PostgreSQL 14.3 Documentation

The PostgreSQL Global Development Group

PostgreSQL 14.3 Documentation

The PostgreSQL Global Development Group
Copyright © 19962022 The PostgreSQL Global Development Group

Legal Notice
PostgreSQL is Copyright © 1996-2022 by the PostgreSQL Global Development Group.
Postgres95 is Copyright © 1994-5 by the Regents of the University of California

Permission to use, copy, modify, and distribute this software and its documentation for any purpose, without fee, and without a written agreement
is hereby granted, provided that the above copyright notice and this paragraph and the following two paragraphs appear in all copies.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCI-
DENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THISSOFTWARE AND ITS
DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

THEUNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMSANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IM-
PLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HERE-
UNDERISON AN “AS-IS" BASIS, AND THE UNIVERSITY OF CALIFORNIA HASNO OBLIGATIONS TO PROVIDE MAINTENANCE,
SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

Table of Contents

= = o PP XXXV
1 What 1S POSIGrESQL? ...ttt ettt e et e s XXXV
2. A Brief History of POSIGreSQLc.uuniiiiiiiiieiiii et XXXV

2.1. The Berkeley POSTGRES PrOJECEcccvuuiiiiiiieiiiii e XXXV
2.2, POSIOrESOS ...t e XXXV
2.3, POSIOrESQL ..ot XXXVi
3. CONVENTIONS ...ttt ettt ettt ettt ettt ettt e et et e et eaar e e e ane e e eenans XXXVi
4. Further INfOrmMationcoouuuiiiiii et XXXVil
5. Bug Reporting GUIEIINESc.uuiiiiiiiie e e et XXXVil
5.1 1deNtifYiNg BUGS ...cevveneiiiiie ettt XXXVil
5.2, WHEL 10 REDPOIT ...ttt XXXVili
5.3. WHEre t0 REPOI BUGJSccevvneeiiiiiieeeeii ettt ettt et e e e e e e et e e e Xl
N T 1o - PP 1
L. GEtING SEAEAen ettt et 3
L1 INSEAITEIION .ottt 3
1.2. Architectural FUNDamMEeNtalScoouuuiiiiiiiie e 3
1.3. Creating @ Dal@haseccoeuuiiiiiiiii e 4
1.4, ACCESSING 8 DAANBSEcoviieiiiii e 5
2. The SQL LBNGUBGE ...cevtueieiit ettt ettt ettt e e e na e e eneans 8
2% W [i oo (8o (o o RO TSP SPPPTPR 8
A O 0] 1= o = PP 8
2.3. Creating @aNew Tableuiiii e 8
2.4. Populating a Table With ROWSccoouuiiiiiiiii e 9
25, QUEYING A TaADIE ..o 10
2.6. J0INS BEWEEN TaDIESuiiiiii e 12
2.7. AQQregate FUNCLIONSccuuuieieiiie ettt ettt e e e na e eeees 14
2.8 UPUELES ...ttt 16
2.9, DEIBLIONS ...t e et et aean 16
3. AGVANCED FEAIUMNEScevu ittt ettt e et e e enb e e eneas 18
I3 B [L oo (8 1o o EO TP PPPPTT 18
2 VT T S PR 18
3.3 FOrEIgN KEBYS ..t 18
B THANSACHIONS ...ttt ettt ettt et e e e e 19
3.5, WINAOW FUNCHIONSovueiiii et 21
3.6, INNEITEANCE ...t 24
7. CONCIUSION ..ttt ettt ettt ettt e et e e e et e e eenen s 26
[1. The SQL LBNQUAJE eeeetiee ettt ettt ettt ettt et et e et et e e e et e e e eaa e e eenens 27
A, SQL SYNEBX t.tteeeetti ettt ettt ettt e ettt ettt e e e e 35
A1, LeXiCal SHUCKUME ...ttt ettt e e e e e et e e eeees 35
4.2, ValUE EXPIESSIONSeeeeiiietieii ettt ettt ettt et e et e e e 44
4.3. CalliNg FUNCLIONS ...ttt ettt eneans 59
5. Data DEFINITION ...oeeiiieii et 62
DL TADIE BASICS ..ttt 62
5.2. DEFAUIT VAIUBS ... e 63
5.3. Generated COIUMNScoouiieiiii e et eeeans 64
B4, CONSITAINTS ...evtneeeeet ettt ettt ettt e et et et e e e e e e ennen s 65
5.5, SYStEM COIUMNS ...ttt 74
5.6. MOAIfTYiNG TaDIESceiiiiieiee e 75
BT PrIVIIEOES ..o 78
5.8. ROW SeCUurity POIICIESuuiiiiiii e 82
5.9, SCREMAS ... 88

PostgreSQL 14.3 Documentation

5.10. INNEITANCE ... et e e et 93
5.11. Table Partitioningoceuuiiiiiiiii e e e e e e e e e 97
I = o (= To o I - A 111
5.13. Other Database ODJECESuuivviiiiii e e 111
5.14. Dependency TraCKingociuuieeii eanaas 112
(SR T = 1Y =T o 10 = 1 o 114
(O 1S g To [- - NP 114
S Lo = (] g o B T - L 115
(SRR D= I (] oo - v U 116
6.4. Returning Data from Modified ROWSccccoviiiiiiiie e, 116
28 8 = = 118
8 T @ = 4T PN 118
7.2. TahlE EXPIrESSIONSivviieiii e e e e e e e e e e et e e st e e e e eaneees 118
SRS = [o B I £ SRR 135
7.4. Combining Queries (UNI ON, | NTERSECT, EXCEPT)covvvvviiviiiiiieveiiiieeeneenn 137
7.5. Sorting ROWS (ORDER BY) ...iiiiiiiiiieciii et e e e s 138
L Y B =0 o O o P 139
T.7. VALUES LISES 1ieiiiiieiiii ettt ettt e et e et e e e b 140
7.8. W TH Queries (Common Table EXPreSSions)vvveveeeiiieiiiieeiineeiineesieeeaneens 141
T D= = T Y/ oS PP 150
T80 O N U 0= Lo Y o= 151
8.2, M ONEAY Ty DS ittt ittt et e 157
G O == ot (= g Y/ o= PR 157
8.4. BINAry Dala TYPES ..uuciiiiiii it e et e e e e e e e e e e e e e eaa s 159
R = (=l T (ST Y/ o= P 161
S = T To =T N Y/ o= P 172
A 10001 = =0 B Y/ o= 173
8.8. GEOMELNIC TYPES ..uvitiiii ettt et et e et e e e e e e e e et e e et e e et e e et eeaaeaeens 175
8.9. NEtWOrK AdOreSS TYPES .ovuiiiiieii et et e e e e e e e e e e e e e et e e et e e aanaaes 177
8.10. Bit SIHNG TYPES . uiitnieiie et e e e e e e e e e e et e e et e ea e eaes 180
8.11. TeXt SEACH TYPES o vvun it e e 181
ST 2 U1 1 T I/ o= P 184
ST Q. I 1Y/ o= ST 184
ST N S @ NI Y/ o=~ PP 186
e I N = Y PP 197
8.16. COMPOSITE TYPES .vvuiiiiieein et ettt e et e et e e e e e e e e e e st e e et e e et e e et e e aneeaenns 207
8.7, RANGE TYPES .ottt 214
8.18. DOMAIN TYPES ..uuiiiiiiiii e et e e e e e e e e e e e et e e et e et e e e e aaeeaanns 220
8.19. ObjeCt 1AdENtifier TYPES ..vuiiii i eiiie e e e e e e e ea e 221
<3220 R o To TR =Y 2 T 1Y/ o= TP 224
ST I e =0 (o 0l N o1 224
1 I N 0 Tox [0 5= 0 (o @ o= = 0 226
1S I oo vz B @ o= = (] £ 226
9.2. Comparison FUNCtions and OPEratorsSocvvuieiiiieiiieeii e e e e e e e eannas 227
9.3. Mathematical Functions and OPEratorScc.ovevvrieiiiiieiii e e e e 231
9.4. String FUNCLioNS and OPEIatOrScvvueiiieeiiie e e e e e e e e e e e e eaaes 239
9.5. Binary String FUNctions and OPEratorsSccuuveiuuieeeueeeiiieeiieeeieeraineeaneeaenns 249
9.6. Bit String FUNCtions and OPEratorsccuuvevuiieiiieeiiie e e e e e e e 253
A = 1 (= g TN\ (11 o P 255
9.8. Data Type Formatting FUNCLIONSccoviiiiiiiiiii e e 273
9.9. Date/Time FUNCtions and OPEratorSccuueviiieiiiieeiii e e e e e e e eanas 281
9.10. ENum SUPPOIt FUNCLIONScvviciiiiceii e e e e e e 298
9.11. Geometric FUNCtions and OPEratorsScvvueiirnieiiieeeii e ee e e e eaannes 299
9.12. Network Address Functions and OPEratorsScceuueeeueerinierieeeiieeeineesanenns 306

PostgreSQL 14.3 Documentation

9.13. Text Search FUNCtions and OPEratorsSoeeveieiiiieeii e e e e e e e 310
9.14. UUID FUNCLIONSuieieiiieee ittt ettt et e et e e et e e e ea e e eeennas 316
9.15. XML FUNCLIONS ... iieiiiieeiiii ettt e e e e et e e e e b 317
9.16. JSON FUNCLions and OPEraiorsScc.uueveunieeieeeiieeieee e e e e e e e e e e e e aanaas 332
9.17. Sequence Manipulation FUNCLIONSooiuiiiiiiiiciiec e e e e 351
9.18. Conditional EXPrESSIONSuuiiireiiiiieiiieee e e e e e e e e e e e s e e e eaneees 352
9.19. Array FUNCtions and OPEratorsSccuueiiieeiiieeeiiieeiie e e e e e e et e e eeaens 355
9.20. Range/Multirange Functions and OPEratorsScc.ueevuuieeiineeeieesiiieeaneesneens 359
9.21. AQQregate FUNCLIONSccuuiiiii e e e e e e eanaees 365
9.22. WINAOW FUNCLIONSvuiiieiii et e s 372
9.23. SUDQUENY EXPrESSIONSuueiiiiiiiiieeiieeeieeeee e e e e e e e et e e et e e e e e et e e et e eanaeenes 374
9.24. Row and Array COMPAIiSONSeeuueiiieeiieeeiiieeeieesieeeieeeanaeestneestneeenaeenes 377
9.25. Set RetUrNiNg FUNCLIONSuuiiiici e e e e e 380
9.26. System Information Functions and OPEratorsc.uveveiieeieeernieriiieeeneeeenns 383
9.27. System Administration FUNCHIONScouuiiiiiiiiiiie e e 402
9.28. Trigger FUNCLIONSuuiiii i e e e e e e e e e e e e e e e e et e e e eaneees 418
9.29. Event Trigger FUNCLIONSco.uuiiiiicicc e e e e e e e 419
9.30. Statistics INfOrmMation FUNCLIONSviiiiiiiieiiiin e 422
O Y oL @0 0177 = o] o PP 424
FO. 1. OVEIVIBIW Leuieeiiii et et e e e e e e et e e e et e e e e st e e e e eatn e 424
B0.2, P AIONS v uitittt ettt et 425
L0 R T o] o LU 429
O R 1R (o] = o 433
10.5. UNI ON, CASE, and Related CONSIIUCESvvvieviiiiieeeiiiieeeciii e 434
10.6. SELECT OUPUL COIUMNSuueiiiiiieeeiie e ee et e e e e et e e e 436
T o (== SRR 437
0 O 1 1 oo (0 o IR 437
2 1 o L= G Y/ o === 438
11.3. MUItICOIUMN TNAEXES .. .ceeeviieeeeei e 440
11.4. Indexes and ORDER BYccuuuiiiiiiiieieiiiise e e et e et e eeaanns 441
11.5. Combining MUItiple INAEXEScviiiiiiee e 442
12.6. UNIQUE INAEXES ...vueeieee et e e e e e e e e e e e e e aanees 443
11.7. INAEXES ON EXPrESSIONSuiiiiieiiieeiiiee e ee e e e e e e e e e e e st e e e eaneees 443
11.8. Partial INAEXES .. .ceeeviieeiii et 444
11.9. Index-Only Scans and Covering INAEXESc.voveviieiiiieiiieceee e 447
11.10. Operator Classes and Operator FamilieSccooevvieiiiiiiiiii e, 450
11.11. Indexes and Coll@tioNSoviiieiiiiiiiiii e 451
11.12. EXxamining INAeX USAQEuuiivnieiieii e e e e e e e et eeanae e 452
12, FUIl TEXE SEAICH .o e e e aaen s 454
2 R | 1 oo (0o o IR 454
12.2. TahleS @nd INAEXES .. .cevvviieiiei et e eeeen 458
12.3. Controlling TeXt SEarchcccuiiiiiiiiie e 460
12.4. AddItioNal FEAIUMEScvuiieiii e e e 468
T o T S SUPP 474
12.6. DICHONAITES ..vuieeeitiieee ettt ettt e ettt e et e e ettt e e e et e e e eatn s e e e entnneeeenes 475
12.7. Configuration EXamMPIEcouuiiiiicii e 485
12.8. Testing and Debugging Text Searchcoevviiiiiiiiiie e, 487
12.9. Preferred Index Types for Text SEarchccovevviiiiiieiiicce e, 492
2250 O T o 1= o ST o oo o P 493
2 O T 1] = o) R SPPPT 496
13. ConCUITENCY CONLION .uuuiiit i e e e e e e e e e e e e e e et e e et e e ean e eanaes 498
G20 O 1 1 oo [0 1o IR 498
13.2. Transaction ISOIAtONcoevuiieiiiii e 498
T o[T o] Vo [504

PostgreSQL 14.3 Documentation

13.4. Data Consistency Checks at the Application Levelccocoiveiiiiiiiiiviineennnn, 510

ST O Y= 512

13.6. LOcKing and INAEXESovvniii e e e s 512
(o 7= 0o =T T 513
14.2. USING EXPLAIL N L.ouiiiiiiiiiee st s s e e e e e et e s e e e e e eenannns 513

14.2. Statistics Used by the Plannercooiiiiiiiii e 526

14.3. Controlling the Planner with Explicit JO N ClauSeSccooevviveviiieiiineeiieeenn, 531

14.4. Populating @ Databaseuevviieiiiieiiie e e 533

14.5. NON-DUrable SEtliNGSuueveriiii e e e e e e e eees 535

ST = = RO = oS 537
15.1. How Parallel QUErY WOTKSiiiiiiiiii e 537

15.2. When Can Parallel Query Be Used?covvvviiiiiieiiiiceiiie e 538

15.3. Parallel PLanScoovviieiiii et e 539

15.4. Parallel SafEYoieeeeieeeeiiiee e 541

RIS o V7= g AN 41T g 1 = (o o PP 543
16. Installation from BiNAIEScccuuuiieiiiiiiee et e et eeean e eeees 550
17. Installation from SOUICE COUEuuuieiiiiiieeeiei et e 551
S oo g Y= = o] o PP 551

A = (V1T 1 1= | 551

17.3. GELHNG thE SOUMCE .. .cvuiii e e e s 553

17.4. InStallation ProCeOUMEevieii e e e e e e e eees 553

17.5. Post-INStallation SELUDuueviiiiii e 566

17.6. Supported Platformsoouiiiii e 568

17.7. Platform-SpeCific NOESuuiiii e 568

18. Ingtallation from Source Code 0N WINAOWSoovveviiiiiiiiieiiiiie e 574
18.1. Building with Visua C++ or the Microsoft Windows SDKcccoceveveiinnnnns 574

19. Server Setup and OPEratioNuiiieieiii e e e e e e e e e e e e e e 580
19.1. The PostgreSQL USEr ACCOUNTuuiiiiiiiii e eeie e e e e e e e e e e e eanas 580

19.2. Creating a Datahase CIUSLEYuoiiiiiiiiii e 580

19.3. Starting the Database SEIVENcevviiiii e 583

19.4. Managing Kernel RESOUICESciuuiiiii e e e e e e e e e e 586

19.5. Shutting DOWN the SEIVEruiiiii e 594

19.6. Upgrading a POStgreSOQL CIUSLErccvvuiiiiieiiiieiie e ee e e e 595

19.7. Preventing Server SPOOfiNgcvuueiiiiieiii e ee e e r e 598

19.8. ENCryption OPLiONS .. .ccuuueiiii e e e e e e e et e e e e e eaaas 599

19.9. Secure TCP/IP Connections With SSLcccvviiiiiiiiiiiii e, 600
19.10. Secure TCP/IP Connections with GSSAPI Encryptioncccooevvivivnnnennnnn. 604
19.11. Secure TCP/IP Connections with SSH Tunnelscoovvvvviiiiiiiiiieeciieeeeee, 604
19.12. Registering Event Log on WIiNdOWSooiviiiiiiieiiiiecin e e 605

20. Server CONfIQUIAIONuuiie e et e e e e e e e e e e e et e e e e e et e e e et e e eanaeeenaes 607
20.1. SEtting ParameterScovn e 607

20.2. FIlE LOCAHONS .. .ceeevieeeeeie ettt e et e et e e e et e e e e et e e e eeae s aeaees 611

20.3. Connections and AUhENtiCaEIONuiieiiiiiiieiii e 612

20.4. ResoUrce CONSUMPLIONuuiiiiii e ee e e e e e e e e e e e e e e e et e e ean e eaa s 619

20.5. WIit€ ANEAA LOQ .. ivviiiiiiei e e e e e e e e e e e 628

P20 N ST = L= o] o= 1o o NS 638
20.7. QUENY Planningcuuueiiiieiii i e e e e e e e 645

20.8. Error Reporting and LOGINGuovevnieiiiieiieeeieeeee e e e e e e e e e eaeeeees 652

20.9. RUN-EIME SEALISHICS cvvvuieeeiiii et e e e e e e e e e e 664
L0 B O RANU 1 (o 0 47 (FoAVA=o: U LW 411 oo 666
20.11. Client ConNeCtion DEFAUITSccuuuiiiiiiiiiee e 668
20.12. LOCK MBNAGEMENLevuniiiteiii et e e e e eaans 678
20.13. Version and Platform Compatibilityccoooiiiiiiiiiiiii e 679

0 I g (o g o =0 To T o P 681

Vi

PostgreSQL 14.3 Documentation

21.

22.

23.

24.

25.

26.

27.

28.

