added to the context of the source file and not to the context of the class.

The under part simplifies setting of additional widget properties. Add the property name to the “Property” field and not the name
of the setter function. For instance add “MaxLength” and not “SetMaxLength”. The “Value” field is just a text field. You can

wxGlade manual

30/49

enter e.g. a simple number only as well as a complex statement e.g. 0, 0, ''1" or a function call. But be carefully! Your entered
sequence will be inserted in the source without any changes - one to one.

Note

“Extra code” and “Extra properties” won’t be processed for the widget preview.

|
Extra properties for this widget
Add | Remove

Prupertyr| Value |

|Ma:-<Ler1gth | 10

Figure 3.18: Set extra property

Example 3.5 Generated Python code for setting property MaxLength to 10 at line 14

class MyFrame (wx.Frame) :

def

def

__init__ (self, =args, =*+*kwds):

begin wxGlade: MyFrame.__init_
kwds["style"] = wx.DEFAULT_FRAME_STYLE
wx.Frame.__init__ (self, =xargs, =xxkwds)
self.text_ctrl_1 = wx.TextCtrl(self, -1, "")
self.__set_properties|()

self.__do_layout ()

end wxGlade

__set_properties (self):

begin wxGlade: MyFrame.__set_properties
self.SetTitle ("frame_1")
self.text_ctrl_1.SetMaxLength(10)

end wxGlade

3.5 The wxGlade Menu

wxGlade has only a few very small menus.

3.5.1 The FILE menu

In the FILE menu there are the classic File — New, File — Open... and File — Save items. When opening or saving a new file,
the file dialog defaults to the directory that you put in the “Initial path” textbox in the Preferences dialog, usually the user home
directory.

The File — Generate code item produces the code from the current design.

3.5.2 The VIEW menu

In the VIEW menu, you can show or hide the tree window and the properties window.

In this menu you access the Preferences Dialog as well.

wxGlade manual 31/49

3.5.3 The HELP menu

The HELP menu provides access to the wxGlade user manual (this documentation) as well as to the “About...” dialog.

3.6 Shortcuts

Ctrl-G

Generate code from the current GUI design

Ctrl-I
Import GUI design out of a XRC file

Ctrl-N
Start a new GUI design

Ctrl-O
Read a GUI design from a . wxg file

Ctrl-S
Save the current GUI design to a . wxg file

Shift-Ctrl-S

Save the current GUI design to another . wxg file

Ctrl-P

Open a preview window for the current top-level widget

Ctrl-Q
Exit wxGlade

Ctrl-C

Copy the selected item, element, text, ...

Ctrl-V

Insert clipboard content

Ctrl-X

Cut the selected item, element, text, ...

F1
Show the wxGlade user manual (this documentation)
F2
Show the Tree window
F3
Show the Properties window
F4
Show all application windows
F5

Refresh the screen

wxGlade manual 32/49

Chapter 4

Supported widgets

4.1 Introduction

wxGlade supports a number of widgets and helps you to edit the properties and visual look of each one.

4.2 Specifying the path of bitmaps

In wxGlade some widgets need to specify a bitmap path. You can use any graphic format supported by wxWidgets.
The bitmap can be specified in several ways:

Usually you can type an absolute path in a text box or browse for a bitmap with a file dialog. This will produce a wxBitmap
object with the typed string as bitmap path (e.g. wxBitmap("/usr/share/icons/application.png", wxBITMAP_TYPE_ANY))

You can enter a variable name using the var: tag in the text box. This will produce a wxBitmap object with the variable name as
bitmap path (e.g. var:my_bitmap_path produces wxBitmap(my_bitmap_path, wxBITMAP_TYPE_ANY)). In Perl code generation
a “$” sign is added if you omit it.

You can enter a code chunk returning a wxBitmap, by using the code: tag. This inserts verbatim the code you enter in brackets
and nothing more (e.g.: if wxSomeWidget needs a wxBitmap as an argument, the string code:if (x == 0) get_bitmap() else
get_bitmap2(); produces wxSomeWidget((if (x == 0) get_bitmap() else get_bitmap2();), optionl, option2)).

wxGlade never declares or assigns variable or function names, so after code generation, you have to provide extra code to declare
your variables or functions.