20.15. Preset OPtiONSuuiii e e e et e e e e e e e e e e e aa 682
20.16. CuStOMIZEA OPLIONS .. cevuiiiiieeiiieeeie e e e e e e e e e e e e e e et e e e e e eanees 684
20.17. DeVEIOPEr OPLIONSciiiiiiiie e e e 684
20.18. SNOI OPLIONS ...vuiiiiieiii et e e e e e e e e e e e e e e e et e e et e e e anaeaaneees 689
Client AULRENTICEIION e e e e 690
21.1. The pg_hba. conf File ... 690
212, USEN NAIME MBS . ettt 698
21.3. Authentication MEthOOSuuiiiiiiiie e 699
214, Trust AULNENEICAIION ...evvuiiiiii e 700
21.5. Password AUtNENtICALIONuuiiiiiiiiei e 701
21.6. GSSAPI AULNENtICALION ...ievviieiiiie e 702
21.7. SSPI AUNENEICALION ...eevviiieeiei e e e e s 703
21.8. [dent AULNENTICAIONcevveieeeiiie e e e 704
21.9. Peer AULNENLICALION ... ciiiiiieeieii et e e et eeeae e eees 705
21.10. LDAP AULhENTICAION ...uiiiiiiie ettt e e e e e e e eeaens 705
21.11. RADIUS AURENEICALION ...vevviiieeiis e 708
21.12. Certificate AUNENICALIONutiiiiiiieeeii e e 709
21.13. PAM AULNENLICAION ...ceiiiiieeiiii e 710
21.14. BSD AULNENLICALION ...ueeiiiieeeeiii et e e e e e e e e aa s 710
21.15. Authentication ProblemSiiiiiiiii e 711
DataDase ROIES ... coeeiiiee et e e e 712
22.1. Dat@hase ROIESiiiiiiiee ittt 712
22.2. ROIE ALLIDULES ... e 713
22.3. ROIE MEMDEISNIP «.iviiii e e e e e 714
22.4. Dropping ROIESiii e 716
22.5. Predefined ROIESi i 717
22.6. FUNCLION SECUMLY .vuuiiiieiiieiie e e e e e e e e e e e e e e eaa s 718
MaNaging Dalabasescovuueiiii i 719
P I O Y= g = ST 719
23.2. Creating @ Databaseccuueiuiieiii i e 719
23.3. Template Databasesuveiviieiii e 720
23.4. Database CONfigUIationcc.ueeiiieiiiieii e e e e e e e e ea e eens 722
23.5. Destroying a DatahaSeccvuuiiiiiieii i 722
23.6. TADIESPACES ... ceve et 722
(oo 12 1o o RS OPPTTPN 725
S I e oz LIS o] oo o AP 725
24.2. COll@tion SUPPOITciveeii e e e e e e e e e e e e e e e et e e e e ean s 727
24.3. CharaCter SEt SUPPOIuuevii i e e e e e e e e e e e eaa e eaes 733
Routine Database MaintenanCe TasKSoeeveuenieeriiiiieeeeiiieee et e e et e e e e e e 745
25.1. ROULINE VACUUMING ...uuiiiiieii e e e e e e e e e e e e e e e e st e e e e e s e e enneeennaas 745
25.2. ROULINE REINAEXING ©..cvvveiiiieiiie e e e e e e e e e e e e et e e e aanas 753
25.3. LOg File MAINtENANCEcvvviiiii et e e e e e e e e e e e e e e 754
Backup and RESIOIEuiiiiicii e e e e e e e e 756
26.1. SQL DUMP ittt sttt e e e et e et e e e aae 756
26.2. File System Level Backupccovuiiiiiiiiiiecii e 759
26.3. Continuous Archiving and Point-in-Time Recovery (PITR)ccoooviveviinenines 760
High Availability, Load Balancing, and Replicationccccecviiiiiiiiiiin e, 773
27.1. Comparison of Different SOlUtiONScccuviiiiiiiiii e 773
27.2. Log-Shipping Standby SErVEIScivviiiiiecii e 776
27.3. FIOVEN .oeieiei i 785
27.4. HOt SEANADY ..oovneie e 786
Monitoring Database ACHIVITYcovuiiiiiei e e 795
28.1. Standard UNiX TOOISuuiiiiiiieiiiiie et e e e e e e e e et e e e 795
28.2. The StatisticS COHECONuuieiiiiii e 796

Vii

PostgreSQL 14.3 Documentation

28.3. VIEBWING LOCKS .. .ceviiiii e e e 831

28.4. Progress REPOMINGuivvuieiii e e e e e e e e e e e e e e e e e e et e eaneens 832

28.5. DYNAMIC TraCiNG .vvuuiiiieiiiieiii e e e et e e e e e e e e e e e e e e et e et s e e et e e anneeeanns 840

29. MONItoring DiSK USAQEuuiiiiiiiii i e e e e e e e et e e e eeeas 850
29.1. Determining DiSK USAQgE ...c.uuiiiiieiiieiie e e e e e e e e e e e e e aaaeeaes 850

29.2. Disk FUIl FaIlUMccceeieiiii et e e e e 851

30. Reliability and the Write-AhEad LOgoovvviiiiiiiii e 852
O = = T 1) Y 852
30.2. Data ChECKSUMS ...cevviieeiiii ettt e et e e et r e e e eat e e eenenaeeees 854

30.3. Write-Ahead Logging (WAL) ...coveiii e 854

30.4. ASynchronous COMMITcuuiiuiieiii e e e e e e e e e e e et e et e e e e eaanees 855

30.5. WAL ConfigUurationc...ieiuuieiieeiiiieee e e e e e e e e e e e e et e e e e eanas 856

I O I 141 1= 1 7= R 859

G I oo [or= I 2 3= o] o= [o NS 861
I . o o= 1o S 861

G IS U1 1=] o1 o o P 862

1 G I 0o) Tt £ PP 863

I I (= Ao o) LSRR 864

I IR o 1) (= o 10 (= PP 864

1C 3 ST 1 o g (o oo 865
S o) Y 865

31.8. Configuration SEINGSuivevueiiieiiie e e e e aan s 866

IS T @ U To: = (1o T 866

32. Just-in-Time Compilation (JIT) .ouuiiinieiiii e e e e e e e e e e e e aaeees 867
32.1. What IS JIT compilation?c.ueiiiieiiiiieii e e e e 867

K VAV 01 3 T (TN N S 867

IC22C T ©¢o 011 To 1= 1 (o] o [869

Y = 1= | o] 1) YU 869

T B L= | (= o g 1= =P 871
33.1. RUNNING the TESES ...iviiiiii e e e e e e e e 871

K =S B Y 1 1 o) o TR 875

33.3. Variant Comparison FilEScoouiiiiiiiiiie e 878

T I AN o = £ 879

33.5. Test Coverage EXaminationc.ueiiiiiiieeiiiieeii e e e e e e e e et e e e eaes 879

Y O 1= o 1 1= 4 == PP 881
34, 1IDPG — C LIbrary ..ooouieiiee e 886
34.1. Database Connection Control FUNCLIONSccuuvviiiiiiinieiiii e 886

34.2. ConNeCtion StAtUS FUNCLIONSvuueeiiiiieeiiiie e 903

34.3. Command EXeCUtion FUNCHIONSoiveviiiiiiiiiie e 909

34.4. Asynchronous Command ProCESSINGccuuvernieiiiieiiiieeiiieeeiieeeiieesaieeaneeaens 926

34.5. PIPEINE MOUE .. .ccvniiiiici e e e e e 930

34.6. Retrieving Query Results ROW-bY-ROWcocciiiiiiiiiiiii e, 934

34.7. Canceling QUENES IN PrOGIrESSuuciiiiiiiii e ee e e e e e e eaaes 935

34.8. The Fast-Path INterfaceoovvvviiiiii e 936

34.9. Asynchronous NOEIFICAIIONoeuniiiiiieie e e 937
34.10. Functions Associated with the COPY Commandoveeviiiiieeviiiineeniiinnnnn. 938
34.11. CONIOl FUNCHIONS . .ueeeiiiiseeeeii et e e e e e e e et s e e e eat s e e eeatnneeees 942
34.12. MisCellaneouS FUNCLIONSccuuiiiiiiiiee i et e s e e eeeaa e e 945
G704 T Lo 1 Lo Y o=] o P 948
K Y= | G (1 949
34.15. ENvironment VariableSuiiiiiiiiiiiii e 956
34.16. The PassWord FIleooceeuiiece e 958
34.17. The Connection Service Fileoviiiiiiiiiiii e 958
34.18. LDAP Lookup of Connection Parametersccovevviiiiiiiiciiie e 959

viii

PostgreSQL 14.3 Documentation

34,19, SSL SUPPOIT ..ttt 960
34.20. Behavior in Threaded Programsccoceuieiiiiiiiii e 964
34.21. Building liDpg Programscouueeiiiieiie e e 965
34.22. EXaMPlE PrOQramSciiiicii ettt 966
ST IR (0 (=l @ o] = ox P 978
L300 I g1 1o [0 o 1o o USSP 978
35.2. Implementation FEALUIEScovuiiii e e 978
35.3. CHENt INEITACES ...ovvvvi e 978
35.4. SErVer-Side FUNCLIONScccuuiieiiiie et e e e e s 983
35.5. EXAMPIE PrOgram ... ccuui it e e e e e e e e e e et aaa s 984
36. ECPG — Embedded SQL iN C ..oovviiiiiiiiee et 991
G I N I =T o o= o P 991
36.2. Managing Database CONNECLIONSccvuiiiiii e e e e e eaaas 991
36.3. RUNNiNg SQL COMMANGSeiiiieiiieiiii e e e e e e e e e e eaaes 995
36.4. UsSing HOSt VariableSoovuiiiii e 998
36.5. DYNAMIC SQL .eevuiiiiiiiie it 1013
36.6. POLYPES LIbraryocovniiiii e 1015
36.7. USING DESCIIPLOr ATEBScivvnieiiieeiiieeeie et e et e e e e e e e et e e ea e e aanees 1030
36.8. Error Handlingcccueiiiiiiiii i 1044
36.9. PreproCessor DITECHIVESuuuiiii e e e e e e e e e e aanees 1051
36.10. Processing Embedded SQL Programsccoevvvieeiieeiinieiiieeeiieeeineeeneeeen, 1054
36.11. Library FUNCLIONScuuiiiiiiii e e e s 1055
36.12. Large ObJECES ...cvvuiiii e e e e e e e e 1055
36.13. CH+ APPHICALIONS .. cevuiiiieeii e e e e e e e e e e aans 1057
36.14. Embedded SQL COMMAaNSccouuieiiiieiiiiieeieeei e e e e e e e 1061
36.15. Informix Compatibility MOdEcoovviiiiiii e, 1088
T ST g1 1= 1 1 =SSP 1104
37. The INfOrmation SCHEMAuiiiiiiii e 1107
371 The SChEMA ... i e e e 1107
A DT - B Y oS SPPPSRPRN 1107
37.3.informati on_schema _catal og nameccooccoiviiiniiiin e, 1108
374.adm nistrable role authorizationscccoeviiiiiiiiiiinncneeen, 1108
37.5.applicabl @ rol €S .., 1108
7.6, At LT DUL ES 1o e 1109
A A o] ¢ - Y - o =Y G 1= A T 1111
37.8.check_constraint_routiNe_USageccoeevviveiiiiiiiiieeiiieecie e, 1112
37.9. CheCK_CONSErai NES i e 1113
% 0 o o] N - Y A o) 1= PP 1113
37.11.col l ation_character_set _applicabilitycccoooiiiiiiiiinninnnn. 1113
37.12. COl UM_COl UMN_USAQE .nieiiiiiiciie e e e e 1114
37.13. COl UM_dOMBI N_USAQE ..ievniiiiiieiie e e e e e e e e e e aaes 1114
37.14. COl UNM_OPL i ONS .iiiiiiii e e 1115
37.15. COl UMN_Pri Vil 0SS oo 1115
37.16. COl UNM_UAL _USAQE .uiiiiiieiii et e e e e 1116
B7.17. COL UMMIS Lot e e e e b e e eaeens 1117
37.18.constrai Nt _COl UNM_USAQE ...uuviiiniiiiieiiii e e e e 1120
37.19.constraint _tabl @ USAgeccooceviiiiiiiiiii 1120
37.20. data_type priVvil €0eS .o 1121
37.21. dOMBI N_CONSE T Al NE'S toviiiiiiiii e e 1122
37.22. dOMBI N_UAL _USAQE .uiiiiieiii et e e e e e 1122
72 T o (o] 11 U o K-S SRS 1123
37.24. €l EIMENE L Y PES it 1125
37.25. €Nabl €0 IOl €S .o 1127
37.26.forei gn_data wrapper_Opti ONScooceiviiiiiiiiiiiiiie e, 1127

PostgreSQL 14.3 Documentation

37.27.T0orei gn_dat @ W apPPEI'S cuiiiiiiiiii e 1128
37.28.fOrei gn_Server_OpPti ONS ..coiiiiii i 1128
37.29. f OF BI g S Bl VI S ittt eiiie ettt e e e e 1128
37.30.foreign_tabl e Options ..o 1129
37.3L.forei gn_tabl @S oo 1129
37.32. KEY_COl UM _USAQE .uiiiiiiiiii e e et e e e e e e e et e e 1130
37,38, Par AT B B S ittt e 1131
3734 referential _constrainNts ...o.occooeiiiiiiiiii i 1132
37.35. 10l €_COl UM_grant'S ..ooieuiiiiiiiciie e e 1133
37.36. 10l €_routiNe_grants .oooiiiiiiiiiiie e 1134
37.37.r0l e _tabl e _grants ..o 1134
37.38. 10l €_UAL _grant S c.oiiiiiiiiiii e 1135
37.39. 10l €_USAQE_grant S .iiuiiiiii i 1136
37.40. routi Ne_COl UNT_USAQE .ovuiiiiiiiiiii e e e e 1136
374L routiNe_PrivVil BOBS i 1137
37.42. 1 QUL I NE_TOUL I NE_USAQE cvuiivieiii e eee e e e e e e e e e aeaas 1138
37.43. 10Ut i NE_SEQUENCE _USAQE ..cvvvniirneeinieeiiieeiiieeatieeeteeetneesaneeaneeannns 1138
3744. routine _tabl @ USAQE .coooiiiiiiiiii 1139
L o U A N o 1= PRSP 1140
37.46. SCREMAL @ oiieviii i 1144
Y T =To [T =] g [o =1 PP PPN 1145
37.48. SOl T AL UM BS it 1146
3749.sql _inplenmentation info ..., 1146
37.50. SOl PAIt S ciiiiiiii i 1147
3751 SOl ST ZI N e 1147
37.52. tabl @ CONStrai NES .o 1148
37.53. tabl € Pri Vil €S .o 1148
754, 1 AD] €S v 1149
755, 1 FANST OF ITB oot 1150
37.56.triggered _update Col UMMS ..o 1150
Y A0 W g e [0 =] =T PN 1151
37.58. Ut _Pri Vil @S .o 1152
37.59. USAQE _Pri Vil BOES i 1153
37.60. user _defined tYPeS i 1154
37.61. user _mappPi NQ_OPL i ONS .o 1155
Y S N (Y T G 1= 1 o] o [[o 1 1156
37.63. Vi BW _COl UMM _USAQE civvniiii it e e e e e s 1156
37.64. Vi EBW T OUL T NE_USAQE tovuiiiiieiiiieiie et e e e e e e e e e e e e e an s 1157
37.65. Vi eW t abl € _USAQE .ioiviiiii 1157
706, Vi BWS oeuuiieiiiii ettt e ettt et e e e ettt aaaan s 1158
A S = A= . oo =0 1 411 oo [1160
38. EXIENAING SQL ...eevnieiiiii e e 1166
38.1. How Extensibility WOrKSccooiiiiiiiiii e 1166
38.2. The PostgreSQL TYPE SYSIEM ..cuuiiiiieiie e e e e e e e e e e 1166
38.3. User-Defined FUNCLIONSuiiiiiiiiieiiiii e e e 1170
38.4. User-Defined ProCeAUMESovieeiieieiii et e e e et e e e eanens 1170
38.5. Query Language (SQL) FUNCLIONSccvvniiiiieiie e e e e e 1170
38.6. FUNCtion OVErloadingviiiiiiiiiiciie e e 1188
38.7. Function Volatility CategOriEsuuiiiiiieeiieeiiie e e e e e e e e e 1189
38.8. Procedural Language FUNCLIONSccooviiiiiiiiiccie e 1191
38.9. INternal FUNCLIONSuuiiiiiii e e e e e eeeaes 1191
38.10. C-Language FUNCLIONSciuiiieii e ee e e e e e e e e e e e e e eaneeees 1191
38.11. Function Optimization INfOrmMationcoeveiiiiiiiiieiiie e 1214
38.12. User-Defined AQQregatescuueiunieiiiieeie e e e e e e e e e e e e et e eaneees 1215

PostgreSQL 14.3 Documentation

38.13. USEr-DEfiNEd TYPES ..vueiieiiieieiii ettt e e e et eeaeaa s 1222
38.14. User-Defined OPEratOrsciuueiii et eeii e e s e s e e e e e e e st e e e eanaaees 1226
38.15. Operator Optimization INfOrMationccceuiieiiiieiiin e ee e 1227
38.16. Interfacing EXtENSIoNS tO INAEXESccvviiiiieiii e 1231
38.17. Packaging Related Objects into an EXtENSIONccovvvviviiiiiiciiiec e, 1245
38.18. Extension Building INfrastruCtureccovvviiiiiiii i e 1254
1 T I o o = PPN 1259
39.1. Overview of Trigger BENaVIOrociviiiiiii e 1259
39.2. Visibility of Data Changesucvvuiiiiiiiii e e e 1262
39.3. Writing Trigger FUNCLIONS IN Cu.iiiiiiie e 1262
39.4. A Complete Trigger EXamplecoouiiiiiiiii e e e 1265
O V= o | A o o (= £ PP 1270
40.1. Overview of Event Trigger BEhaviorcc.ccoiviiiiiiiiiieciiecee e 1270
40.2. Event Trigger FIriNg MatriXc..oeiiiiiiiieei e e 1271
40.3. Writing Event Trigger FUNCHIONSIN Covvniiiiiii e 1274
40.4. A Complete Event Trigger EXampleccuuviiiiiiiiieiii e 1276
40.5. A Table Rewrite Event Trigger EXamplecoovveiiiiiiiiii e, 1277
1. The RUIE SYSLEM ...t e e e e e e et 1279
N I 0T @ 111 VA (= = T 1279
41.2. Views and the RUIE SYSIEMcoviiiiiicii e 1281
41.3. MAEri@liZE VIBIWSceeeiiie e e e e 1288
41.4. Rules on | NSERT, UPDATE, and DELETEcccoiiiiiiiinieiiiiieeccie e 1291
41.5. RUIES aNd PriVIIEOES .. ovvii e 1302
41.6. Rules and Command SEALUSuuieiiiiiieiiiiie ettt e e 1304
41.7. RUIES VEISUS THOOES cuuneiiieiii et e e et e e e e e e e e e e e e e et e e e e aan e eens 1305
42. ProCedural LanQUBOESueeuneeiieeiiee e et e e e e et a e et e e e e et e e st e e et e e eaaeeaaneeaens 1308
42.1. Installing Procedural LanQUagEScccuueeiiiiiiiieiiieeeie e e e e e e e e e 1308
43. PL/pgSQL — SQL Procedural LangUagecccuueiuiieiiiieiiiieeiieeeeie e e e e e e 1311
A0, OVEIVIBW ..eevtiieeeiii e et e ettt e ettt e e ettt e e ettt e e ettt s e e e et aeeaeat e eeeentnneeaees 1311
43.2. Structure of PL/PGSQL ..ueivinieii e 1312
A3.3. DECIArAHONS .. ceeevi et e e et e e aae 1314
B q o (== 0] 1 1321
43.5. BASIC SEALEIMENESuieiiiii et e et e et e e e e et e e e et s e e e et aeeeeren e eeees 1321
43.6. CONLTOl SITUCLUMEScieiiieee ettt e et e e e et eeeeeaaaaeeees 1330
A O 1 1o = TP 1346
43.8. TransaCtion ManagemENtcc.ueeiiiieiiii e e e e e e e e e e e aan s 1352
43.9. Errors and MESSA0ESuueieteiiiieiiee et e e e e e e e e e e e e e et e e e e r e a e aaa 1353
43.10. Trigger FUNCHIONSceueiii e e e e e e e e e e e e e e e e e aneees 1355
43.11. PL/pgSQL under the HOOMooviiiiiiiiciii e 1365
43.12. Tips for Developing in PL/PGSQLcvvniiiec e 1368
43.13. Porting from Oracle PL/SQLccovuiiiiiieiii e e e 1372
44, PL/Tcl — Tcl Procedural LanQUagEccvvueiiieeiie e e e e e e e e 1383
A0, OVEIVIEW ..eevtiieeeeti e et e et e e ettt e e ettt e e e e ettt e e et et e e e et s e e eettaeeeestnaeeaees 1383
44.2. PL/Tcl Functions and ArQUMENEScceunriiieiiie e et e e e e e e e e eeanns 1383
44.3. Data Values in PLITCl .ooooveii e 1385
44.4. Globa Datain PLITCl .ouuuiiiii e 1386
44.5. Database AcCesS from PL/ITCl ...oovviiiiiiiiii e 1386
44.6. Trigger FUNCLIONS IN PLITCl .ouviiin e 1389
44.7. Event Trigger FUNCLIONS iN PLITCl c.vviiiici e 1390
44.8. Error Handling in PLITCl ..coovniiii e e 1391
44.9. Explicit SubtransaCtions in PLITClcouviiiiiciiicie e 1392
44.10. Transaction ManagemMENtoeviiiiiiiie e e e 1393
44.11. PL/TCl ConfigUuralionccuuuiiiieeiie eaens 1393
44.12. Tcl Procedure NAIMESuieeeiiieeeeiii e e e e e ea et eeeaan s 1394

Xi

PostgreSQL 14.3 Documentation

45, PL/Perl — Perl Procedural LanQUageccuuuieiuniiiiieiiieeeieeeiie e e e e e e eanaeeaen 1395
45.1. PL/Perl Functions and ArgUMENLSccuuieirnieiiiieeiie e e e e e e e eeaens 1395

45.2. Data Values in PLIPErl ..o 1400
45.3. BUIE-IN FUNCHIONS .eeviccce et 1400
45.4. Globa ValUES iN PLIPENTiiiiiii e 1405

455, Trusted and Untrusted PL/PENuuiiiiiiiiiiiiiie e 1406

N T o I = 4 B e o 1= PN 1408
I o I = I = o A e o (= £ 1409
45.8. PL/Perl Under the HOOieiiiiiiiiiiii e 1410

46. PL/Python — Python Procedural Languagecccovviviiiiieiiiieiii e e 1412
46.1. Python 2 vS. PYthOn 3oee e 1412

46.2. PL/PYthON FUNCHIONScuiiiiii e e e e e 1413
4B.3. DAA VAIUBSuiieiii et 1415

GRS 7=] oo D - - L 1420

46.5. AnonymMouS Code BIOCKSciiiiiiiiiicii e 1420

46.6. Trigger FUNCLIONSciiiiii e e e e e e et e e e e ees 1421

46.7. DAADASE ACCESSvviieeiiii e et e et e e e e e e e e 1422

46.8. EXplicit SUDLraNSACIIONSccuuiiiiieiiieec e e e e e e e ae 1425

46.9. TransaCtion ManagemENtcc.uieiiiieiiii e e e e e e e e e aanas 1427
46.10. Utility FUNCLIONSiieecii e e e e e e e e een 1428
46.11. Environment VariableSooiiiiiiiiiiiii e 1429

47. Server Programming INtErfacecoovvi i 1430
A47.1. INterfaCe FUNCLIONS ... coiiii e e e e e 1430

47.2. Interface SUPPOrt FUNCLIONSccuuiiiiiee e e e e e e e e ee 1473

47.3. MemOry ManagemMENTouuiniieiiiie ettt e e eas 1482

47.4. TransaCtion ManagemENtccuueeiuiieiiiiee e e e e e e e e e e aanas 1492

47.5. Visibility of Data Changesccuoviiiiiiiiiiciii e 1495

A7.6. EXAMPIES ..ottt e aee 1495

48. Background WOTKEr PrOCESSESuuiiiieiiiieeiiie et eeee e e e e e e e e e e e et e e eaneeeanees 1499
L R T o= I D<ol 1 1o PP 1503
49.1. Logical Decoding EXaMPIESccuuiiiiiiiii e 1503

49.2. Logical Decoding CONCEPLSuuivvueiiiieeiii e e e e e e e e e e e e e e eees 1507

49.3. Streaming Replication Protocol Interfaceccooveviiiiiiiiiiiiiiceeeen, 1508

49.4. Logical Decoding SQL INtEIfateccvuviiiiiiiiieeie e 1508
49.5. System Catalogs Related to Logical Decodingceevvnvviiieiiiieiiiiieiieeainns 1508

49.6. Logical Decoding OULPUL PIUGINScovuiiiiieiiiieei e e e e 1509

49.7. Logical Decoding OULPUL WIHTEIScvvueiiieii e eee e 1517

49.8. Synchronous Replication Support for Logical Decodingcoccvvvevvvneeeinnnns 1517

49.9. Streaming of Large Transactions for Logical Decodingccooevvvnvevinnennnnn. 1518
49.10. Two-phase Commit Support for Logical Decodingc.cccovevvviveiineennnnnnn. 1519

50. Replication Progress TraCKinNgeiueeeiiiei e e e e e e e e e e e e e et e eeaneeees 1520
VL REFEIBNCE ...t e et et e e et et e e e eaes 1521
S @ I o 41090 1527
N =1 | PSP 1531
ALTER AGGREGATE ...ttt ettt et e et e eeeata e e e eee 1532
ALTER COLLATION .ttt ettt e et e e et eeaeaan e e eenees 1534
ALTER CONVERSIONottiiiiiiiiiieiiiiisee e e e e e e e e et eeeaaaeeaenanns 1537
ALTER DATABASE ...ttt e e et eeaaens 1539
ALTER DEFAULT PRIVILEGEScoiiiiiiiiii e 1542
ALTER DOMAIN L.ttt e et e e e et e e e e eranneeeee 1546
ALTER EVENT TRIGGERcccttiiiiiiiiiieiiii e 1550
ALTER EXTENSION ...ouiiiiiiiiiiiii ettt e e et e e e et e e e eaan e eeees 1551
ALTER FOREIGN DATA WRAPPERcccuuiiiiiiiiiieiiiiie e 1555
ALTER FOREIGN TABLE ..ottt 1557

Xii

PostgreSQL 14.3 Documentation

ALTER FUNCTION ..ottt 1562
ALTER GROUP ..ottt 1566
ALTER INDEX ..o 1568
ALTER LANGUAGE ...t 1571
ALTER LARGE OBJECT ..ottt 1572
ALTER MATERIALIZED VIEWiiiiiiiii e 1573
ALTER OPERATOR ..ot 1575
ALTER OPERATOR CLASS ... 1577
ALTER OPERATOR FAMILY oo 1579
ALTER POLICY oot 1583
ALTER PROCEDUREcooiiiiiiiiic e 1585
ALTER PUBLICATION ..ot 1588
ALTER ROLE ... 1590
ALTER ROUTINEooiiiiii e 1594
ALTER RULE ... e 1596
ALTER SCHEMA .o 1597
ALTER SEQUENCEo 1598
ALTER SERVER ..ot 1601
ALTER STATISTICS ..o 1603
ALTER SUBSCRIPTION ..ottt 1605
ALTER SYSTEM .o 1608
ALTER TABLE ..o 1610
ALTER TABLESPACEo 1628
ALTER TEXT SEARCH CONFIGURATIONcciiiiiiiiiiiiiiiiieiec e, 1630
ALTER TEXT SEARCH DICTIONARY ...ttt 1632
ALTER TEXT SEARCH PARSERccootiiiiiii e 1634
ALTER TEXT SEARCH TEMPLATE ... 1635
ALTER TRIGGER ...t 1636
ALTER TYPE Lo 1638
ALTER USER ..o 1643
ALTER USER MAPPING ..ot 1644
ALTER VIEW .o 1646
ANALYZE ... o 1648
BEGIN . 1651
CALL e 1653
CHECKPOINT . 1655
LS . 1656
CLUSTER e 1658
COMMENT Lo e 1661
COMMIT s 1666
COMMIT PREPAREDcocviiiiiiiiiii e 1667
GO Y 1668
CREATE ACCESS METHODcccviiiiiiiiiiiciee e 1679
CREATE AGGREGATE ... 1681
CREATE CAST o 1689
CREATE COLLATION .ottt eae e 1694
CREATE CONVERSION ..ot 1697
CREATE DATABASE ..o 1699
CREATE DOMAIN L.ooiii e 1703
CREATE EVENT TRIGGERcoiiiiiiiiiiiic e 1706
CREATE EXTENSION ...ooiiiiiiiiiii e 1708
CREATE FOREIGN DATA WRAPPERccoiiiiiiiii e 1711
CREATE FOREIGN TABLE ..., 1713
CREATE FUNCTION L..ouiiiiiiiii e 1718

PostgreSQL 14.3 Documentation

CREATE GROUPcciiiiiiii e 1727
CREATE INDEX ...t 1728
CREATE LANGUAGE ..o, 1737
CREATE MATERIALIZED VIEW ..o 1740
CREATE OPERATOR ...ttt 1742
CREATE OPERATOR CLASS ..o 1745
CREATE OPERATOR FAMILY .ot 1748
CREATE POLICY ..ttt 1749
CREATE PROCEDUREciiiiiiiiiic e 1755
CREATE PUBLICATION ..ottt 1759
CREATE ROLE ..ot 1762
CREATE RULE ..o 1767
CREATE SCHEMA ..o 1770
CREATE SEQUENCEiiiiiiiiiic e 1773
CREATE SERVER ..ot 1777
CREATE STATISTICS ... 1779
CREATE SUBSCRIPTION ..ottt 1783
CREATE TABLE ... 1786
CREATE TABLE AS ..o 1809
CREATE TABLESPACEooiiii e 1812
CREATE TEXT SEARCH CONFIGURATION ..o, 1814
CREATE TEXT SEARCH DICTIONARY ..ot 1816
CREATE TEXT SEARCH PARSER ...t 1818
CREATE TEXT SEARCH TEMPLATE ..ot 1820
CREATE TRANSFORM ..ottt 1822
CREATE TRIGGERoiiiiiiiii 1825
CREATE TYPE .o 1833
CREATE USER ..ot 1843
CREATE USER MAPPING ..ot 1844
CREATE VIEW ..ot 1846
DEALLOCATE ..o 1851
DECLARE ..o 1852
DELETE . o 1856
DISCARD ... 1859
DO 1861
DROP ACCESS METHODccuiiiiiiiiiicii e 1863
DROP AGGREGATE ...t 1864
DROP CAST ot 1866
DROP COLLATION .ottt 1867
DROP CONVERSIONcoiiiiiiiiiiiii e 1868
DROP DATABASE ..o 1869
DROP DOMAIN .ot 1871
DROP EVENT TRIGGERcoiiiiiiiiiiii 1872
DROP EXTENSION ...coiiiiiiiiii e 1873
DROP FOREIGN DATA WRAPPERcooiiiiii e 1875
DROP FOREIGN TABLE ..o 1876
DROP FUNCTION .ot 1877
DROP GROUPociiiiiiici e 1879
DROP INDEX ..o ittt 1880
DROP LANGUAGE ... oottt 1882
DROP MATERIALIZED VIEW ..o 1884
DROP OPERATOR ...ttt 1885
DROP OPERATOR CLASS ... 1887
DROP OPERATOR FAMILY .oiiiiiiiii e 1889

Xiv

PostgreSQL 14.3 Documentation

DROP OWNEDciiiiiiiiiiiii e 1891
DROP POLICY ottt 1893
DROP PROCEDURE ...t 1894
DROP PUBLICATION L..oiiiiiiiiiii et 1897
DROP ROLE ..ot 1898
DROP ROUTINE ...coiiiiiiiii e 1900
DROP RULE ...t 1902
DROP SCHEMA ... e 1903
DROP SEQUENCEciiiiiiiii e 1905
DROP SERVER ..o 1906
DROP STATISTICS ... 1907
DROP SUBSCRIPTION ..ottt 1908
DROP TABLE ... 1910
DROP TABLESPACE ..o 1911
DROP TEXT SEARCH CONFIGURATIONcooiviiiiiiiiiii e 1912
DROP TEXT SEARCH DICTIONARYouiiiiiiiiiiiiiie e 1913
DROP TEXT SEARCH PARSER ..ot 1914
DROP TEXT SEARCH TEMPLATE ... 1915
DROP TRANSFORM ..ottt 1916
DROP TRIGGERouiiiiiiiiiiiii e 1918
DROP TYPE ... 1919
DROP USERottt 1920
DROP USER MAPPING ..ot 1921
DROP VIEW .o e 1922
END e 1923
EXECUTE .o 1924
EXPLAIN Lo 1925
FET CH 1931
GRAIN T 1935
IMPORT FOREIGN SCHEMA ... 1941
INSERT .o 1943
LISTEN o 1951
LOAD o 1953
L O CK i 1954
MOVE .o 1957
NOTIRY e 1959
PREPARE ... 1962
PREPARE TRANSACTIONcciiiiiiiiiiiiii e 1965
REASSIGN OWNEDoiiiiiiiiiii e 1967
REFRESH MATERIALIZED VIEW ..o 1968
REINDEX ... 1970
RELEASE SAVEPOINT ..ot 1975
RE S E T e 1977
REVOKE ..o 1978
ROLLBACK o 1983
ROLLBACK PREPAREDoiiiiiiiiiiiin e 1984
ROLLBACK TO SAVEPOINT ..ot 1985
SAVEPOINT oo 1987
SECURITY LABEL ..ooii e 1989
SE L E T e 1992
SELECT INTO ot 2014
SE T 2016
SET CONSTRAINTS ..o 2019
SET ROLE ..o 2021

XV

PostgreSQL 14.3 Documentation

SET SESSION AUTHORIZATION ..ovuiiiiiiiiieeeei et e e 2023
SET TRANSACTION ..ttt ettt e et e e e e 2025
SHOWY e et aaan 2028
START TRANSACTION ..ouiiiiiiiiieeeii et e et e e e s 2030
TRUNGCATE ..ottt e s e et e e e et e e e eaa s 2031
UNLISTEN Lottt e et e e e et e e e et e e e et eas 2034
UP D A T E ittt e et et e et a e r e aee 2036
VACUUM L.t e e et e e et eeeera s 2041
VALUES ...t 2046
I1. PostgreSQL Client APPlCAIONSuuiiiiciiie et e e e e e e e e 2049
(o1 (o | o PP 2050
(o= 1= | o PP 2053
CTEBLEUSEY ... evuete ettt ettt et et et et e et e e e et e et e et e et e e ea et e et e et e e n e e e e e aeen e 2057
AroPaD oo 2062
(01 0] 11 2065
(< o¢ o o PRSPPI 2068
o101 =0 G 2071
PO _DBSEDACKUD ... 2077
01007 o 2086
oo w0 0 o P 2107
oo 0 L8 T 1o T PN 2110
PO AUMPAIL ..o 2124
Lo TS (= o |V S 2131
Lo T = o= AV L= P 2133
o To T (= w17 oo T NP 2138
10 (== (0] (PP P PSPPI 2142
PO VENTYDACKUD ..veiie e 2152
01 o | P 2155
(=070 1= (o | o P 2200
A= e U110 o o PPN 2204
[11. PostgreSQL Server APPlICaLiONScvuuieiiie e e e e e e e e e 2210
TNIEAD e e 2211
PY_arChiVECIEANUDuiiii e 2216
[oTo e 4= S 0 1S 2218
[oTo T w0011 0] [=1 - P 2220
oo N o | 2221
[T T =5 =11 | 2227
oo T (=111 o PN 2231
Lo T (=S S/ 2235
o Lo === A (140 P 2236
o100 oo =" [T 2240
o102z Lo L1 4o o 2249
01075 0 === PP PPN 2252
1051 = S 2260
RV 1 01 =0T PP 2261
51. Overview of POStOreSQL INtErMalScuvuiiiiiiiii e 2268
51.1. The Path Of @ QUETNYciiiiiiiii e 2268
51.2. How Connections Are Establishedcoooviiiiiiiiiiiinii e 2268
Y G T I 0 Tol s S = [T 2269
51.4. The PostgreSQL RUIE SYStEMuuiiiiiiiiiiiiiie e 2270
51.5. Planner/OptimMizZErcouniiiii e 2270
Y I = o U (o PP 2272
YISV (= 0 (I OF - [0 o PN 2273
YA I O Y= a1 1 PP 2273

XVi

PostgreSQL 14.3 Documentation

52.2. PO_ 00N EAL & L.ttt 2275
Y2 T o Lo - 1o £ PP 2276
Y2 S o Lo = 10 0] o PP 2277
Ly T o To JE= 101 0] S o] o PP 2278
52.6. PO At trdef oo 2278
B2.7. PG _ At tri BUL @ (oo 2279
52.8. PO_AUL NI 0 oo 2281
52.9. pg_aut h_MBNDEIS oo 2282
2.0, PO LA ittt 2283
52,11 PO _Cl @SS ittt 2284
52.12. PG _COl L At i ON covuiiii e 2286
LSy K T o To T o2 oY 1 13 A - Y I o | 2287
oy S o To T oZ oY 0 AVZ=1 G =Y I] o 2289
52.15. Pg_dat @DaS@ ..civuiiiiii 2289
52.16. pg_db rol @ SettinNg ccoveiiiiiiii i 2291
52.17. pg_defaul t _acl ..o 2291
LSy S T o To o =Y 1= o Vo [REU P PI 2291
LSy L I o To o (=YY of g T o} A o o [P 2294
L2 I o To T =T 0 15 1 o PRSP 2294
Sy W o T T =1V =1 0 | GO O T Lo = P 2295
52.22. PY_EXE ENST ON ciiuiiiiiieiii e e e e 2295
52.23. pg_forei gn_dat @ W apPer ...cocceuieiiiiieiiii e 2296
52.24. PG _fOr €1 N _SEBI VI it 2296
52.25. pg foreign _tabl @ .o 2297
Sy T o T T T o [G PN 2297
52.27. PO i NNEI T TS it 2299
Sy S T o 1o T o VIR S 1 YA TS 2299
s I o 1o T B Y 1o [V = Vo = TP 2300
52.30. pg_l argeobj Ct ..o 2301
52.31. pg_largeobject _netadatacccoeeeiiiiiiiiiiii e 2301
52,32, PO _NAIMEB S PACE ottt 2302
52.33. PO _OPCl @SS wuiiiiiiiiiii i 2302
52.34. PO _OPI AL OF et 2303
52.35. PG _OPF @M [Y oo 2304
52.36. pg_partitioned tabl eccoooiiiiiiii 2304
52.37. PO POl i CY et 2305
2. 38, PO Pl OC ittt ittt 2306
52.39. PG _PUDBL i CAti ON oo 2308
52.40. pg_publicati on_rel . 2309
Ly I o o T - 1 [0 1= PP PP 2309
52.42. pg_replicati On_Ori giN i e 2310
YA T o To T G- XsY N A = PN 2310
52.44. pg_secl abel ..o 2311
Y S oo I =To [UT=] o [ol = PPN 2311
52.46. pg_ShAEPENd ...coviiii i 2312
52.47. pg_ShAeSCri PtiON .oiiiiiiii e 2313
52.48. pg_shsecl abel ... 2314
52.49. PO ST AT ST C civviiiiiiiii e 2314
52.50. PG St At i STi C_ XL i 2315
5251. pg_statistic_ext_dataccoooeiiiiiiiiiiiiiii 2316
52.52. PG _SUDSCI I PLI ON covniiiii e e 2317
52.53. pg_SUDSCriptiOn_rel .o 2318
52.54. PGt abl ESPACE ..uiiiiiiiii i 2318
52,55, PG L ranST OF M. 2319