If you use var: or code: tags the preview window shows an empty bitmap of fixed size.

4.3 Widget List

Follow the widget list as it appears in the wxGlade main window.

4.3.1 Frame

This prompts for a wxFrame or a wxMDIChildFrame. A vertical wxBoxSizer is appended. In the properties window you
can choose the styles and you can add an icon.

4.3.2 Dialog or Panel

This prompts for a wxDialog or a wxPanel in top level. In the properties window you can choose the styles and, for the
dialog, you can add an icon.

wxGlade manual 33/49

4.3.3 Panel

This allows you to add a panel to a sizer.

In the properties window you can choose the styles.

4.3.4 Splitter Window

This produces a wxSplitterWindow and two associated panels as well. You can choose vertical or horizontal splitting.
In the properties window you can choose the styles and the sash position.

Be careful not to put too large a widget in a splitter panel, because while it might appear normal in the design window, when you
run your program one of two panels will take all the available space and the other will shrink to the minimum size possible.

4.3.5 Notebook

This produces a wxNotebook and one panel for each tab.
In the properties window you can add and remove tabs, which appear in a list.

Don’t forget to click on the “Apply” button to transfer changes that you have made in the list to the design window.

4.3.6 Buttons

Button

This produces a wxButton. You can enter a caption and the “default” flag. If you want to add an image you need a bitmap
button (see Section 4.3.6, “Bitmap Button”).

Bitmap Button

This produces a wxBitmapButton. You can set the “default” flag on or off. You also can choose the bitmap for the button
and, optionally, the bitmap for the disabled status. Refer to Section 4.2, “Specifying the path of bitmaps” for bitmap path
specifications.

Radio Button

This produces a wxRadioButton. In the properties window you can enter the text, and the status, clicked or not, and the style.

Toggle Button

This produces a wxToggleButton. You can enter a caption and the status (clicked or not) of the button.

4.3.7 Gauge

This produces a wxGauge. In the properties window you can enter the range and set the style.

4.3.8 Hyperlink Control

This produces a wxHyperlinkCtrl. In the property window you can enter the label, the URL and also set the style.

wxGlade manual 34 /49

4.3.9 Radio Box

This produces a wxRadioBox. In the properties window you can enter the dimension. The style determines whether the
dimension is the number of rows or columns.

You also can set which button is selected with the “Selection” spin starting from 0. You can edit the list of choices, but remember
to click on the “Apply” button to consolidate changes.

4.3.10 Spin Control

This produces a wxSpinCtrl. In the properties window you can enter the value, the range and also set the style.

4.3.11 Slider

This produces a wxS1ider. In the properties window you can enter the value, the range and also set the style.

4.3.12 Static Text

This produces a wxStaticText. In the properties window you can enter the text, set the style and tell wxGlade whether to
store the control as an attribute.

4.3.13 Text Control

This produces a wxTextCtrl. In the properties window you can enter the text and also set the style.

4.3.14 Check Box

This produces a wxCheckBox. In the properties window you can enter the text, and the status, checked or not, of the button.

4.3.15 Choice

This produces a wxChoice. In the properties window you can enter the position of the selected item starting from 0. You can
edit the list of choices, but remember to click on the “Apply” button to consolidate changes.

4.3.16 Combo Box

This produces a wxComboBox. In the properties window you can enter the position of the selected item starting from 0. You
can edit the list of choices, but remember to click on the “Apply” button to consolidate changes.

4.3.17 List Box

This produces a wxListBox. In the properties window you can enter the position of the selected item starting from 0. You can
edit the list of choices, but remember to click on the “Apply” button to consolidate changes.

4.3.18 Static Line

This produces a vertical or horizontal wxStaticLine. In the properties window you can tell wxGlade whether to store the
object as an attribute of the frame class.

wxGlade manual 35/49

4.3.19 Static Bitmap
This produces a wxStaticBitmap. You will be prompted for the bitmap path. Refer to Section 4.2, “Specifying the path of

bitmaps” for bitmap path specifications. In the properties window you can set the style and you can tell wxGlade whether to store
the object as an attribute of the frame class.

4.3.20 List Control

This produces a wxListCtrl. In the properties window you can set the style.