PostgreSQL 14.3 Documentation

Y T o To TR O I Lo 1= PN 2319
B52.57. PO 1S _CONT I G cirriiiii i 2321
52.58. PG tS _CONFi g IMBP «oiiiiii i 2321
52.59. PO 1S i Cl orniiiiiiii i 2322
52,60, PO L S PaI SO ittt 2322
52.61L. PO tS LEMPI Al € oivriii i 2323
2 2 o o T A0V o 1 PP PPPRP 2323
52.63. PO _USEI _ITAPPI NQ corniiiiiieiiii eanaas 2327
52.64. SYSIEM VIBWS ...ttt e e e e e e 2327
52.65. pg_avail abl @ _ext eNSi ONS ...ccccoiiiiiiiiiiii 2329
52.66. pg_avai | abl e_ext ensi On_Versi ONScccoeeviiiiiiiieiineciiiieeieeeann, 2329
52.67. pg_backend mMEMDry CONt eXtS ..coociiiiiiiiiiiiiie e 2330
Lyt S I o To T o2 o 1 | o [P PN 2330
Y21 A o o T o1 1 g o] g T PPN 2331
A (O o To R B =T =X = O A 2 1 2331
Y2 o o o T o | g0 1 U1 o R PSPPI 2332
52.72. pg_hba fil e rul @S . 2333
A (ST o To T T 4 Lo 120 €= PN 2334
B2.74. PO | OCKS it 2334
A (ST o To T .- AV = 1P 2337
YA (T o To T o o] B o =P 2337
52.77. pg_prepared_Stat EMBNES ...coiiiiii i 2338
52.78. pg_prepar €d_XaCL S ..ioiiiiiiiiiiii e 2339
52.79. pg_publication tabl €Sccoooiiiiiiiii 2339
52.80.pg_replication origin_statuscccooviiiiiiiiiiiiiii e, 2339
52.8L.pg replicati on_SIOtS .o 2340
B52.82. PO T Ol BS ittt 2341
YR I o To T G V1 =T PN 2342
52.84. pg_SECl AbBeI S cooniii i 2343
52.85. PO _SEUUEBNCES .ouiitiiiiiieie ettt 2343
YR T o T T =) A A 4 [P 2344
52.87. PO _SNAUOW ...ouiiiiici 2346
52.88. pg_shmem al | 0Cat i ONScocoviiiiiiiii e 2347
52,80, PO St AL S ittt 2347
52.90. PO _St Al S BXt 1ottt 2349
5291, PO_St Al S _BXE X S ittt 2350
52.92. PO _tAbl S oeriiii i 2352
52.93. pg_timezone _abbrevs ... 2352
52.94. Pg_ti MBZONE _NAIMES ..iituiiiiieiii et e et e e e e e e e ean s 2352
2 ST o o T U =1 =] PP 2353
Sy T o T TRV IS =1 a1 Y o1 o L o 1T 2354
e A o To T VA I =1 SN 2354
53. Frontend/Backend ProtOCO!iiiiiiiiieiiiiii e 2355
53,1, OVEIVIBIW ..ttt ettt e e e e e e e et e e e e et e e e e et e e e e aaa s 2355
53.2. MESSAGE FIOW ...vviiiiiiii e e e 2357
53.3. SASL AULNENLICALIONeiiiiiieeiieie e 2370
53.4. Streaming Replication ProtoColccccuiviiiiiiiiiiciie e, 2372
53.5. Logical Streaming Replication Protocolcccoeeeiiiiiiiineie e, 2379
53.6. MESSAgE Dala TYPES ..vuiviiiieiiiii ittt et 2380
53.7. MESSAgE FOMMELS . .viviitiiiitei et ees 2381
53.8. Error and Notice Message FieldSooiviiiiiiiiiii e 2399
53.9. Logical Replication Message FOrMELSccuuveviueiiiiieiiiieciieeeineeeieeeaneeeae 2401
53.10. Summary of Changes since Protocol 2.0cccoeeeiiiiiiiiiiiinc e, 2408
54. PostgreSQL Coding CONVENLIONSuuiiiuieiiieiiieeei e e e e e e e e e e e eeaneeee 2409

PostgreSQL 14.3 Documentation

55.

56.
57.

58.

59.

60.

61.
62.

63.

64.

65.

66.

67.

S o 0=] o 2409
54.2. Reporting Errors Within the SErverooveiiiiiii e, 2410
54.3. Error Message StYl€ GUIAEouiiiiiiiiii e 2413
54.4. Miscellaneous Coding CONVENLIONSccvvuieiiiieiiieeiii e e e e 2417
Native Language SUPPOITuu it e e e e e e e e e e e e e e et e et e e et e s e eeaaeeeen 2420
55.1. FOr the TranSlaloruuieiiiiiiieiieie e e e eeeees 2420
55.2. FOr the PrOgramimeriiiii e e e e e e e e aaas 2423
Writing a Procedural Language Handlerccoooviiiiiiiiiin e 2426
Writing a Foreign Data WIaDPEScvvueiiiieiii e e e e e e e e e e et e e et e e e eaaeees 2428
57.1. Foreign Data Wrapper FUNCHIONScovuiiiiieiiie e e 2428
57.2. Foreign Data Wrapper Callback ROULINESooovviiiiiiiiii e 2428
57.3. Foreign Data Wrapper Helper FUNCLIONScccvviiiiiiiiiccie e, 2445
57.4. Foreign Data Wrapper Query Planningcocoiieiiiieiiii e, 2446
57.5. Row Locking in Foreign Data WIappeEr'Sevviieiieeiiiieeie e e e e e e 2448
Writing a Table Sampling Methodcc.oooviiiiii e, 2450
58.1. Sampling Method Support FUNCLIONScocviiiiiiiiiecc e, 2451
Writing a Custom SCan ProVideroiiiiiiiii e 2454
59.1. Creating Custom Scan PathScciiiiiiiiii e 2454
59.2. Creating Custom SCan Planscooiviiiii i 2455
59.3. EXECULING CUSLOM SCANSuvvvieiiiieiiieeeiie e e e e e e e e e e e e e e e ean e eees 2456
GeNEtiC QUENY OPLIMIZEN .uuiiii i e e e e e eees 2459
60.1. Query Handling as a Complex Optimization Problemcooieiiieiins 2459
60.2. GENELIC AlQOTItNMS ... 2459
60.3. Genetic Query Optimization (GEQO) in POStgreSQLccevvvevvveiiiieeiieennnne. 2460
60.4. Further REAINGcccvuiiiiiiii e 2462
Table Access Method Interface Definitioncooviiiiiiiiii e 2463
Index Access Method Interface DeEfiNitionc.uieiiiiiiiiiiiiii e 2464
62.1. Basic APl Sructure for INAEXESccuuuiiiiiiiieei e 2464
62.2. Index Access Method FUNCLIONSoovvveiiiiiiiiiccin e 2467
62.3. INAEX SCANMNING ...evvneeiiieiie e et e e e e e e e e e e e e e e e et e e et e e eanaeeees 2473
62.4. Index Locking CoNSIAErationSoveiuiieiiieiiiieeie e ee e e e e e 2474
62.5. Index Uniqueness ChECKScocuiiiiiiiiie e 2476
62.6. Index Cost EStimation FUNCLIONSuviiiiiiieiiiiieeeciis e 2477
GENENIC WAL RECOIUSvuiieiiii et e e e e e et e e e eees 2480
B-TrEE INUEXES ..vn e et e e e et e s 2482
(57 0 g1 oo (8o [o S 2482
64.2. Behavior of B-Tree Operator ClasseSvvuuiiiiiieiiie e e e e e e 2482
64.3. B-Tree SUpPOrt FUNCHIONScuuiiiiicie e e e e e 2483
64.4. IMPIEMENLBLIONuuiii e e e e e e e e e e e e e eaans 2486
LTI I 1 070 (== PP 2490
L1300 g1 oo (8o o o S 2490
65.2. BUIIt-iN Operator ClaSSeSu.iiuueiiii i ee e e e e e e e e e ean e eeen 2490
L T N (=01] o 1 1 SRR 2493
65.4. IMPIEMENTBLIONvuiiii e e e e e e e e e e e eaans 2507
B5.5. EXAMPIES ...vvviiiei ettt 2507
SP-GIST INAEXES ...evvvviiiie i e e ettt ettt et e e e e et e e e e e e e e et e e e e e e e eeaennnnas 2509
L1200 g1 oo (8o [o S 2509
66.2. BUIIt-iN Operator ClasSeSu.evvueiiiieiiii e e e e e e e e e e e een 2509
ST R I N (=011 o 1 1 SRR 2511
66.4. IMPIEMENLALIONuuiiii e e e e e e e e e e e eaens 2520
B6.5. EXAMPIES ...vvviiiie ettt 2522
GIN TNOEXES ..t e ettt ettt s et e e e e e e e e e s e e e e e e e es et aaaeeeeeennes 2523
L8 1 1 oo (8o o o S 2523
67.2. BUIIt-iN OPerator ClaSSeSu.iiuueiiiieiiii e ee e e e e e e e e e e e e eanaeeeen 2523

XiX

PostgreSQL 14.3 Documentation

67.3. EXENSIDIITY ooeveeeiee e 2524

67.4. IMPIEMENLBLION .. .euuiii e e e e e e e e e e e e e eaans 2527

67.5. GIN TipS aNd TTICKS ..uuuiiiiiciii e e e e e e e eaeas 2528

A I T 4011 = o PP 2529

B7.7. EXBMPIES ..ttt 2529

B8. BRIN INOEXES ...ttt ettt e et e e et e e e et e e e enanns 2530
(61S 00 g1 o (8o (o o S 2530

68.2. BUIIt-iN Operator ClasSeSu.civueiiiieiiii e e e e et e e e eaaaeeeen 2531

68.3. EXLENSIDIITY oevvnieieei e 2539

B9. HESN INUEXES ...t e et e e e e et e e e eateneeeees 2544
1S I @Y= a1 T PP 2544

69.2. IMPIEMENLALION .. .evuiii e e e e e e e e et e e e eaens 2545

70. Database PhySICal SIOraQgEcvvuiiii e e e e e e e e e e e 2546
70.1. Datahase FIle LayOULoceuuiiiiiciii e e e e e e e e e aes 2546

40 2 1@ 7 1 LSRR 2548

T70.3. Free SPaCE M ...uiviiiiei e 2551

T0.4. VISIDIIITY M@ .. 2551

70.5. The INitidiZzation FOTKoviiiiiiiiis e 2552

70.6. Datahase Page LayOuLccouuieiinieiiii e e e e e e e e e e 2552

71. System Catalog Declarations and Initial CONteNtSoeevvvieiiiiieiiineiiiiece e, 2556
71.1. System Catalog Declaration RUIESeeviiiiiiiiiiec e, 2556

71.2. System Catalog INitial Datal........ccovvieiiiiieiiieeiiiieeie e 2557

71.3. BKI Fil@ FOMMEL ...covvieiiiiie e 2562

714 BKI COMIMEANGSceiviiieeiiiee ettt e e a e e et e e e et e e e e aan s 2563
71.5. Structure of the Bootstrap BKI Filec.coeviiiiiiiiiii e, 2564

71.6. BKI EXAMPIE c.eiiiiiei it 2564

72. How the Planner USES SEatiStCS ..ovvvuniiiiiii et e ettt e s 2565
72.1. Row EStimation EXamMPIESoeiiniiiiii i e e e e e 2565

72.2. Multivariate StatisticsS EXampPleScoovviiiiiiiii e 2571

72.3. Planner Statistics and SECUNMLYovvvniiiii e 2575

73. Backup Manifest FOMMELccovuiiiiiicii e e e e e aanas 2576
73.1. Backup Manifest Top-level ObJECEcocvvieiiiiiiiii e, 2576

73.2. Backup Manifest File OBJECtiiviiiiiee e, 2576

73.3. Backup Manifest WAL Range ObJECtcovviiiiiiieiiiieciie e 2577

RV LAY o] =5 o 1= 2578
A. POSIOreSOQL ETOr COUES ...uuuiiiicii et e e e e e e e e e e eaaas 2585
ST BT (T T g LTS T o] oo o 2594
B.1. Date/Time Input INtErpretationoovvviiiiiieiie e e e 2594

B.2. Handling of Invalid or Ambiguous TimesStampsc.ccceveviiieiiiiieiiiiecie e, 2595

B.3. Date/Time K&Y WOIASiviiiiiii e e e e e e e e 2596

B.4. Date/Time Configuration FIlEScocoui i 2597

B.5. POSIX Time Zone SPeCifiCationsuieirieiiii i e e e e e e 2598

B.6. HIiStory Of UNItSiiiiiiiiiii e e e e 2600

B.7. JUAN DAES ...vuiiieiiiii et 2601

C. SOL KEY WOIGSceiieiiieeii ettt et e e e e e e e e e e et e e et e e et e e eaneaeanees 2603
D. SQL CONfOIMMEANCEevuiiieii e e e e e e e e et e e e e e e e e enaeees 2628
D.1. SUPPOIEd FEAIUIES ... ccvueiii e e e e e e e e e aens 2629

D.2. UNSUPPOIEd FEAIUIESuiiiiiiieii e e e e e e e e e e e e e e e e e anes 2641

D.3. XML Limits and Conformance to SQL/XMLccoevviiiiiiiiiiiiciie e, 2649

I e 1=z S N o] (=< P 2653
E.L REEBSE 14.3 .. 2653

E.2. REIEASE 14.2 ... 2658

E.3. REEESE 141 ..o 2664

B4 REIEBSE 14 ... 2668

XX

PostgreSQL 14.3 Documentation

E.5. Prior REIEASESuiiiiii i 2693
F. Additional Supplied MOAUIESiiiiiii e 2694
= |0 1T o= P 2695
F.2. @MCNECK ..t 2696
F.3. @UEN_AEIY ..o 2701
0| (o T = o) =1 o PN 2702
FLB. BIOOM Lo e 2704
ST o1 (==Y o 1 o 2708
A o 1 (==Y o £ P 2709
RS T o) (=4 APPSR 2710
FiO. CUD Lo 2713
[0 0 | o] o PRSP 2717
Nt I o o T | PP 2750
L 2o [A6,/ P 2751
F.13. €arthdiSIaNCE ...oevvieieeii e 2752
L 1T = o P 2754
F.A5. fUZZYSIIMEICH ..oeeci e e e e 2757
Nt T 01 o = PP 2760
T 17 o o N 2768
S T 1 - - Y 2769
0t L T 1= o PP 2773
2 o PP 2777
A T == PP 2778
e [0 I 7= 0= Lo A 2785
(A B 070 (= 1 41 o)< v 2786
F.24. passWOrdCNECKccoueiiiiici e 2796
F.25. pg BUFfEICACE .. cov e 2797
FL26. POCTYPO ittt 2799
L A oo [=== 0 0= 1 7= 2810
2 A oo [o (= V= 1 [PP P TP PREN 2812
2 oo | 1011 o o PN 2813
F.30. PO_Stal_ SalBMBNES .. e 2814
G oo £ = (0o T 2822
[oo =01 (= Y PP PPPE 2826
e 3C T oo [1 (0 [0 2828
F.34. PO VISIDIHITY © oo 2834
G ST 00 (0| (== {11V 2835
TSI o PO UPRN 2844
G S oo o | 2847
L T o PP 2855
1S IS 1T o o T PP 2856
F40. taDIEFUNC ... 2858
[[SOOI 2869
[(== o =0 o] oo [P 2870
F.A3. TSN _SYSIBIM TOWS L.ttt e e e e e e e e e e en 2871
[V s ISV (= 0 1 0= 2871
FLA5. UNBCCENT ...t e ettt e e e et e e et e e e nns 2872
TN 1T 0o P 2874
L 41 11 PP 2876
G. Additional SUPPIIEd Programsccuuuieiieiiii e ee e e e e e e e et e e e eans 2881
G.1. Client APPIICAIONSceei e e e e e e e e eees 2881
G.2. Server APPlICALIONSciiiicii e 2889
[T (= g = I 0= o £ PP 2890
H. L CHENt INEEIFACES .. iveeeiie e 2890

XXi

PostgreSQL 14.3 Documentation

H.2. AdMINIStration TOOISc.uuuiiiiiiiiieeiiiie e 2890

H.3. Procedural LanQUAagESuuiiiuniiiiiieiiieee e e e e e e e e e e e s e eanes 2891

[I a1 T PPN 2891

I. The Source Code REPOSITOIYccuuiiiieiiieieie e e e e e e e e e et e et e e e eeanaees 2892
[.1. Getting the SOUrCE VI Gitciviiciiiii e 2892

BN B o o100 01 - 1o o PSP 2893
J L DOCBOOK ...ttt 2893

2. TOOl SELS ..ttt 2893

J.3. Building the DOCUMENLEEIONcovvniiiiieii e e e e e e e 2895

J.4. Documentation AULNOIINGcovuniiiiieii e e 2897

J5. SEYIE GUITE ...evneeiiii e e et e e e e 2897

N 0 (0= @ I 1 S 2900
[o {0017/ 1 1 PP PP PPN 2001
TS oY UPPR PP 2908
TR0 oS 0o AP 2921
N.L When Color iSUSEAuiiiiiiiieiiii e e e eanes 2921

N.2. Configuring the COlOrScovuuiiiiie e 2921

O. Obsolete or RENAMEM FEAIUMNESccuviiiiiiiie ettt e e e e e e e eeeens 2922
O.1.recovery. conf filemergedinto postgresqgl.confc..coeviinennnnn. 2922

0.2. Default Roles Renamed to Predefined ROIESc.vvvviiiiiiiiiiiiiiinecce e, 2922

0.3. pg_xI ogdunp renamed to pg_wal dunpcooovviiiiiiiiiiii e 2922
0.4.pg_reset x|l og renamedto pg_resetwalccooeoiiiiiiiiiiiiiiniiees 2922

0.5. pg_recei vexl og renamedtopg_recei vewalccccoeeviiiiiiiiieiinennnn, 2922

[T o] oo r="o] /N 2924
g0 1= USRS 2926

XXii

List of Figures

60.1. Structure of a Genetic AlGOMTM ..o e
B7.1. GIN INEEIMAIS ...ttt ettt e et e e et e eeaaa e
T0.1. P LAYOULeeeeiitee ittt ettt ettt