4.3.21 Tree Control

This produces a wxTreeCtrl. In the properties window you can set the style.

4.3.22 Grid

This produces a wxGrid. In the properties window you can set the style, the row number, the label size, the line and background
color and the selection mode. You can edit the list of columns, but remember to click on the “Apply” button to consolidate
changes. Also you can choose to let wxGlade to create the grid or leave it to the user code.

4.3.23 Custom Widget

When you put a custom widget in the design window you will be prompted for a class name. In the properties window you can
set a number of custom attributes that will appear in the constructor call. These attributes have different effects in C++, Lisp,
Perl, Python or XRC code generation. Four special attributes $id, $Sparent, $width and $Sheight return the value you
specify in the “Common” tab of the custom widget.

4.3.24 Spacer

When you put a spacer into a sizer slot in the design window you will be prompted for the size; wxGlade will generate the code
to set an empty space in that slot of the sizer.

wxGlade manual 36/49

Chapter 5

Menu, Statusbar and Toolbar

5.1 Introduction

wxGlade helps you to design the menu and the toolbar for your application.
You can create the menu and toolbar as stand alone classes by clicking the corresponding button in the main window.

Alternatively you can make the menu, toolbar and statusbar associated with a wxFrame, by selecting the related checkboxes in
the wxFrame properties window.

5.2 Menu

In the menu properties window click on the “Edit menus...” button. A dialog will let you edit your menu. Use the “Add” button
to add items to the menu; enter the label, an optional name and help string. You can use numbers or variable names as the item
id. If you use a variable name, you have to provide extra code in the generated source code.

Choose the type of the item: Normal, Checkable or Radio.

You can move menu items with “Up” and “Down” buttons, and you can modify the hierarchy of the menu with “<” and “>”
buttons.

Menulediton

. -Menu item:
Label Id Mame Help String Type | Event Handler
File 0 Id \wxID_EXIT
wxID_EXIT Finish program 0 Label [E:-':it
MName [

Help String [Finish program

(S LN L W | L

Event Handler [

.-Typ -
@ MNormal (O Checkable O Radio‘

[Add

Remove l

o [o [< [> | | G |

l ok l lcﬁ?.ﬂmyenden

[!} Abbrechen

Figure 5.1: Menu editor

wxGlade manual 37/49

5.3 Statusbar

In the properties window you can edit the list of fields and their size, but remember to click on the “Apply” button to consolidate
changes.

Common | Code |

Name [frame_2_statusbar] |

Class |w:-c5tatusE!ar |

Style
[| wxSTEB_SIZEGRIP

(] wxSTB_SHOW TIPS
[] wxSTB_ELLIPSIZE_START
] wxSTB_ELLIPSIZE_MIDDLE
] wxSTB_ELLIPSIZE_END

] wxSTB_DEFAULT STYLE

Fields
Apply || Add | | Insert Rermove
Text Size
frame_ 2 statusbar -1
Figure 5.2: Statusbar properties
5.4 Toolbar

You can edit the toolbar’s style and bitmap size in the properties window.

wxGlade manual 38/49

Click on the “Edit tools...” button to edit the toolbar buttons. Use the “Add” button to add buttons to the toolbar; enter the label,
an optional name and help string. You can use numbers or variable names as the button id. If you use a variable name, you have
to provide extra code in the generated source code.

Choose the type of the button: Normal, Checkable or Radio.
You can move toolbar buttons with “Up” and “Down” buttons.
You have to enter two bitmaps, one for normal status and the other for the pushed status.

Refer to Section 4.2, “Specifying the path of bitmaps” for bitmap path specifications.

|, Toolbar editor 4+ O X
Tool:
Label |d MNormal Bitmap Se oe
Id [
Label [
Short Help [
Long Help [

Ewvent Handler

Mormal Bitmap [l

Second Bitmap [l

c G Uuoud

Tvp
[{ij Mormal) Checkable ¢ Radio

[>] ‘ Add H Remowve

| Up | ‘ Down ‘ ‘ Add separator

‘ @gh{ | |<ﬁ Anwenden | ‘I@ ﬂbbrechen‘

Figure 5.3: Toolbar editor

wxGlade manual 39/49

Chapter 6

wxGlade technical notes

@ Caution
Last update: 2003-06-26, but only Section 6.9, “For contributors”.
The rest has not been updated since 2002-07-22, and it’s likely be very outdated in some parts.

This is an informal overview of wxGlade internals, made through a sample session of use. Each action of the hypotetical user
will be described from the point of view of the application, to (hopefully) understand what’s happening behind the scenes.

These notes are absolutely incomplete and in some cases they might be outdated or not completely correct: the best reference is
always the source code.

6.1 Startup

The program starts from the function “main” in the module “main”: this creates an instance of wxGlade (a subclass of wxApp),
which in turn creates a wxGladeFrame: this is the main window of the app, i.e. the one with the palette of buttons. The
initialization of wxGladeFrame consists of three steps:

* Creation of the three frames of the app, the palette itself, the tree and the property window

* Loading of the code generator modules. The “codegen/” subdir is scanned to find the available code generators: when a
python module is found, the app tries to load it and to access its “writer’ attribute: if this is succesfully accomplished, such
“writer’ object is considered a valid code generator, and is inserted into the ’common.code_writers’ dict (the key used is the
’language’ attribute of the writer itself)

* Loading of the widget and sizer modules. To load the widgets, the file “widgets/widgets.txt” is read, and the app tries
to import every widget module listed on such file. For every module succesfully imported, the “initialize” function is
then called: this function sets up the builder and code generator functions for a particular widget (explained later), and returns
a wxBitmapButton instance to be added to the main palette. The loading of the sizers is more or less the same, except that
all the sizers are in the same module, “edit_sizers”, and the initialization function (called “init_gui”) returns a list of
wxBitmapButton objects

6.2 Adding a toplevel widget

When the user clicks on a button of a toplevel widget (a Frame or a Dialog), the method “add_toplevel_object” of
wxGladeFrame is called: this is responsible for the addition of the widget to the app. This happens in this way:

wxGlade manual 40/ 49

* the name of the class of the widget to add is obtained: this is done with the use of the “common . refs” dictionary, which
maps the ids of the buttons of the palette to the class names of the widgets.

» with the name just obtained, the appropriate factory function for the widget to add is got from the “common.widgets”
dictionary. This function must accept three parameters: a reference to the parent widget (None in this case), a reference to the
sizer to which the widget will be added (again None for toplevel windows) and the zero-based position inside the sizer (once
again, this is unused for toplevel windows)

* the call of the factory function actually builds the widgets and inserts it in the “common.app_tree” tree with a call to its
method “insert” The “__init__ ” method of the widget also builds all the Properties of the object and stores them in the
“self.properties’ dict

6.3 Adding a toplevel sizer

This is similar to the addition of a toplevel widget, but the action is performed in two steps:

* when the user clicks on the button in the palette, the method “add_object” of wxGladeFrame is called: this sets the
global variables “common.adding_widget” and “common.adding_sizer” to True, and stores the class name of
the sizer to add in the global “common.widget_to_add” (the name is obtained from the “common . refs” dictionary as
described above)

» when the user left-clicks the mouse inside the previously added toplevel widget, its “drop_sizer” method is called, which
is responsible of the addition of the sizer: it calls the factory function for the sizer (passing self as the first argument), which
will build the object and add it to the tree

6.4 Adding a normal widget/sizer

This step is more or less the same as step 3:

¢ “wxGladeFrame.add_object” is called in response to a button click

* when the user ““drops” the widget inside a slot in a sizer, the method “drop_widget” of edit_sizers.SizerSlot is
called, which in turn calls the appropriate factory function with arguments “self.parent”, “self.sizer” and “self.
pos” (i.e. the parent, sizer and position inside the sizer of the slot that will be replaced). Factory functions of non-toplevel
objects call, apart from “common.app_tree.insert” to insert the object in the tree, the method “add_item” of “edi
t_sizers.SizerBase”, to add the object to the sizer and to remove the slot. For managed widgets/sizers, the “__ini
t__” method also builds the Properties which control the layout of the object inside a sizer, and stores them in the “self.

sizer_properties” dictionary.

6.5 Changing the value of a Property

When the user selects a widget the property window changes to display the properties of the selected object: this is done by
the functions “show_properties” of edit_windows.EditBase and edit_sizers.SizerBase, which are called
inside two event handlers for focus and tree selection events.