XXiii

List of Tables

4.1. BaCKSlash ESCAPE SEOUENCESceietieiiiti e et e et e et e et e et e et et e e e e et e e e e enaaes 38
4.2. Operator Precedence (highest t0 TOWESE)uiiiiiiiiieiiii e 43
5.1. ACL Privilege ADDreVIGtioNSoiiiiiiieeiiii et e e 80
5.2. SUMMary of ACCESS PriVIIEOESu it 81
S D - = Y o= TP PP 150
8.2, INUMENIC TYPES ..ttt ettt ettt ettt e et r e e e et e e et et e e e e eaa s 152
8.3, IMONELAIY TYPES ..ottt ettt ettt e et e 157
8.4, CAIACLES TYPES ..ot eeiiti ettt ettt ettt ettt e et e e et e ettt e et e e e e e e enaa s 157
8.5. SPECial CharaCler TYPES ..c.vuu ittt ettt ettt e e et e ettt e e et e e e e e bt e e eenaaeeees 159
8.6. BINAIY Daa TYPESvueeieitieeeett ettt e et e ettt e ettt e e et et r e e et et e e et et e e eeat e e eent e eeen 160
8.7. byt ea Literal ESCAPEI OCLELSuiiiiiiieeieii ettt e e 161
8.8. byt ea OUutput ESCAPEd OCLELScceiiiiieeiii et 161
8.9. DAE/TIME TYPES .. eetueeeiiti ettt ettt ettt ettt ettt e et e et e e e e et e e e e b e e eeaans 162
8.10. DB INPUL ...eeeeeet ettt et e et e 163
811, THME INPUL ..ttt ettt ettt ettt e et et e et e e e et e e e et e nb e e ennaas 164
8.12. TiME ZONE INPUL ...ttt ettt ettt ettt et e ettt e e e et e e e e ana e eenees 165
8.13. Special DaE/TIME INPULScevuiiiiiie ettt e e e e e e enanns 166
8.14. DAe/TIME OULPUL SEYIES ...t eeees 167
8.15. Date Order CONVENTIONSeeeetteeeitti e ettt ettt e ettt e et e e ee b e e e e et e e e eete e e eeetanaeeees 167
8.16. 1SO 8601 Interval Unit ADDIreviationSc.uuiiiiiiiiiieii e 170
8.L7. INEIVEl TNPUL ...ttt ettt e e et e e e 170
8.18. Interval Output Style EXaMPIEScoovuiiiiiiii e 171
8.19. BOOIEAN DaLA TYPE ... eeeetieeeeeti ettt ettt ettt e et e et e et e e e e e e e aene 172
8.20. GEOMELNIC TYPES .. eeeti ettt ettt ettt et e et e et e et et e e e e et e eeeaa s 175
8.21. NEIWOIK AQArESS TYPES ... eeetiieteet ettt ettt ettt e e et e et eeena s 177
8.22. Ci dr Type INPUE EXAMPIEScoeiiieiei et 178
8.23. JSON Primitive Types and Corresponding PostgreSQL TYPEScccvvvnieiiiiiiieiiiiiieeeeiiiieeees 188
8.24.] SONPAt h Variahlesiiiiii e 196
8.25.] SONPAL N ACCESSOIS ... eieeetiie ettt ettt ettt ettt e e et et e e et eeaaan s 196
8.26. ODJECE 1dENLITIEr TYPES ... eeeiei ettt 221
827, PSRUUO-TYPES ..ttt ettt 224
9.1. COMPATSON OPEIGIOIS ...eetueeeetie ettt ettt e ettt et e e e et e et e et et e et e e e e e et e e e enn e eeenans 227
9.2. COMPAISON PraEdiCaLEScuuuieiiii ettt et 228
9.3. COmMPAISON FUNCLIONS ...ttt et e eaans 231
9.4. MathematiCal OPEIALOSceeeeueeeeii ettt ettt ettt ettt et et e et e e et e e eeaans 231
9.5. MathematiCal FUNCHIONScuuuuiiiiii ettt ettt e e e e e enaans 233
9.6. RANAOM FUNCLIONSceiiiieieii ettt ettt e et e e e e e e eenanns 236
9.7. TrigONOMELNIC FUNCHIONS ... ittt sttt ettt e e ettt e e e et e e e ena e eeens 237
9.8. HyperboliC FUNCHIONSiiiiiie et 238
9.9. SQL String FUNCLiONS 8N OPEIEIOISuieiiiiieeeiii ettt e ettt e ettt e e et e eeent e e e e e eees 239
9.10. Other SING FUNCHIONSuiiiiiii e e e e 241
9.11. SQL Binary String FUNCtions and OPEraorsSuueiertiieieiiiaeeeiiae e et e e e e 249
9.12. Other Binary String FUNCLIONSc..uuiiiiitiee ittt e e e e e ena e eens 250
9.13. Text/Binary String CONVErsion FUNCLIONSccouuuiiiiiiieeiiii et e e e 252
9.14. Bit SINQG OPEIAIOIS «...vteieeii ettt ettt ettt e et e e et e e et et e e e eaaa s 253
9.15. Bit SINQG FUNCHIONS ...ttt et e et e et e e s 254
9.16. Regular EXpression MatCh OPEIELOrSccuuuu i eiiiiiieeieii ettt e et e e et e e e et e e eeea e eeens 258
9.17. Regular EXPression ATOIMISc.uuu ittt ettt e ettt e et e et e e e et e e e b 263
9.18. Regular EXpression QUANTITIENSuuuiiiiiiie e 264
9.19. Regular EXPression CONSITAINTScvevuueiiiii ettt e et e e 264
9.20. Regular Expression CharaCter-Entry ESCPESocvvuvuieiiiiiieiiiii et 266

XXiV

PostgreSQL 14.3 Documentation

9.21.
9.22.
9.23.
9.24.
9.25.
9.26.
9.27.
9.28.
9.29.
9.30.
9.31.
9.32.
9.33.
9.34.
9.35.
9.36.
9.37.
9.38.
9.39.
9.40.
9.41.
9.42.
9.43.
9.44.
9.45.
9.46.
9.47.
9.48.
9.49.
9.50.
9.51.
9.52.
9.53.
9.54.
9.55.
9.56.
9.57.
9.58.
9.59.
9.60.
9.61.
9.62.
9.63.
9.64.
9.65.
9.66.
9.67.
9.68.
9.69.
9.70.
9.71.
9.72.
9.73.
9.74.

Regular Expression Class-Shorthand ESCAPESveiviiiiiiiiiiii e e e e 267
Regular EXpression CoNStraint ESCAPESuvvuuiiinieiiieiiieee e ee e e e e e e e e e e e ean s 268
Regular EXpression Back REFEIENCESocivuiiiii e 268
ARE Embedded-Option LEErS ... couuiiii e e e e e e e e 269
FOrmatting FUNCHIONSovuiiii e e e e e e e e e e e e e eens 273
Template Patterns for Date/Time FOrmMattingcccueeiiiieiiiiieiie e e e e e e 274
Template Pattern Modifiers for Date/Time FOrmattingcocevvveviiiiiiiiieiiiiecineeeeeeeis 276
Template Patterns for NUMeric FOrmattingcc.oveviiiiiiiiiiiii e 279
Template Pattern Modifiers for Numeric FOrmattingcoooevveeiiiiiiiiieiiineeieeceieeeeeeenn, 280
oo = L T 1 o)== 280
Date/TIME OPEIBIOIS ...vueeteeeii et ettt et e e e e e e e e e e e e et e e et e e et e e e e e st e eateeeanaeeannas 282
DA€/ TiME FUNCHIONSvtiiee it e e et e e e e e e e e et e e eenanns 283
AT TIME ZONE VANTANES ..uuiiiiiieeeiiie ettt e s e e a et s e e et e e e et e e e eaan e 295
ENUM SUPPOIt FUNCLIONSciie e e e e e e e e e e e e e ea e e aanees 298
(€100 1= (ol @] 1= - 10 = 299
GEOMELTTC FUNCLIONS ...ttt e et e e ettt e e e et r e e e eetereeeeabn s e eeeatnnaeeees 303
Geometric Type Conversion FUNCLIONSccouuiiiiiieiiie e e e e e e e e e 304
oo (o[£ SN @ o= = (0] £ 306
I[P AdAress FUNCLIONScovviiieiiiis ettt s e et e e e et e e e e at e e e e e 308
MAC AdAreSS FUNCLIONSoeviieiiiiie ettt e e et e e et e e et eeeeae s 309
LS == (o A IO o= = 0] £ TP 310
SRS == T T (o PR 311
Text Search Debugging FUNCLIONScoouuiiiiieii e e e e e e e e e eaaes 315
J SON aNd | SOND OPEIAOIS . .civviiiii e e e e e e e e e e e e et e e et eeanaee 332
Additional | SOND OPEIAIOrSuuiiiiieiii e e e e e e e e eaaees 333
JSON Creation FUNCLIONSciiuiieeiiiiie et e et e e e et s e e e eat s e e e eat e e eeatn s e e aeaanaaaees 335
JSON Processing FUNCLIONSiiiiiiii e e e e e e e et e e e e e e e e aanaees 336
j sonpat h Operators and MEethOOSccoouiiiiiiii e 346
j sonpat h Filter EXpression EIEMENESoiiiiiiiiiii e e e 348
S = [0 1= g Tor Y W o 1T 351
F N = YO o= = (0] £ PRSPPI 356
F N 4 = YA U o 1 o 356
RANGE OB OIS . it iti ittt e et e 359
MUILITANGE OPEIAEOIS . .evueiii i eiii et ettt e e e e et e e et e e e e e e e et e e et e e et e e an e eaaneeaaneeeens 361
[T (= U o o) 363
MUIITANGE FUNCHIONSuiiiii et e e e e e e e e e e et e e e e e aaeeeens 364
General-Purpose Aggregate FUNCLIONSo.uiiiiiiii e e e e e e e eaaes 366
Aggregate FUNCIONS fOr SEAtiStICSvvvuiiiiieiii e e 368
Ordered-Set Aggregate FUNCLIONScovuiiii e e e e e e e e e e e e e e aaneees 370
Hypothetical-Set Aggregate FUNCLIONScouuiiiiiiiciie e e e 371
GroUPING OPEIAtiONS ... cevuieiiieeii e e e e et e e e e e e e e e et e e et e et e e et ee et e e st e eeanaeaannaees 372
General-Purpose Window FUNCLIONSoovuiiiiiiciii e e e e e e e e e eaae e 373
Series Generating FUNCHIONSccuuiiiiiei e e e e e e e e e e et e e ea e eens 380
Subscript Generating FUNCLIONSccuuiiiiiii e e e e e e e e e e eaa s 382
Session INFOrmMation FUNCHIONSuiiiiiii ittt e e 384
Access Privilege Inquiry FUNCLIONSiiiiiiiii e e e 387
= (o I =T 01 @] 1= - (o =P 388
ACT T T E@MIFUNCLIONS ...t e et e ettt e e et e e e erb s e e e eatnneeeees 389
Schema Visibility Inquiry FUNCLIONScuuiiiiiiiii e e 389
System Catalog INformation FUNCHIONSccuuiiiieiii e e e e 390
INAEX COIUMN PrOPEMIES . .ovviiii e e e e e e e e e et e e e eaes 395
F g0 Lo = (0] 0= o 1= 396
Index Access Method Properti€Scuuuiiiii e e 396
Object Information and Addressing FUNCLIONSuiiiiieiiiiiiii e e 396

XXV

PostgreSQL 14.3 Documentation

9.75. Comment INformation FUNCHIONSc.uuuiiiiiiieeieii e e e 397
9.76. Transaction 1D and Snapshot Information FUNCLIONSooeviiieiiiiiiiie e 398
9.77. SNAPSNOt COMPONENESuueitieeii ettt e et e e e e et e e et e e et e e et e e et e e et e eet e e et estn e ranneeannaees 398
9.78. Deprecated Transaction ID and Snapshot Information FUNCLIONSccoeevviviiiieiieeennn, 399
9.79. Committed Transaction Information FUNCLIONSccouuiiiiiiiiiiiee e 400
9.80. CONLrol Data FUNCHIONSeiiiiiieeeeei et e et e et e e et e e e et e e e ee e e e eate s e e eeatnnaeeenes 400
9.81. pg_control _checkpoi nt Output CoOlUMNSccuuiiiiiiiiiii e e e 400
9.82. pg_control _syst emOutput COIUMNSccouuiiiiiieiii e 401
9.83. pg_control _init OUtPUt COIUMNSccvvniiiiieeiie e e e e e e e e e e eaes 401
9.84. pg_control _recovery OUutput ColUMNSccuuiiiiiiiiiii e e e 401
9.85. Configuration Settings FUNCLIONSoiiiiiiii e e e e e 402
9.86. Server SIgnaling FUNCHIONScuuiiiiciii e e e e e e aana e 402
9.87. Backup Control FUNCLIONSuiiiiiiiiicie e e e e e e e e e e e e e e e eaaas 404
9.88. Recovery INformation FUNCLIONScouueiiii e e e e e e e e e e e e e e e e aen 407
9.89. Recovery Control FUNCHIONSiiueieiiii e e ee e e e e e e e e e e e e e e e eaneees 407
9.90. Snapshot Synchronization FUNCHIONSc.uuiiiiiiiiie e e e e e e e 408
9.91. Replication Management FUNCHIONScouuiiiieiiii e e e e e e e e e eens 409
9.92. Database ObJeCt SIZ€ FUNCLIONSuiii i e e e e e e e e e ees 412
9.93. Database Object LOoCation FUNCHIONScovuiiiiiiiiiii e e e e e e e e 413
9.94. Collation Management FUNCLIONScouuuiiiiiii e e e e e e e e e e e aaes 413
9.95. Partitioning INformation FUNCLIONSoiiiiiiiiiciie e e e 414
9.96. Index MaintenanCe FUNCLIONSoiiiiiiiieiii e e e 414
9.97. GeneriC File ACCESS FUNCLIONSccuuiiiiiiiiii ettt e e e e eaees 415
9.98. AdVISOry LOCK FUNCLIONSuiiiiiiiiieii i ee e e e e e e e e e e e e e e e et e e et e e eaaeees 417
9.99. BUIlt-IN Trigger FUNCHIONSciviiiii e e e e e e e e e et e e e e e aanaees 419
9.100. Table Rewrite Information FUNCHIONSuuriiiiiiieiee e 422
12.1. Default Parser's TOKEN TYPES ..vuuiiiieiii it et e e e e e e e e e e et e e e e e e et e e et e e e eanaas 474
13.1. Transaction 1S0l@tion LEVEISuuiiiiiii e 499
13.2. Conflicting LOCK MOOESuuiiiiiiiiieci e e e e e e e e e e e 506
13.3. Conflicting ROW-LEVE LOCKSciuieiiicie e e e e e e e 508
19.1. SYSteM V IPC ParameterSvuiiiiiie et e e e e 587
19.2. SSL SarVEr FilE USAgE ...oui i e e e e e e 602
20.1. synchronous COMIMIt MOOESuiiiiniiiii e e e e e e e e e e e e et e e e e aneees 630
20.2. MESSAE SEVENTY LOVEIS ..uuiiiii i e 657
P0G TS 4 1o A @ (o] N =Y 689
221, PredefiNed ROIESiiiiii ettt et e ettt e e e e a e e e aea 717
24.1. PoStgreSQL Charaller SBLSciuuuiiiiiiiii et e e e e e e e e e e et e et e e et e e aaeeeeas 734
24.2. Built-in Client/Server Character Set CONVEISIONSuuiviiiinieeiiiiieeeeiin e eeiin e eeiin e eeaines 739
24.3. All Built-in CharaCter Set CONVEISIONScvvuuuneriiiiieeeeiieeeeeiineeeetieeeeeiiaeeeeraaeeernns 740
27.1. High Availability, Load Balancing, and Replication Feature MatriXcccooevuveeinneennnnnns 775
28.1. DYNAMIC SEAISHICS VIBWS . ouuiiiiiiecii e e e e e e e e e e e e e et e e et e eeaa e eees 798
28.2. Collected SEAISHCS VIBWS . ..ceeviieeieii e e ettt e et e et e et e e e e et e e e e et aeeeees 799
28.3.pg_Stat _aCti Vi ty VIBW oo e e 801
P2 L T o I/ o= PP 802
28.5. Wait Events Of TYPE ACT 1 Vi LY cuuiiiiiiiii e e e s 803
28.6. Wait Events of Type BUf f €5 Pi N ..o 804
28.7. Wait Events of TYPe Cl i €Nt ..oovuiiii i e e 804
28.8. Wait Events of TYPE EXT @NST ON ..ivviiiiiicii e 804
28.9. Walt EventS Of TYPE I O .ueiiiniiii i e e e e e e e e e aen 805
28.10. Wait Events Of TYPE I PC ..oouiiiiiii ittt e e e aeeens 808
28.11. Wait EVents of TYPE LOCK ...civuiiii e 810
28.12. Wait Events of TYPe LVWLOCK ...vuiiiiiiii it e e e e e e e e 810
28.13. Wait Events of TYPE Ti IMBOUL ..uuiiieiiiiii e e e e e e e e e e e s e eaaees 813
28.14. pg_stat _repliCati ON VIBW ..o e e 814

PostgreSQL 14.3 Documentation

28.15.pg_stat _replicati on_SI OtS VIEBW ..ot 816
28.16. pg_stat _Wal _FeCEI VEI VIBW .ouiiiiiciii i eaa s 817
28.17. pg_stat _SUDSCIipti ON VIBW ..o e 818
28.18. PO ST AL SSI VIO coiiiii i 819
28.19. PG _St At _gSSAPI VIBW couiiiiii i e e 819
28.20. pg_Stat _arChi VEI VIBW oouuiiiiiiiii e e e e e e e e e 820
28.21. pg_Stat _BOWE it &5 VIBW cooueiiii e e e 820
28.22. PG St At WAl VIBW coeeiiiiiii e 821
28.23. pg_stat _dat abase VIieWcccouiiiiiii e 822
28.24. pg_stat _database _confliCts VIBW .oocciiiiiiiiii e 824
28.25. pg_stat _all _tabl @S VIEW oo 824
28.26. pg_stat _all i NAdEXES VIBW ...uiiiii e 825
28.27.pg_statio_all _tabl @S VIEBW ..o 826
28.28. pg_statio_all i NAEXES VIBW ..o e 827
28.29. pg_stati o_all _SeqUENCES VIBW ..ccouuiiiiiiiiii e e e 828
28.30. pg_stat _user _fUNCEi ONS VIBWiiiiiiiiiii e e e 828
28.3L. PG ST At S| FU VIBW i e 829
28.32. Additional StatistiCS FUNCHIONSuuuiiiiiiieiiiie et e e e e e e e e eeees 829
28.33. Per-Backend Statistics FUNCHIONSuuiiiiiiiice st e e 831
28.34. pg_stat_progress_anal YZe VIBWcccciiiiii i 832
28.35. ANALY ZE PhaSBS ..vuu i eiiiiiiiee ettt e e e e e e 833
28.36. pg_stat_progress_create_ i NAeX VIBW ...cc.oiiivii i 833
28.37. CREATE INDEX PhESES ...cetuiiiiiiiieeeiii ettt e et e et s e e et s e e e e s e e eaaan e e ennens 834
28.38. pg_stat _progress_VAaCUUMVIBW ...cc.uiiiii i e e ee e e e e e e e et e e e eaneees 835
28.39. VACUUM PhESESuuiiiiiiiieeteie ettt e et e et e e et s e e et e e e et e e e e et e e e eaen e 836
28.40. pg_stat _progress_ClUSt er VIBWcooiiiiiii i 837
28.41. CLUSTER and VACUUM FULL PhaSEScuuuiiiiiiiiieieiiii e e 838
28.42. pg_stat _progress_basebackup VIeWccooeiiiiiiiiiii e 838
28.43. BaSE DaCKUD PRASES ... cuuiiiii e iiiee et e e e e e e e e e e a e 839
28.44. pg_stat _progress_COPY VIBW oot e e e e e et eeaaeees 839
28.45. BUIlt-iN DTrace ProbEScviiiiiii et 841
28.46. Defined Types Used in Probe Parametersc..veviiiiiiiiiiii e e 847
34.1. SSL MOE DESCIIPLIONSiviieiie e e e e e e e e e e e e e e e e et e e et e e et e e et eeaneeaneees 962
34.2. Libpg/Client SSL FilE@ USAQE ... cvuuiiiiiiiiiie et e e e e e e e e e eanees 963
35.1. SQL-Oriented Large Object FUNCLIONScivuiiiiiiicii e 983
36.1. Mapping Between PostgreSQL Data Typesand C Variable TYypeSc.ccevvveviiveviineeinnennnn. 1001
36.2. Valid Input Formats for PGTYPESdat € from asccocceeveviiiiiiniiin e, 1020
36.3. Vaid Input Formats for PGTYPESdat € fnt_asCcccoooviiiiiii i, 1022
36.4. Valid Input Formats for rdef mtdat @ccoooviiiiiiiiii 1023
36.5. Valid Input Formats for PGTYPESt i mest anp_from ascccoeeevvieiiiiciiiieciceeeennn, 1024
37.1.informati on_schena_catal og_name Columnsccoeeviiiiiiiieiiin e, 1108
37.2.adm ni strabl e _rol e _authorizations Columns...........cccooevviieiiiiiiiinecie e, 1108
37.3. applicabl e rol €5 ColUMNSoiiiiiiiii e e 1109
37.4. At L ri1 DUL €S COIUMNSuiiiiii e e e e e e 1109
37.5.charact er _Set S COlUMNSc.uiiiiiiiiiii e e e e e e e eeas 1112
37.6. check_constraint_routine_usage Columns...........cccoeviiiiiiiiiiiie e, 1112
37.7.check_constrai NtS COlUMNSuiiiiiiiiiii e e e e een 1113
37.8. COl 1 @t i ONS COIUMNSuiiiiiiii e e e e e e eeeaaa s 1113
37.9.col lation_character_set _applicability Columns..........cccooeviviiinininnennnn. 1114
37.10. col um_col umm_usage COlUMNSuiiiiieiii e e e e e e e 1114
37.11. col um_domai N_uSage COIUMNSuiiiiiiiiii e e e e e e 1114
37.12. col UMM_0Pt i ONS COlUMMNS .. .couuiiiicii e e e e e e e e e e eaes 1115
37.13. col um_pri vil €ges ColUMNSccouuiiiiiiiiii e e e 1116
37.14. col um_udt _USaQge COlUMNScoviiii e e e e e eeaae e 1116