When the value of a Property is changed, its setter function is called to update the aspect/layout of the widget the Property
belongs to: such function is obtained from a call to the widget’s “__getitem__ " method, which must return a 2-tuple (getter,
setter) for the Property

wxGlade manual 41/ 49

6.6 Saving the app

This operation is performed by the “common . app_tree” Tree: for every Node of the tree, an *object’ xml element is generated,
with the following attributes: name, class, base (class). Each object contains an element for each Property (generated by the
“write” method of Property) and then an ’object’ element for all its sub-widgets and/or sizers. Properties in the “sizer_pro
perties” dictionary are treated in a different way, as well as the children of a sizer, which are sub-elements of “sizeritem”
objects: see the source code for details.

6.7 Loading an app from a XML file

This is done by “xm1_parse.XmlWidgetBuilder”, a subclass of xml.sax.handler.ContentHandler.

Basically, the steps involved are the following:

* when the start of an ’object’ element is reached, a XMLWidgetObject instance is created and pushed onto a stack of the
objects created: such object in turn calls the appropriate ~*xml builder” function (got from the “common.widgets_from
_xml” dictionary) that creates the widget: this function is similar to the factory function used to build the widget during an
interactive session, see the code for details and differences

* when the end of an ’object’ element is reached, the object at the top of the stack is removed, and its widget (see the source of
XmlWidgetObject) is laid out

* when the end of a Property element is reached, the appropriate setter function of the owner of the Property is called. This is the
default behaviour, suitable for simple properties. For more complex properties, whose xml representation consists of more sub-
elements, each widget can define a particular handler: see for example FontHandler in edit_windows.WindowBase

6.8 Generating the source code

This section is the result of a cut & paste of the comment at the beginning of “codegen/py_codegen.py”. Itis *VERY*
incomplete. The ContentHandler subclass which drives the code generation is xm1_parse.CodeWriter.

How the code is generated: every time the end of an object is reached during the parsing of the xml tree, either the function
“add_object” or the function “add_class” is called: the latter when the object is a toplevel one, the former when it is not.
In the last case, “add_object” calls the appropriate ““writer” function for the specific object, found in the “obj_builders”
dictionary. Such function accepts one argument, the CodeOb ject representing the object for which the code has to be written,

and returns 3 lists of strings, representing the linestoaddtothe “__init__ ”,“ set_properties”and“__do_layout”
methods of the parent object.

Note
Thelinesinthe “__init__ ”list will be added in reverse order.

6.9 For contributors

You are, of course, free to make any chages/additions you want to wxGlade, in whatever way you like. If you decide to contribute
them back, however, here are some simple (stylistic) rules to follow: note that these are only general indications, if you think
they don’t fit somewhere, feel free to ignore them.

* class names are usually CamelCase - variables, functions and method names are lower_case_with_unserscores
e “constants”’ are UPPER_CASE

* source lines are at most 79 characters long

wxGlade manual 42/ 49

* class bodies are usually ended by a “#end of class ClassName” comment
* source files use Unix EOL conventions (LF) if possible. In any case, please don’t mix Unix and Windows EOLs

* put your copyright info whenever appropriate

that’s all folks!!

wxGlade manual 43/ 49

Chapter 7

Installing and Designing own Widget Plugins

wxGlade supports a simple plugin system for widgets to load all widgets at the application startup dynamically. The plugin
system loads all

built-in widgets like “Static Text” widget or the “Gauge” widget. It also loads widgets installed by users.

7.1 Widgets packages
The wxGlade plugin system supports two different types of widget packages:

1. “directory package” - a single directory with all necessary files inside

2. “ZIP package” - a zipped version of a "directory” package

Example 7.1 Directory package

static_text <- Directory named after the widget name

|-— __init__ .py <- Mostly an empty file or a file with just a comment
| —— codegen.py <- Python and C++ code generators

| -— wconfig.py <- Widget configuration

|-— lisp_codegen.py <- Lisp code generator
| -—— perl_codegen.py <- Perl code generator
—-— static_text.py <- wxGlade GUI code