PostgreSQL 14.3 Documentation

37.15. COl UMMS COIUMINS ...ttt ettt e e e e et e e et e e e et e e e eaan s 1117
37.16. constrai nt _col unm_usage ColUMNScevviiiiiiiiiiiii e 1120
37.17.constraint _tabl e _usage ColUmMNScccuieiiiiiiiiiiciie e 1121
37.18. data_type privileges ColumMNS........ccoooiiiiiiiiiiiiii e 1121
37.19. domai n_constrai Nts COlUMNScoiiiiiiiie e e e e 1122
37.20. domai N_udt _USAQe COIUMNSccvuiiii e e e e e e e eaa e ees 1122
2 Mo o) 1= T o E-J @] 1110171 o 3P 1123
37.22. el ement _t yPES COIUMNSovuiiiii e e e e e e e e e e e e eaes 1125
37.23. enabl €d_r 0l €S COlUMNSc.uiiiiiii e e e e e e e eaes 1127
37.24.forei gn_data wrapper_opti ons ColUmNScccuiviiiieiiiiieiiii e eeee e, 1127
37.25. foreign_data wappers COlUMNScoooiiiiiiiiiiiii e e 1128
37.26.foreign_server_opti ons ColUMNSociuiiiiiiiiiiiiieiie e e e 1128
37.27.forei gn_Servers COIUMNSiiiiiii i e e e 1129
37.28.foreign_tabl e options ColUMNSccocoviiiiiiiiii e 1129
37.29. forei gn_tabl @5 COlUMNScoouiiiiiiii e e 1130
37.30. key_col umm_uSage COlUMNSuiiii i e e e e e e e e e eaaaeees 1130
37.3L. par anmBt €S COIUMNSiuuiiii e e e e e e e e e et e e et eeaaeeaens 1131
37.32.referential _constraints ColUMNS..........ccoovviiiiiiiiiiii e 1133
37.33.role_col um_grants ColUMNSeiiiiiiiiii e e e e 1133
37.34.role_routine _grants COlUMNSccoeuuiiiiiiiiiii e e e e e e 1134
37.35.r0le_tabl e grants ColUMNSoeiiiiiiiiii i 1135
37.36.r0l e_udt _grants COlUMNSoiiiiiiiiii e e e e e 1135
37.37.r0l e_usage_grants ColUMNSccoeiiiiiiiiiieiiie e e e e e e e e 1136
37.38. routine_col umm_usage COolUMNSc.iiiiiiiiiiiieiie e e e e e 1136
37.39. routine_privileges ColUMNSoeiiiiiiiiii e e 1137
3740.routine_routine_usage COUMNSccociiiiiiiiiiiiii e e 1138
3741 routine_sequence_usage COlUMNScoceuuieiiiieiiiiieiie e e e e e 1138
3742. routine_tabl e _usage ColUMNScccouiiiiiiiiiii e e e e 1139
37.43. T OUL T NES COIUMNS ...oiiiiiieiii e e e et e e et e e e et eeeeaen s 1140
37.44. SChemBt @ COIUMNSouuuiiiiiii et e e e e e e et eeeaen s 1144
37.45. SEqUENCES COIUMNS ...ttt e e e e e e e e e e e e e eaaas 1145
37.46. sql _feat ures COIUMNSco.iiiii e e e e e e e eaas 1146
3747.sql _inmplementation_ info ColumMNS.........ccooiiiiiiiiiiiii e 1146
37.48. 5l _Parts COIUMNSiiiiiiiii e e e e e e e e e eaaas 1147
37.49. Sl _Si ZIi NG COIUMNSiiiiii e e e e e e e e eaans 1147
37.50.tabl e _constrai Nts ColUMNScccuuiiiiiiiiii e e e e 1148
3751 tabl e privileges ColUMNScccociiiiiiiiiiii e e 1148
37.52. t @bl €S COIUMNScoiiiiiiei e 1149
37.53. tranSTf Or B COIUMMNSiiiiiie e e et e e 1150
37.54.triggered update_col ums ColUMNSc.ooeiiiiiiiiiiii e 1150
IS T O e [1= =T @0 1¥ T 410 T 1151
37.56. udt _pri Vil eges COlUMNSccouiiiiiiie e e e e e aes 1153
37.57. usage_pPri Vil eges ColUMNSiiiiiiiiiie e e eae e 1153
37.58. user _defined _types COlUMNSc..ooiiiiiiiiiii e e e e 1154
37.59. user _mappi Ng_0Pti ONS COlUMNScoouiiiiiieiii e e 1156
37.60. user _mBpPi NQGS COIUMNSo e e e e e e e e e e eean e eaes 1156
37.61. vi ew_col umm_usage ColUMNSccuuiiiiiieiiii e e e e e e e eaae e 1157
37.62. view routine_usage COIUMNSc..oeiiiiiiiiii e e e e 1157
37.63. view tabl e_usage ColUmNScoouiiiiiiiiiii e e 1158
37.64. Vi €WS COIUMNS ..uuiiiii et e e e e e e e et e e e et e e e et e e e eaaa s 1158
38.1. POlYMOIPNIC TYPES .ivtiiiiii et e et e e e e e e e et e e e e e e et e e et e eennas 1167
38.2. Equivalent C Types for Built-in SQL TYPESccvuiiiiieiiieiieee e e e e e e e 1195
T T (= I = (=0 == 1232
K o b= I (= o= PR 1233

XXVii

PostgreSQL 14.3 Documentation

38.5. GIST Two-Dimensional “R-treg” Strat@gi€Suveiuuieiiiieiiiieeiie e e e e e e 1233
38.6. SP-GIST POINE SITAEIES ...t eeeeiiiieieiii ettt e e e e e e e e et e e e et eeeaa s 1233
I € NN = YA = (= o = PP 1234
38.8. BRIN MiNMaX SIralEOIES .. cvvuiiiieiiiieiiii et e e e e e e e et e e e e et e e e e e s e e e e e et e e ean e eanaes 1234
38.9. B-Tree SUPPOIt FUNCLIONSiiie e e e e e e e e e e e e eaneees 1235
38.10. Hash SUPPOrt FUNCLIONSuuiiiiici e e e e e e e e e e e eaens 1235
38.11. GiST SUPPOIT FUNCLIONSiviiiii e e e e e e e e e e e e eanns 1235
38.12. SP-GiST SUPPOIT FUNCHIONS ... cvviiiiiicii e e e e e e e e e e e e e e e e et e e aaeeaanas 1236
38.13. GIN SUPPOIt FUNCLIONSiiviiiiiieiie eeenaas 1236
38.14. BRIN SUPPOIt FUNCLIONSuuiiiiiieciiee i ee e e e e e e e e e e e e et e e et e e et s e e e e e aaneeeens 1237
40.1. Event Trigger Support by Command Tagcceuvieiiiiiiiieeii e e e e 1271
43.1. Available DIiagnoSstiCS ItEMSiiiiicii e e e e e e e e e e e ee 1329
43.2. Error DIiagnOStiCS [TEIMS . .uuuiii e e e e e e e e e et e e e e 1344
281. Policies Applied by Command TYPEuuviiinieiiiiciie e e 1752
282. pghench Automatic Variablesccouuiiiiiiii e 2095
283. PODENCH OPEIGLOISevvieei e e e e e e e e e e e e e st e e e et e e et e e eaneeeaes 2097
284, PODENCH FUNCLIONSiiiicii e e e e e e e e e e et e et e e ean e eaas 2099
YA IS Y/ (= 0 (N O v [0 o [2273
52.2. pg_aggregat € COlUMMScoouiiiiiiiii e e e e e e e e et e e e e eaens 2275
YA T o To T = .4 1 o] 0o 0 2276
YA o o JE- T o] o B o 1804 2277
52.5. Pg_anPr OC COlUMMSuuiiiiiii e e e e e e e e e e e e e e e et e e e e e e e eaanas 2278
52.6. pg_attrdef COlUMNSoiiiiii e 2279
52.7.pg_attribut @ COolUMNSciiiiiii e e e e 2279
52.8. pg_aut hi d COlUMNSuiiiiiiii e e e e e e aaaas 2281
52.9. pg_aut h_menber s ColUMNSc..oiiiiiiiiii e e 2282
LSy (O o To T o= =X A @] V1 1 PR 2283
LSy R o To o = £ =T 0 ¥ 41T 2284
52.12. pg_col 1 ati on COIUMNSciuiiiii i e e e e e e eaas 2286
52.13. pg_CONStrai Nt COIUMNSccuuiiiieii e e e e e e e e e eaes 2287
52.14. pg_CONVET Si ON COIUMNSiiuiiiiii i e e e e e e e e e e et e eean e eaes 2289
52.15. pg_dat abase COlUMNScuuiiiiiiiii e e e e e e eans 2290
52.16. pg_db role_setting ColUMNSooeiiiiiiiiiiiii e e 2291
52.17. pg_defaul t _acl CoOlUMNSc.iiiiiiiii e 2291
52.18. pg_depend COIUMNSccuuiiiii e e e e e et e et e e eaaas 2292
52.19. pg_descCri pti on COlUMNScouuiiiiiieii e e e e e e e e e e eaes 2294
oy O I o To =1 10 1 @] 070 1P 2294
52.21. pg_event _trigger COlUMNSoiiiiiiiiiiieiei e e e e e e e e ees 2295
52.22. pg_ext €nsi 0N COIUMNSciuuiiii e e e e e e e e e eaas 2295
52.23. pg_foreign_data wapper ColUMNSccooeiiiiiiiiieiiiieeie e 2296
52.24. pg_forei gn_server ColUMNSccieiiiiiiiiiieiie e e e e e e e e e 2297
52.25. pg_foreign_tabl @ ColUMNSoooiiiiiiii i e 2297
Sy T o T T o 123 G @0 1¥ T 410 TP 2297
52.27. PG i NNEri 1S COlUMNSuuiiiiiieii e e e e e e e e e eens 2299
52.28. pg i Nit _Pri Vs COUMNSciiiiiiieiii e e e e e e e e e e eaes 2300
52.29. pg_| anguage COlUMNSccouuiiiiieii e et e e e e e e e e e e aaeeaens 2300
52.30. pg_| ar geobj €Ct COlUMNSccouiiiiiii e e e e e e 2301
52.31. pg_l argeobj ect_netadat a ColumNSccoevviiiiiiiiiiiecie e 2301
52.32. pg_NAaMESPACE COIUMNSuuiiiiiii e e e e e e e e e e e e e eaas 2302
52.33. PG_0PCI @SS COIUMNSiiiiiiii e e e e e e e e e e e e eaans 2302
52.34. pg_oper at O COlUMMNScoiuuieiiiei e e e e e e e e e et e et e e aaneeeens 2303
52.35. pg_opfam [y COlUMNSociuiieiiiiei e e e e e aans 2304
52.36. pg_partitioned tabl € ColUMNScooiiiiiiiii e 2304
52.37. Pg_POI i CY COIUMNSuiiiiii e e e e e e eaaas 2305

PostgreSQL 14.3 Documentation

yC S T o To T o] e T @] 00 1P 2306
52.39. pg_publ i cati on COlUMNSccouiiiiiiie e e e e e e e e e 2308
52.40. pg_publication_rel ColumnSsccccooiiiiiiiiii e 2309
Ly o To T - Y o L= T @0 1N T 410 TP 2309
52.42.pg_replication_origin ColumNSccocouiiiiiiiiiiiiii e e 2310
52.43. PG reW i t € COIUMNS ...uciiiiiii e e e e et e e e e e e eaens 2310
52.44. pg_secl abel ColUMNSccouiiiiiiei e e eaaas 2311
52.45. pg_SEQUENCE COIUMMS .. .ouuiiiiiieii i ee e e e e e e e e e e e e e s e e et e e et e et e e aaneeeens 2312
52.46. pg_shdepend ColUMNScouuiiiiiiiiii e e e e aans 2312
52.47. pg_shdescri pti on ColUMNSoiiiiiiiiie e e e eae e 2313
52.48. pg_shsecl abel ColumNScc.oiiiiiiiiii e 2314
52.49. pg_Stati StiC COUMNSiiiiii i e eeaas 2315
52.50. pg_stati stiC_ext COlUMNScoiiiiiiiiii e e ea e 2316
5251. pg_statistic_ext_data ColumnSc..couiiiiiiiiiiiiiiiii e 2317
52.52. pg_subscripti on COUMNSccoiiiiii e e 2317
52.53. pg_subscription_rel ColUmMNSc.ccciiiiiiiiiiii e e 2318
52.54. pg_tabl eSpace COlUMNSccouiiiiiiii e e e e eaas 2318
52.55. pg_transf or MCOIUMNScouiii e eaas 2319
52.56. PG _tri gger COIUMNS ... oot e e e e e e et e e e e e eaens 2319
52.57. pg ts_Confi g COUMNSiiiiiii i e 2321
52.58. pg_ts_confi g _mBP COlUMNS ...ttt e e e e e eaa e 2321
52.59. PG tS_di Ct COIUMNS ...t e e e e e e aaas 2322
52.60. pg_tS_parSer COIUMNSccouuiiiii i e e e e e e e eaas 2322
52.61. pg ts tenpl at @ ColUMNScccouiiiiiiiiii e e e e e e e e e e aen 2323
52.62. PG T YPE COIUMNS ..ottt e e e e e e e e e e e e et e e et e e e e eanaas 2324
Y IR VA o Tt =T Fo] YA ©Co o = PP 2326
52.64. pg_user _mappi NG COIUMNSoiiiii e e 2327
5265, SYSIEIM VIBIWS ...ttt ettt e e e e e r e e e et e e e et e e e e et e e e e et 2328
52.66. pg_avai | abl e_ext ensi ons ColUMNSccoeviiiiiiiiiiiie e 2329
52.67. pg_avai |l abl e_extensi on_versi ons ColumNScccoeevuviiiiiieiiieeciiieeine e, 2329
52.68. pg_backend_nmenpry_cont ext s ColUmMNScooevuieiiiieiiiieiii e 2330
52.69. Pg_CONFi g COIUMNSuiiiiiiii e e e e e e e e eaaas 2330
52.70. PG _CUISOI'S COIUMNS ...uiiiiiii e e e e e e e e e e e e e e et e e et eeaaeeaens 2331
52.71. pg _fil e settings ColUMNScooiiiiiiiiiiiiii e e e e e e eae e 2332
LA ¢ o To T e | ge 10 o @0 1N T 410 TSP 2332
52.73. pg_hba file rul s ColumNScccoeiiiiiiiiii e 2333
52.74. Pg_i NAEXES COIUMNSiiiiiii e e e e e e e et e e e e eeaens 2334
52.75. PG |1 OCKS COlUMNS .. .cuuiiiiiiii e e e e e e e e e et e et e e e aanas 2334
52.76. pg_MBAL Vi WS COIUMMNS .. .ouuiiiiiieii e e e e e e e e e e e e e et e et e e aaneeeens 2337
52.77. Pg_POI i CIl €S COlUMNSouuiiiiieii e e e e e e e e e e e e aens 2337
52.78. pg_prepared_stat ement s ColUMNScoouiiiiiiiiiiiieiie e 2338
52.79. pg_prepared _Xact s COolUMNSccuiiiiiiiiiii e e e e e e 2339
52.80. pg_publication_tabl es ColumMNSccoiiiiiiiiiiiii e 2339
52.81l.pg_replication origin_status ColumNS.........cccooeeiiiiiiiiieiiiieeiin e, 2340
52.82.pg_replication_slots ColUMNScoeiiiiiiiiiieiie e 2340
52.83. PG T 0l €S COlUMNS .. .ouuiiiiiiii e e e e e e e e e et e e et e et e e e eaanas 2341
52.84. PG T Ul €S COIUMNS .. .ouuiiiiiiii e e e e e e e e e e et e et e e e e aanas 2342
52.85. pg_secl abel s COlUMNScouuiiiiiiii e 2343
52.86. Pg_SEqUENCES COIUMNSuuiiiiiii e e e e e e e e e e e e e aan e eeas 2343
52.87. Pg_SettiNGS COIUMNScuuiiiiieii e e e e e e e e e e e e eens 2344
52.88. pPg_Shadow COIUMNSccuuiiiii e e e e e eaaas 2346
52.89. pg_shmem al | ocati oNs COlUMNSoiiiiiiiiiii e e 2347
Ly O A o To =) A= L= T o] 1¥ T 210 TP 2348
52.91. pg_stats_ext COIUMNScouiiiii e e e e e e e eaas 2349

XXX

PostgreSQL 14.3 Documentation

52.92. pg_stats_ext _exprs COlUMNSc..oeiiiiiiiiii e e e 2350
52.93. pg_tabl €S COIUMNScouiiiii e e aaaas 2352
52.94. pg_ti mezone_abbrevs COolUMNScccoiiiiiiiiiii e e 2352
52.95. pg_ti mezone _Names COlUMMNScccouuiiiiieiie e e e e e e e e 2353
e ST o T T =] O] 00 1P 2353
52.97. pg_user _nmappi NGS COlUMNSiiiii e e e e e e e eaaeeees 2354
52.98. PG Vi EWS COIUMMS .. .cuuiiiiiii e e e e e e e e e e e e et e e et e e et e e et eeaaneeaanns 2354
65.1. BUilt-iN GIST OPErator ClaSSESuuiiiteiiieeiiiieeiie et e e et e e e e et e e s e e et e et e eaanaaetnaes 2490
66.1. BUilt-in SP-GIST Operator ClaSSsESuciuuiiiiieiiiiieii et e e e e s et e et e e e e aens 2509
67.1. BUIlt-iN GIN OpPErator ClaSSEScuuuiiiiieiiieeiiiie i e e e e e et e e e e e e e e e et e et e eanaeeaen 2523
68.1. BUilt-in BRIN Operator ClassESciuuiiiiieiii e eeeie e e e e e e e e e e e e e e et eeaneeeaes 2531
68.2. Function and Support Numbers for Minmax Operator Classescccevvveiveevinieiiineennnnns 2540
68.3. Function and Support Numbers for Inclusion Operator ClassesSccovevvveiiiieviiieeinnennn, 2541
68.4. Procedure and Support Numbers for Bloom Operator ClasseScvvvvvevvieeiinieiiiieeiieeennn. 2542
68.5. Procedure and Support Numbers for minmax-multi Operator Classesccoeevvvvevivnennnn.. 2542
70.1. Contents Of PCDATA ...ttt e ettt e e e et e e e e e eeenns 2546
T0.2. PAOE LAYOULuieeiiii et e e et e e e e e e e 2552
70.3. PageHeaderData LayOULcccuuiiiiniiiiii e e e e e e e e e e e et e e e e e e eanas 2553
70.4. HeapTupleHeaderData LayOULoceuuieiiieiii e e e e e e e s e e e e e e aanas 2554
AL POSIOreSQL ErrOr COUESuuiiiieiiieeie e ettt e e e e e e e e e e e et e et e e et e e eeanns 2585
2300 Vo g 11 I = 0 1= PSP 2596
B.2. Day Of the WEeK NAIMESciiiiiiiiii e e e e e e e e 2596
B.3. Date/Time Field MOGIfIErS ...ooouiieiiiii e e e e eees 2597
C.L. SOL KEY WOKASiiiiieiiieii et e e e e e e e e e et e e et e e et e e et e e et e e eanaas 2603
[- Yo [o o= U Qi U 1 o N 2695
F.2. Cube External REPrESENTAiONScvvvuieiieeii i ee e e e e e e e e e e e e e e s e e e e e eaanns 2713
G R OF oL @ o= = o] £ 2714
Fod. CUDE FUNCLIONS ... it e e et e e e et e e e et e e e e aaa s 2715
F.5. Cube-Based Earthdistance FUNCLIONScoevuiiiiiiiiiecc e 2753
F.6. Point-Based EarthdiStance OPeEratorscouuueiiueiiiiieiie e e e e e e et e e e e eens 2754
O 1S3 o T @ o= = o) £ TN 2761
F.8. NSt Or @ FUNCHIONS ...ceviiei e e et e e e e s 2762
FO. intarray FUNCHONSccouiiii e e e e e e e e e e e e et e e eanaeees 2770
[(ORI oL = L = | VA @ o= = o) £ S 2771
L Y T 7 = T Y/ o= 2773
[2 =Y o I ¥ o o LSRR 2775
[T I B YT @ o= = () £ 2780
[O O T W T o PP 2781
F.15. pg_buffercache Columnscooiiiiiiii e 2797
F.16. Supported Algorithms fOr CryPt () coveveieie e e e 2800
F.17. lIteration Counts fOr CrYPE () covvieiiiiiiii e e e e e 2801
F.18. Hash AlQOrithm SPEEOScieici e e 2801
F.19. Summary of Functionality with and without OpenSSLcccoiviiiiiiii e 2808
F.20. pgr oW 0cks OUtPUL COIUMNSccuuiiii e e e e e eaas 2813
F.21. pg_stat_statements ColUMNScooiiiiiiiiii e e 2815
F.22. pg_stat_statements info ColUMNS.........ccocouiiiiiiiiiiii e, 2818
F.23. pgstatt upl @ OUtPUt COIUMNSuuuiiii e e e e e eees 2823
F.24. pgstatt upl e_appr ox Output ColUMNSuiiiiiiiiiieiie e e e e 2826
2 ST o Yo T O e 1 oo 2828
F.26. POt I OMOPEIELIOIS ...t e aaas 2830
F.27. seg Externa REPreSENtalioNSccuuiiiiiieiiiieiii e e e e e e e e e e e e e e e e e e eanaas 2845
F.28. Examples of Valid SEQ INPULo.ueiiiiiii e e e e eaaas 2845
F.29. SO0 GiST OPEIAIONS . eevuiieuieiitieeei et e et e ettt e e et e et e e et e e et e e et e eat e e st e e st e eetnaeeanaeaes 2846
GO S~ oot | I 1 Tox o) Y 2854