Example 7.2 ZIP package

unzip -1 static_text.zip
Archive: static_text.zip
Length Date Time Name

0 2013-12-09 10:02 static_text/
329 2013-12-09 10:02 static_text/__init__ .py
3352 2013-12-09 10:02 static_text/codegen.py
320 2013-12-09 10:02 static_text/wconfig.py
1640 2013-12-09 10:02 static_text/lisp_codegen.py
1841 2013-12-09 10:02 static_text/perl_codegen.py
5917 2013-12-09 10:02 static_text/static_text.py

wxGlade manual 44/ 49

7.1.1 Create ZIP package

Creating a ZIP package is quite simple. Just create a ZIP package from widgets directory with all Python and additional files.
Don’t include Python bytecode files because they are not platfrom-independend.

tree static_text/
static_text/

|-— __init__ .py

| —— codegen.py

| -— wconfig.py

|-— lisp_codegen.py
| —— perl_codegen.py
—-— static_text.py

zip -r static_text.zip static_text

adding: static_text/ (stored 0%)

adding: static_text/__init__ .py (deflated 36%)
adding: static_text/codegen.py (deflated 67%)
adding: static_text/wconfig.py (deflated 64%)
adding: static_text/lisp_codegen.py (deflated 54%)
adding: static_text/perl_codegen.py (deflated 56%)
adding: static_text/static_text.py (deflated 69%)

Check the integrity of the created ZIP archive:

zip -T static_text.zip
test of static_text.zip OK

7.2 |Installing Widget Plugins locally

The installation of local plugins is a two-step process:

1. Place the widget package in the Local widget path (see Section 1.6.1, “Preferences Dialog”). Create this directory if it
doesn’t exist.

2. Add widget name to the text file named widgets.txt. This file is also located in the directory specified in Local widget
path. Just create a simple text file, if the file doesn’t exists.

The new widget will be avalable after myrun has been restarted.

7.3 Designing own Widget Plugins

Note
This section is under constraction! Please use this information carefully.

1. Create a new directory named like the widget and change in this directory
2. Place an empty file__init__ .py in that directory

3. Create a Python file codegen.py with initial content like

2 Code generator functions for myCtrl objects

4 (@copyright: <Add year and your name>

wxGlade manual 45/ 49

s (@license: <Choice a license>

nwn

s i1mport common

11 class PythonMyCtrlGenerator (wcodegen.PythonWidgetCodeWriter) :

13 tmpl = "% (name)s = %(klass)s (% (parent)s, %(id)s, % (label)s%(style)s)\n’

15 # end of class PythonMyCtrlGenerator

18 def initialize():

19 common.class_names[’EditmyCtrl’] = 'myCtrl’

20

21 pygen = common.code_writers.get ("python")

2 if pygen:

23 pygen.add_widget_handler ("myCtrl’, PythonMyCtrlGenerator())

4. Create a Python file named like the widget directory e.g. myctrl.py
5. Create remaining code generators

6. Example of the created structure

myctrl

|-— _init__ .py
| -—— codegen.py
‘-— myctrl.py

7.3.1 Widget Initialisation
XXX

1. Loade generic and language independent widget configuration from wconfig.py (common.load_config())
2. Load and initialise language code writers (common.load_code_writers())
3. Load and initialise widgets (common . load_widgets ())

4. Load and initialise sizers (common.load_sizers ())

XXX

wxGlade manual 46/ 49

Appendix A

Abbreviations

The following abbreviations are used in this manual:

Escape sequence Escape sequences are used to define certain special characters within string literals. Escape sequences starts
mostly with a backslash (“\”).

gettext Widespread internationalisation (i18n) and localisation system.

GUI Graphical User Interface

i18n Numeronyms for internationalisation support.

Internationalisation means adapting software to different languages, regional differences, ...
OS Operating system
OS X is a graphical UNIX operating system developed by Apple Inc. OS X is certified by The Open Group.
SAE Standalone Edition

Unix is a multitasking, multi-user operation system. Today the trademark “UNIX” is owned by The Open Group. Operating
systems complaint with “Single UNIX Specification” and certified by The Open Group are called “UNIX".

Unix-like operating systems behaves similar to “UNIX” operating systems. They are not certified by The Open Group.