PostgreSQL 14.3 Documentation

F.31. t abl €f UNC FUNCHONSccuviiiiiii i e e e e e e eaan s 2859
F.32. CONNECT DY PalramMEterSciiiieii e e e e e e e e e e aneees 2866
F.33. FUNCtions fOr UUID GENEIAHONcccvvieeiiiiieee ettt e et e e 2875
F.34. Functions Returning UUID CONSLANESccvueiiiieiiiieiiieeeiee e e et se e e s e e e e e eanes 2875
F.35. XTI 2 FUNCHIONS ...ttt et e e et e e et e e e e e 2876
F.36. xpat h_t abl @ ParameterScccouiiiiii e aes 2877
H.1. Externally Maintained Client INterfacesc..ooeviiiiiii i 2890
H.2. Externally Maintained Procedural LanQUagESc.ueeiunieiiiiieiiieeiii e e e e e e e e 2891
K.1. POStgreSQL LimitaliOnSccuuueiiiieiiiieiiii e ee e e e e e e e e e e e s e e et e et e e st e e eaneeeens 2900

XXXii

List of Examples

8.1. USING the CharaCter TYPES ... ittt ettt e e et e e et e e e ert e e eena e eees 159
8.2. USINg the DOOI €8N TYPE ...t 172
8.3. USING the Bit SIHNG TYPES .. ettt ittt ettt et e e e e et e e eebe e eeees 180
9.1. XSLT Stylesheet for Converting SQL/XML Output to HTMLoooiiviiiiiiiiiiiciieccie, 331
10.1. Square Root Operator Type RESOIULIONccevueieiiiii e 427
10.2. String Concatenation Operator Type RESOIULIONcoivviiiiiiiiieicii e 427
10.3. Absolute-Vaue and Negation Operator Type ReSOIULIONcccvuuiieiiiiiiiiiiiiieece e 427
10.4. Array Inclusion Operator TYPe RESOIULIONuuiiiiiiiiiiiiie et 428
10.5. Custom Operator 0N @ DOMaIN TYPEuneiiiiiiee it e et eei e 429
10.6. Rounding Function Argument TYpe RESOIULIONoeiiiiiieiiiiii e 431
10.7. Variadic FUNCtION RESOIULIONciiiitceeii ettt 431
10.8. Substring FUNCtion TYPEe RESOIULIONuuiiiiiiiieieii et 432
10.9. char act er Storage TYPE CONVEISIONcccuuuiieiiiiieeeiii e ettt e et e et e e et eeenaaes 434
10.10. Type Resolution with Underspecified Typesin aUnioncocviiveiiiiniiiiiineeeiie, 435
10.11. Type Resolution in @ SIMPIe UNIONooiiuiiiiiii e 435
10.12. Type Resolution in @ Transposed UNIONccoeuueiiriieeeiiie et eeein e e e eeii e 435
10.13. Type Resolution in @ Nested UNIONuiiiiiiiieiiiiie e e e 435
11.1. Setting up a Partial Index to Exclude Common ValUESuuvieiiiiiieiiiiiieecei e 444
11.2. Setting up a Partial Index to Exclude Uninteresting Valuescoevviieiiiiiiieiiiiiieeceie 445
11.3. Setting up a Partial UNique INOEXccouuuiiiiieie et 446
11.4. Do Not Use Partial Indexes as a Substitute for Partitioningccooovevveiiineiiiiinneeiininnnn. 446
21.1. Example pg_hba. cONf ENtrESco.uuiiiiiiii e 696
21.2. An Example pg_i dent . conf File ... 699
34.1. libpg EXampPle Program L et 966
34.2. 1ibpg EXampPle Program 2uu o 969
34.3. 1ibpg EXample Program 3o 972
35.1. Large Objects with libpg Example Program ... 984
36.1. Example SQLDA PrOQraMciiiitieeeiii et e et e et e e et e e e et s e e eebi e e eeaaaeeeees 1040
36.2. ECPG Program Accessing Large ODJECESuuiiiiiiiiiiii e 1056
42.1. Manual Installation oOf PLIPENTccoouuiiii e 1309
43.1. Quoting Values in DYNamiC QUENTESiiiiiriieiiiii e et e et e et eeei e eeees 1327
43.2. Exceptions With UPDATE/I NSERTiiiiiiieiei et 1343
43.3. A PL/PgSQL Trigger FUNCLIONuiiiiiiieieei et 1357
43.4. A PL/pgSQL Trigger Function for AUditingcooeviiieiiiiiieii e 1358
43.5. A PL/pgSQL View Trigger Function for AUditinguiveieriniiiiiiin e 1359
43.6. A PL/pgSQL Trigger Function for Maintaining a Summary Tableccccoooveiiiiiiieiennnn, 1360
43.7. Auditing with Transition Tablescooeuuiiiiii e 1363
43.8. A PL/pgSQL Event Trigger FUNCLIONccouuuiiiiiiiieiiii et 1364
43.9. Porting a Simple Function from PL/SQL t0 PL/POSQLiviiiiiieeiiiieeeei e 1373
43.10. Porting a Function that Creates Another Function from PL/SQL to PL/pgSQL 1374
43.11. Porting a Procedure With String Manipulation and OUT Parameters from PL/SQL to PL/

01015 TSP RSOPPPPRPIN 1375
43.12. Porting a Procedure from PL/SQL t0 PL/PGSQLcvvviiieiiiiieeieiii e 1377
F.1. Create a Foreign Table for POStgreSQL CSV LOGSccvvvunieiiiiiieeiiiiie e 2756

XXXl

Preface

Thisbook isthe official documentation of PostgreSQL. It has been written by the PostgreSQL developers
and other volunteersin parallel to the development of the PostgreSQL software. It describes all the func-
tionality that the current version of PostgreSQL officially supports.

To make the large amount of information about PostgreSQL manageable, this book has been organized
in several parts. Each part is targeted at a different class of users, or at users in different stages of their
PostgreSQL experience:

e Part | isaninformal introduction for new users.

 Part I documents the SQL query language environment, including data types and functions, as well as
user-level performance tuning. Every PostgreSQL user should read this.

» Part 11l describes the installation and administration of the server. Everyone who runs a PostgreSQL
server, beit for private use or for others, should read this part.

 Part IV describes the programming interfaces for PostgreSQL client programs.

» Part V containsinformation for advanced users about the extensibility capabilities of the server. Topics
include user-defined data types and functions.

» Part VI contains reference information about SQL commands, client and server programs. This part
supports the other parts with structured information sorted by command or program.

» Part VII contains assorted information that might be of use to PostgreSQL developers.

1. What Is PostgreSQL?

PostgreSQL isan object-relationa database management system (ORDBMS) based on POSTGRES, Ver-
sion 4.2%, devel oped at the University of California at Berkeley Computer Science Department. POST -
GRES pioneered many concepts that only became available in some commercia database systems much
later.

PostgreSQL is an open-source descendant of this original Berkeley code. It supports a large part of the
SQL standard and offers many modern features:

e complex queries

* foreign keys

* triggers

 updatable views

e transactional integrity

» multiversion concurrency control

Also, PostgreSQL can be extended by the user in many ways, for example by adding new

o datatypes
« functions
* operators
 aggregate functions

1 https://dsf berkeley.edu/postgres. html

XXXIV

https://dsf.berkeley.edu/postgres.html
https://dsf.berkeley.edu/postgres.html
https://dsf.berkeley.edu/postgres.html

Preface

* index methods
 procedural languages

And because of the liberal license, PostgreSQL can be used, modified, and distributed by anyone free of
charge for any purpose, beit private, commercial, or academic.

2. A Brief History of PostgreSQL

The object-relational database management system now known as PostgreSQL is derived from the POST -
GRES package written at the University of Californiaat Berkeley. With over two decades of devel opment
behind it, PostgreSQL is now the most advanced open-source database available anywhere.

2.1. The Berkeley POSTGRES Project

The POSTGRES project, led by Professor Michael Stonebraker, was sponsored by the Defense Advanced
Research Projects Agency (DARPA), the Army Research Office (ARO), the National Science Foundation
(NSF), and ESL, Inc. The implementation of POSTGRES began in 1986. The initial concepts for the
system were presented in [ston86], and the definition of the initial data model appeared in [rowe87]. The
design of the rule system at that time was described in [ston87a]. The rationale and architecture of the
storage manager were detailed in [ston87b].

POST GRES has undergone several major releases since then. The first “demoware” system became oper-
ational in 1987 and was shown at the 1988 ACM-SIGMOD Conference. Version 1, described in [ston90a],
wasrel eased to afew external usersin June 1989. In responseto acritique of thefirst rule system ([ston89]),
the rule system was redesigned ([ston90b]), and Version 2 was released in June 1990 with the new rule
system. Version 3 appeared in 1991 and added support for multiple storage managers, an improved query
executor, and arewritten rule system. For the most part, subsequent releases until Postgres95 (see below)
focused on portability and reliability.

POSTGRES has been used to implement many different research and production applications. These in-
clude: afinancial dataanalysis system, ajet engine performance monitoring package, an asteroid tracking
database, a medical information database, and several geographic information systems. POSTGRES has
also been used as an educational tool at severa universities. Finaly, Illustra Information Technologies
(later merged into Informix?, which is now owned by 1BM3) picked up the code and commercialized it.
In late }992, POSTGRES became the primary data manager for the Sequoia 2000 scientific computing
project”.

The size of the external user community nearly doubled during 1993. It became increasingly obvious that
maintenance of the prototype code and support was taking up large amounts of time that should have been
devoted to database research. In an effort to reduce this support burden, the Berkeley POSTGRES project
officially ended with Version 4.2.

2.2. Postgres9s

In 1994, Andrew Yu and Jolly Chen added an SQL language interpreter to POSTGRES. Under a hew
name, Postgres95 was subsequently rel eased to the web to find its own way in the world as an open-source
descendant of the original POSTGRES Berkeley code.

Postgres95 code was completely ANSI C and trimmed in size by 25%. Many internal changes improved
performance and maintainability. Postgres95 release 1.0.x ran about 30-50% faster on the Wisconsin

2 https://www.ibm.com/anal ytics/informix
8 https://www.ibm.com/
4 http://meteora.ucsd.edu/s2k/s2k_home.html

XXXV

https://www.ibm.com/analytics/informix
https://www.ibm.com/
http://meteora.ucsd.edu/s2k/s2k_home.html
http://meteora.ucsd.edu/s2k/s2k_home.html
https://www.ibm.com/analytics/informix
https://www.ibm.com/
http://meteora.ucsd.edu/s2k/s2k_home.html

Preface

Benchmark compared to POSTGRES, Version 4.2. Apart from bug fixes, the following were the major
enhancements:

* The query language PostQUEL was replaced with SQL (implemented in the server). (Interface library
libpq was named after PostQUEL .) Subqueries were not supported until PostgreSQL (see below), but
they could be imitated in Postgres95 with user-defined SQL functions. Aggregate functions were re-
implemented. Support for the GROUP BY query clause was also added.

» A new program (psgl) was provided for interactive SQL queries, which used GNU Readline. Thislargely
superseded the old monitor program.

* A new front-end library, | i bpgt cl , supported Tcl-based clients. A sample shell, pgt cl sh, provided
new Tcl commands to interface Tcl programs with the Postgreso5 server.

» The large-object interface was overhauled. The inversion large objects were the only mechanism for
storing large objects. (The inversion file system was removed.)

» Theinstance-level rule system was removed. Rules were still available as rewrite rules.

» A short tutorial introducing regular SQL features as well as those of Postgres95 was distributed with
the source code

* GNU make (instead of BSD make) was used for the build. Also, Postgresd5 could be compiled with an
unpatched GCC (data alignment of doubles was fixed).

2.3. PostgreSQL

By 1996, it became clear that the name “Postgres95” would not stand the test of time. We chose a new
name, PostgreSQL, to reflect the relationship between the original POSTGRES and the more recent ver-
sions with SQL capability. At the same time, we set the version numbering to start at 6.0, putting the
numbers back into the sequence originally begun by the Berkeley POSTGRES project.

Many people continue to refer to PostgreSQL as “ Postgres” (now rarely in al capital letters) because of
tradition or because it is easier to pronounce. This usage is widely accepted as a nickname or alias.

The emphasis during development of Postgresd5 was on identifying and understanding existing problems
in the server code. With PostgreSQL , the emphasis has shifted to augmenting features and capabilities,
although work continuesin all areas.

Details about what has happened in PostgreSQL since then can be found in Appendix E.

3. Conventions

The following conventions are used in the synopsis of a command: brackets ([and]) indicate optional
parts. Braces ({ and }) and vertical lines (|) indicate that you must choose one alternative. Dots (. . .)
mean that the preceding element can be repeated. All other symbols, including parentheses, should be
taken literally.

Where it enhances the clarity, SQL commands are preceded by the prompt =>, and shell commands are
preceded by the prompt $. Normally, prompts are not shown, though.

Anadministrator isgenerally apersonwhoisin charge of installing and running the server. A user could be
anyone who is using, or wantsto use, any part of the PostgreSQL system. These terms should not be inter-
preted too narrowly; this book does not have fixed presumptions about system administration procedures.

XXXVi

Preface

4. Further Information

Besides the documentation, that is, this book, there are other resources about PostgreSQL :
Wiki

The PostgreSQL wiki® contains the project's FAQ® (Frequently Asked Questions) list, TODO' ligt,
and detailed information about many more topics.

Web Site

The PostgreSQL web site® carries details on the latest release and other information to make your
work or play with PostgreSQL more productive.

Mailing Lists

The mailing lists are a good place to have your questions answered, to share experiences with other
users, and to contact the developers. Consult the PostgreSQL web site for details.

Y ourself!

PostgreSQL isan open-source project. Assuch, it depends on the user community for ongoing support.
As you begin to use PostgreSQL, you will rely on others for help, either through the documentation
or through the mailing lists. Consider contributing your knowledge back. Read the mailing lists and
answer questions. If you learn something which isnot in the documentation, writeit up and contribute
it. If you add featuresto the code, contribute them.

5. Bug Reporting Guidelines

When you find a bug in PostgreSQL we want to hear about it. Your bug reports play an important part
in making PostgreSQL more reliable because even the utmost care cannot guarantee that every part of
PostgreSQL will work on every platform under every circumstance.

The following suggestions are intended to assist you in forming bug reports that can be handled in an
effective fashion. No one is required to follow them but doing so tends to be to everyone's advantage.

We cannot promise to fix every bug right away. If the bug is obvious, critical, or affects a lot of users,
chances are good that someone will look into it. It could also happen that we tell you to update to a newer
version to seeif the bug happensthere. Or we might decide that the bug cannot be fixed before some major
rewrite we might be planning is done. Or perhapsit is simply too hard and there are more important things
on the agenda. If you need help immediately, consider obtaining acommercial support contract.

5.1. Identifying Bugs

Beforeyou report abug, pleaseread and re-read the documentationto verify that you can really do whatever
itisyou aretrying. If it is not clear from the documentation whether you can do something or not, please
report that too; it is a bug in the documentation. If it turns out that a program does something different
from what the documentation says, that is a bug. That might include, but is not limited to, the following
circumstances:

S https://wiki.postgresql .org

6 https://wiki.postgresqgl.org/wiki/Frequently_Asked_Questions
! https://wiki.postgresqgl .org/wiki/Todo

8 https://www.postgresqgl.org

XXXVii

https://wiki.postgresql.org
https://wiki.postgresql.org/wiki/Frequently_Asked_Questions
https://wiki.postgresql.org/wiki/Todo
https://www.postgresql.org
https://wiki.postgresql.org
https://wiki.postgresql.org/wiki/Frequently_Asked_Questions
https://wiki.postgresql.org/wiki/Todo
https://www.postgresql.org

Preface

» A program terminates with a fatal signal or an operating system error message that would point to a
problem in the program. (A counterexample might be a“disk full” message, since you have to fix that
yourself.)

A program produces the wrong output for any given input.
» A program refuses to accept valid input (as defined in the documentation).

» A program accepts invalid input without a notice or error message. But keep in mind that your idea of
invalid input might be our idea of an extension or compatibility with traditional practice.

* PostgreSQL failsto compile, build, or install according to the instructions on supported platforms.
Here “program” refers to any executable, not only the backend process.

Being slow or resource-hogging is not necessarily a bug. Read the documentation or ask on one of the
mailing listsfor help in tuning your applications. Failing to comply to the SQL standard is not necessarily
abug either, unless compliance for the specific feature is explicitly claimed.

Before you continue, check on the TODO list and in the FAQ to seeif your bug is aready known. If you
cannot decode the information on the TODO list, report your problem. The least we can do is make the
TODO list clearer.

5.2. What to Report

The most important thing to remember about bug reporting is to state all the facts and only facts. Do not
speculate what you think went wrong, what “it seemed to do”, or which part of the program has a fault.
If you are not familiar with the implementation you would probably guess wrong and not help us a bit.
And even if you are, educated explanations are a great supplement to but no substitute for facts. If we are
going to fix the bug we still have to see it happen for ourselves first. Reporting the bare factsisrelatively
straightforward (you can probably copy and paste them from the screen) but al too often important details
are left out because someone thought it does not matter or the report would be understood anyway.