This document use the term “Unix” for certified “UNIX” operating systems as well as “Unix-like” operating systems.
Linux is an Unix-like operating system.

wxg File extension used by wxGlade to store the project in a XML file.
wx abbreviation for wxWidgets

wxWidgets wxWidgets a widget toolkit and tools library for creating graphical user interfaces (GUISs) for cross-platform appli-
cations.

wxWidgets is open source and written in C++.
WYSIWYG What You See Is What You Get.
X11 The X Window System version 11.

XRC XML-based system for describing wxWidgets resources like dialogs, menus or toolbars.

Those resources are loaded into the application at run-time.

wxGlade manual 47/ 49

Appendix B

Copyrights and Trademarks

wxGlade is copyright 2002-2007 by Alberto Griggio. Use and distribution of wxGlade is governed by the MIT license, located
in Appendix C, wxGlade License Agreement.

wxWidgets is copyright (C) 1998-2005 Julian Smart, Robert Roebling et al. See http://www.wxwidgets.org for details.
Microsoft and Windows are registered trademarks of Microsoft Corporation.
UNIX is a registered trademark of The Open Group.

All other trademarks are property of their respective owners.

http://www.wxwidgets.org

wxGlade manual 48 / 49

Appendix C

wxGlade License Agreement

Copyright (c) 2002-2007 Alberto Griggio
Copyright (c) 2011-2014 Carsten Grohmann

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files
(the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
s0, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUD-
ING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR
ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

wxGlade manual 49/ 49

Appendix D

Licenses and Acknowledgements for Incorporated
Software

This section lists licenses and acknowledgements for third-party software incorporated in wxGlade.

D.1 OrderedDict

The OrderedDict class version 1.1 has been integrated. The class is downloaded from http://pypi.python.org/pypi/ordereddict
and contains following notice:

Copyright (c) 2009 Raymond Hettinger

Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation files
(the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software,
and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

http://pypi.python.org/pypi/ordereddict

	Preface
	Introduction to wxGlade
	What is wxGlade?
	What can you do with wxGlade?
	What is wxGlade NOT?
	Requirements and Supported Platforms
	Installation
	Download
	Installing at Microsoft Windows
	Installing at Unix/Unix-like Operating Systems
	Installing from Source

	Configuring wxGlade
	Preferences Dialog
	Configuration files and Configuration directory
	Environment Variables
	Logging

	How to Report a Bug
	Deprecated features

	Exploring wxGlade
	Quick example
	Basics of wxGlade
	Escape Sequences
	Best Practice
	Language specific peculiarities
	Python
	Lisp

	Command line invocation
	Using the source code
	Full control by wxGlade
	Shared control
	Output path and filenames
	Automatically created wxApp instance
	Compiling C++ code

	Handling XRC files

	wxGlade User Interface
	Main Palette
	Tree Window
	Design Window
	Properties Window
	Application Properties
	Common Properties
	Layout Properties
	Widget Properties
	Events Properties
	Code Properties

	The wxGlade Menu
	The FILE menu
	The VIEW menu
	The HELP menu

	Shortcuts

	Supported widgets
	Introduction
	Specifying the path of bitmaps
	Widget List
	Frame
	Dialog or Panel
	Panel
	Splitter Window
	Notebook
	Buttons
	Gauge
	Hyperlink Control
	Radio Box
	Spin Control
	Slider
	Static Text
	Text Control
	Check Box
	Choice
	Combo Box
	List Box
	Static Line
	Static Bitmap
	List Control
	Tree Control
	Grid
	Custom Widget
	Spacer

	Menu, Statusbar and Toolbar
	Introduction
	Menu
	Statusbar
	Toolbar

	wxGlade technical notes
	Startup
	Adding a toplevel widget
	Adding a toplevel sizer
	Adding a normal widget/sizer
	Changing the value of a Property
	Saving the app
	Loading an app from a XML file
	Generating the source code
	For contributors

	Installing and Designing own Widget Plugins
	Widgets packages
	Create ZIP package

	Installing Widget Plugins locally
	Designing own Widget Plugins
	Widget Initialisation

	Abbreviations
	Copyrights and Trademarks
	wxGlade License Agreement
	Licenses and Acknowledgements for Incorporated Software
	OrderedDict