The following items should be contained in every bug report:

» The exact sequence of steps from program start-up necessary to reproduce the problem. This should
be self-contained; it is not enough to send in abare SELECT statement without the preceding CREATE
TABLE and | NSERT statements, if the output should depend on the data in the tables. We do not have
the time to reverse-engineer your database schema, and if we are supposed to make up our own data
we would probably miss the problem.

Thebest format for atest casefor SQL -related problemsisafilethat can be runthrough the psgl frontend
that shows the problem. (Be sure to not have anything in your ~/ . psql r ¢ start-up file.) An easy way
to create thisfileisto use pg_dump to dump out the table declarations and data needed to set the scene,
then add the problem query. Y ou are encouraged to minimize the size of your example, but thisis not
absolutely necessary. If the bug is reproducible, we will find it either way.

If your application uses some other client interface, such as PHP, then please try to isolate the offending
queries. We will probably not set up a web server to reproduce your problem. In any case remember
to provide the exact input files; do not guess that the problem happens for “large files’ or “midsize
databases’, etc. since thisinformation is too inexact to be of use.

» The output you got. Please do not say that it “didn't work” or “crashed”. If there is an error message,
show it, even if you do not understand it. If the program terminates with an operating system error,
say which. If nothing at all happens, say so. Even if the result of your test case is a program crash or
otherwise obvious it might not happen on our platform. The easiest thing is to copy the output from
the terminal, if possible.

XXXViii

Preface

Note

If you are reporting an error message, please obtain the most verbose form of the message. In
psgl, say \ set VERBOSI TY ver bose beforehand. If you are extracting the message from
the server log, set the run-time parameter log_error_verbosity to ver bose so that all details
are logged.

Note

In case of fatal errors, the error message reported by the client might not contain all the infor-
mation available. Please also look at the log output of the database server. If you do not keep
your server'slog output, this would be a good time to start doing so.

The output you expected is very important to state. If you just write “This command gives me that
output.” or “Thisisnot what | expected.”, we might run it ourselves, scan the output, and think it looks
OK andisexactly what we expected. We should not haveto spend thetimeto decode the exact semantics
behind your commands. Especially refrain from merely saying that “ Thisis not what SQL says/Oracle
does.” Digging out the correct behavior from SQL is not afun undertaking, nor do we all know how all
the other relational databases out there behave. (If your problem is a program crash, you can obviously
omit thisitem.)

Any command line options and other start-up options, including any relevant environment variables or
configuration files that you changed from the default. Again, please provide exact information. If you
are using a prepackaged distribution that starts the database server at boot time, you should try to find
out how that is done.

Anything you did at all differently from the installation instructions.

The PostgreSQL version. Y ou can run the command SELECT ver si on(); to find out the version
of the server you are connected to. Most executable programs also support a- - ver si on option; at
least post gres --versionandpsql --versi on shouldwork. If the function or the options
do not exist then your version is more than old enough to warrant an upgrade. If you run a prepackaged
version, such as RPMs, say so, including any subversion the package might have. If you are talking
about a Git snapshot, mention that, including the commit hash.

If your version is older than 14.3 we will aimost certainly tell you to upgrade. There are many bug fixes
and improvements in each new release, so it is quite possible that a bug you have encountered in an
older release of PostgreSQL has already been fixed. We can only provide limited support for sitesusing
older releases of PostgreSQL ; if you require more than we can provide, consider acquiring acommercial
support contract.

Platform information. This includes the kernel name and version, C library, processor, memory infor-
mation, and so on. In most cases it is sufficient to report the vendor and version, but do not assume
everyone knows what exactly “Debian” contains or that everyone runs on x86_64. If you have instal-
lation problems then information about the toolchain on your machine (compiler, make, and so on) is
also necessary.

Do not be afraid if your bug report becomes rather lengthy. That is a fact of life. It is better to report
everything the first time than us having to squeeze the facts out of you. On the other hand, if your input

XXXIX

Preface

files are huge, it is fair to ask first whether somebody is interested in looking into it. Here is an article’
that outlines some more tips on reporting bugs.

Do not spend all your time to figure out which changes in the input make the problem go away. Thiswill
probably not help solving it. If it turns out that the bug cannot be fixed right away, you will still havetime
to find and share your work-around. Also, once again, do not waste your time guessing why the bug exists.
We will find that out soon enough.

When writing a bug report, please avoid confusing terminology. The software package in total is called
“PostgreSQL", sometimes “ Postgres” for short. If you are specifically talking about the backend process,
mention that, do not just say “PostgreSQL crashes’. A crash of asingle backend processis quite different
from crash of the parent “postgres’ process; please don't say “the server crashed” when you mean asingle
backend process went down, nor vice versa. Also, client programs such as the interactive frontend “ psql”
are completely separate from the backend. Please try to be specific about whether the problem is on the
client or server side.

5.3. Where to Report Bugs

In general, send bug reports to the bug report mailing list a <pgsql - bugs@i st s. post -
gresql . or g>. You are requested to use a descriptive subject for your email message, perhaps parts of
the error message.

Another method is to fill in the bug report web-form available at the project's web sitet®. Entering a bug
report thisway causesit to be mailedtothe<pgsql - bugs@i st s. post gresql . or g> mailinglist.

If your bug report has security implications and you'd prefer that it not become immediately visible in
public archives, don't send it to pgsql - bugs. Security issues can be reported privately to <securi -
t y@ost gresql . org>.

Do not send bug reports to any of the user mailing lists, such as <pgsql -sqgl @i sts. post -
gresql . org>or<pgsql -general @i sts. postgresql . or g>. These mailing lists are for an-
swering user questions, and their subscribers normally do not wish to receive bug reports. More impor-
tantly, they are unlikely to fix them.

Also, please do not send reports to the developers mailing list <pgsql - hackers@i st s. post -
gresql . org>. Thislist is for discussing the development of PostgreSQL, and it would be nice if we
could keep the bug reports separate. We might choose to take up a discussion about your bug report on
pgsqgl - hacker s, if the problem needs more review.

If you have a problem with the documentation, the best place to report it is the documentation mailing list
<pgsql -docs@i st s. post gresqgl . or g>. Please be specific about what part of the documentation
you are unhappy with.

If your bug is a portability problem on a non-supported platform, send mail to <pgsgl - hacker -
s@i sts. postgresqgl . org>, sowe (and you) can work on porting PostgreSQL to your platform.

Note

Due to the unfortunate amount of spam going around, all of the above lists will be moderated
unless you are subscribed. That means there will be some delay before the email is delivered. If
you wish to subscribe to the lists, please visit https://lists.postgresql.org/ for instructions.

° https://www.chiark.greenend.org.uk/~sgtatham/bugs.html
10 https:/iwww. postgresal.org/

xl

https://www.chiark.greenend.org.uk/~sgtatham/bugs.html
https://www.postgresql.org/
https://lists.postgresql.org/
https://www.chiark.greenend.org.uk/~sgtatham/bugs.html
https://www.postgresql.org/

Part I. Tutorial

Welcome to the PostgreSQL Tutorial. The following few chapters are intended to give a simple introduction to Post-
greSQL, relational database concepts, and the SQL language to those who are new to any one of these aspects. We
only assume some general knowledge about how to use computers. No particular Unix or programming experienceis
required. Thispartismainly intended to give you some hands-on experience with important aspects of the PostgreSQL
system. It makes no attempt to be a complete or thorough treatment of the topicsit covers.

After you have worked through this tutorial you might want to move on to reading Part |1 to gain a more formal
knowledge of the SQL language, or Part IV for information about devel oping applications for PostgreSQL . Those who
set up and manage their own server should also read Part 111.

Table of Contents

L. GEIING SEAMEAeeeeeii e ettt ettt eaaas 3
0 T 1 = = = 1o o 3
1.2. Architectural FUNDamENtalScouiiniii e 3
1.3. Creating @ Dalahaseccouuuieiiii e 4
1.4, ACCESSING 8 DAIANASEvuiieeiiei e 5
2. The SQL LBNGUBGEetun ettt ettt e ettt et e e e e et e e e eab e e eenenas 8
b2 I 1 11 oo U o 1) o [N 8
A O 04 /= o = PP 8
2.3. Creating @ NEW Table ..oo.unii e 8
2.4. Populating @ Table With ROWScoouiiiiiiii et 9
2.5, QUENYING A TADIE ...eeee e 10
2.6. J0INS BEIWEEN TAIESiviitiiiii it 12
2.7. AQOregate FUNCLIONSccutiieieiti ettt ettt et ettt e e et e et e e e et e e eenans 14
2.8 UPUELES ...ttt 16
R B L= = (0] 16
3. AGVANCED FEAIUIMNES .. ouitieeit et e e e e e e e e e et e e e e e ens 18
G 3 O 1 oo U o 11 o [18
I VA= VP 18
3.3 FOrEIgN KBYS ..ttt ettt aee 18
I I =01 o o1 19
3.5, WINAOW FUNCLIONScviiitii ettt e e e e e e e aees 21
IS T 101015 41 7= ot PP 24
G I o g Tox 11 Lo o T 26

Chapter 1. Getting Started

1.1. Installation

Before you can use PostgreSQL you need to install it, of course. It is possible that PostgreSQL is already
installed at your site, either because it was included in your operating system distribution or because the
system administrator already installed it. If that isthe case, you should obtain information from the oper-
ating system documentation or your system administrator about how to access PostgreSQL .

If you are not sure whether PostgreSQL is already available or whether you can useit for your experimen-
tation then you can install it yourself. Doing so is not hard and it can be a good exercise. PostgreSQL can
beinstalled by any unprivileged user; no superuser (root) accessis required.

If you are installing PostgreSQL yourself, then refer to Chapter 17 for instructions on installation, and
return to this guide when the installation is complete. Be sure to follow closely the section about setting
up the appropriate environment variables.

If your site administrator has not set thingsup in the default way, you might have some morework to do. For
example, if the database server machineisaremote machine, you will need to set the PGHOST environment
variable to the name of the database server machine. The environment variable PGPORT might also have
to be set. The bottom lineisthis: if you try to start an application program and it complains that it cannot
connect to the database, you should consult your site administrator or, if that is you, the documentation
to make sure that your environment is properly set up. If you did not understand the preceding paragraph
then read the next section.

1.2. Architectural Fundamentals

Before we proceed, you should understand the basic PostgreSQL system architecture. Understanding how
the parts of PostgreSQL interact will make this chapter somewhat clearer.

In database jargon, PostgreSQL usesaclient/server model. A PostgreSQL session consistsof thefollowing
cooperating processes (programs):

» A server process, which manages the database files, accepts connections to the database from client
applications, and performs database actions on behalf of the clients. The database server program is
caled post gres.

» The user's client (frontend) application that wants to perform database operations. Client applications
can bevery diversein nature: aclient could be atext-oriented tool, agraphical application, aweb server
that accesses the database to display web pages, or a specialized database maintenance tool. Some client
applications are supplied with the PostgreSQL distribution; most are developed by users.

Asistypical of client/server applications, the client and the server can be on different hosts. In that case
they communicate over a TCP/IP network connection. Y ou should keep thisin mind, because the files that
can be accessed on aclient machine might not be accessible (or might only be accessible using a different
file name) on the database server machine.

The PostgreSQL server can handle multiple concurrent connections from clients. To achieve thisit starts
(“forks’) a new process for each connection. From that point on, the client and the new server process
communicate without intervention by theoriginal post gr es process. Thus, the supervisor server process
isalwaysrunning, waiting for client connections, whereas client and associated server processes come and
go. (All of thisis of courseinvisible to the user. We only mention it here for completeness.)

Getting Started

1.3. Creating a Database

The first test to see whether you can access the database server is to try to create a database. A running
PostgreSQL server can manage many databases. Typically, a separate database is used for each project
or for each user.

Possibly, your site administrator has already created a database for your use. In that case you can omit this
step and skip ahead to the next section.

To create a new database, in this example named mydb, you use the following command:

$ createdb nydb

If this produces no response then this step was successful and you can skip over the remainder of this
section.

If you see a message similar to:

creat edb: command not found

then PostgreSQL was not installed properly. Either it was not installed at al or your shell's search path
was not set to includeit. Try calling the command with an absol ute path instead:

$ /usr/local/pgsql/bin/createdb nmydb

The path at your site might be different. Contact your site administrator or check the installation instruc-
tions to correct the situation.

Another response could be this:

createdb: error: connection to server on socket "/tnp/.s.PGSQ.5432"
failed: No such file or directory

Is the server running |locally and accepting connections on
t hat socket ?

This means that the server was not started, or it is not listening where cr eat edb expects to contact it.
Adgain, check the installation instructions or consult the administrator.

Another response could be this:

createdb: error: connection to server on socket "/tnp/.s.PGSQ. 5432"
failed: FATAL: role "joe" does not exist

where your own login name is mentioned. This will happen if the administrator has not created a Post-
greSQL user account for you. (PostgreSQL user accounts are di stinct from operating system user accounts.)
If you are the administrator, see Chapter 22 for help creating accounts. Y ou will need to become the op-
erating system user under which PostgreSQL was installed (usually post gr es) to create the first user
account. It could also be that you were assigned a PostgreSQL user name that is different from your op-
erating system user name; in that case you need to use the - U switch or set the PQUSER environment
variable to specify your PostgreSQL user name.

Getting Started

If you have a user account but it does not have the privileges required to create a database, you will see
the following:

createdb: error: database creation failed: ERROR pernission denied
to create database

Not every user has authorization to create new databases. |f PostgreSQL refuses to create databases for
you then the site administrator needs to grant you permission to create databases. Consult your site admin-
istrator if this occurs. If you installed PostgreSQL yourself then you should log in for the purposes of this
tutorial under the user account that you started the server as. !

Y ou can also create databases with other names. PostgreSQL allows you to create any number of databases
at agiven site. Database names must have an alphabetic first character and are limited to 63 bytesin length.
A convenient choice is to create a database with the same name as your current user name. Many tools
assume that database name as the default, so it can save you some typing. To create that database, simply

type:

$ createdb

If you do not want to use your database anymore you can remove it. For example, if you are the owner
(creator) of the database ny db, you can destroy it using the following command:

$ dropdb nydb

(For this command, the database name does not default to the user account name. You aways need to
specify it.) Thisaction physically removes all files associated with the database and cannot be undone, so

this should only be done with a great deal of forethought.

More about cr eat edb and dr opdb can be found in createdb and dropdb respectively.

1.4. Accessing a Database

Once you have created a database, you can accessit by:

* Running the PostgreSQL interactive terminal program, called psgl, which alows you to interactively
enter, edit, and execute SQL commands.

» Using an existing graphical frontend tool like pgAdmin or an office suite with ODBC or JDBC support
to create and manipul ate a database. These possibilities are not covered in this tutorial.

» Writing a custom application, using one of the several available language bindings. These possibilities
are discussed further in Part V.

Y ou probably want to start up psql to try the examplesin thistutorial. It can be activated for the nydb
database by typing the command:

$ psql nydb

Lasan explanation for why thisworks: PostgreSQL user names are separate from operating system user accounts. When you connect to a database,
you can choose what PostgreSQL user hame to connect as; if you don't, it will default to the same name as your current operating system account.
Asit happens, there will always be aPostgreSQL user account that has the same name as the operating system user that started the server, and it also
happens that that user always has permission to create databases. Instead of logging in as that user you can also specify the - U option everywhere
to select a PostgreSQL user name to connect as.

Getting Started

If you do not supply the database name then it will default to your user account name. Y ou already dis-
covered this scheme in the previous section using cr eat edb.

Inpsql , you will be greeted with the following message:

psql (14.3)
Type "hel p* for help.

mydb=>

Thelast line could also be:

nydb=#

That would mean you are a database superuser, which is most likely the case if you installed the Post-
greSQL instance yourself. Being a superuser means that you are not subject to access controls. For the
purposes of thistutorial that is not important.

If you encounter problems starting psql then go back to the previous section. The diagnostics of cr e-
at edb and psql aresimilar, and if the former worked the latter should work as well.

Thelast line printed out by psql isthe prompt, and it indicatesthat psql islistening to you and that you
can type SQL queriesinto awork space maintained by psql . Try out these commands:

nydb=> SELECT version();
ver si on

Post greSQ. 14.3 on x86_64-pc-|inux-gnu, conpiled by gcc (Debian
4.9.2-10) 4.9.2, 64-bit
(1 row

nmydb=> SELECT current _date;
dat e

2016- 01- 07
(1 row

nydb=> SELECT 2 + 2;
?col um?

(1 row

The psqgl program has a number of internal commands that are not SQL commands. They begin with
the backslash character, “\ ”. For example, you can get help on the syntax of various PostgreSQL SQL
commands by typing:

mydb=> \ h

To get out of psql , type:

Getting Started

nydb=> \q

and psql will quit and return you to your command shell. (For more internal commands, type\ ? at the
psql prompt.) Thefull capabilitiesof psqgl are documented in psgl. In thistutorial wewill not use these
features explicitly, but you can use them yourself when it is helpful.

Chapter 2. The SQL Language

2.1. Introduction

This chapter provides an overview of how to use SQL to perform simple operations. This tutorial is only
intended to give you an introduction and isin no way a complete tutorial on SQL. Numerous books have
been written on SQL, including [melt93] and [date97]. Y ou should be aware that some PostgreSQL lan-
guage features are extensions to the standard.

In the examplesthat follow, we assume that you have created a database named ny db, as described in the
previous chapter, and have been able to start psql.

Examples in this manual can also be found in the PostgreSQL source distribution in the directory sr c/
tutorial /. (Binary distributions of PostgreSQL might not provide thosefiles.) To use thosefiles, first
change to that directory and run make:

$ cd .../src/tutorial
$ nake

This creates the scripts and compiles the C files containing user-defined functions and types. Then, to start
the tutorial, do the following:

$ psqgl -s nydb

nydb=> \i basi cs. sql

The\i command reads in commands from the specified file. psql 's- s option puts you in single step
mode which pauses before sending each statement to the server. The commands used in this section are
inthefilebasi cs. sql .

2.2. Concepts

PostgreSQL is a relational database management system (RDBMS). That means it is a system for
managing data stored in relations. Relation is essentially a mathematical term for table. The notion of
storing data in tables is so commonplace today that it might seem inherently obvious, but there are a
number of other ways of organizing databases. Files and directories on Unix-like operating systems form
an example of ahierarchical database. A more modern development is the object-oriented database.

Each table is a named collection of rows. Each row of a given table has the same set of named columns,
and each column is of aspecific datatype. Whereas columns have afixed order in each row, it isimportant
to remember that SQL does not guarantee the order of the rows within the tablein any way (although they
can be explicitly sorted for display).

Tables are grouped into databases, and a collection of databases managed by a single PostgreSQL server
instance constitutes a database cluster.

2.3. Creating a New Table

Y ou can create a new table by specifying the table name, along with all column names and their types:

The SQL Language

CREATE TABLE weat her (

city var char (80),

temp_lo int, -- low tenperature
t enmp_hi int, -- high tenperature
prcp real, -- precipitation
dat e dat e

)

Y ou can enter thisintopsql withthelinebreaks. psql will recognizethat the command isnot terminated
until the semicolon.

White space (i.e., spaces, tabs, and newlines) can be used freely in SQL commands. That means you can
type the command aligned differently than above, or even all on one line. Two dashes (“- -) introduce
comments. Whatever follows them isignored up to the end of the line. SQL is case insensitive about key
words and identifiers, except when identifiers are double-quoted to preserve the case (not done above).

var char (80) specifiesadatatypethat can store arbitrary character strings up to 80 charactersin length.
i nt isthe normal integer type. r eal isatype for storing single precision floating-point numbers. dat e
should be self-explanatory. (Y es, the column of typedat e isalso named dat e. This might be convenient
or confusing — you choose.)

PostgreSQL supports the standard SQL types i nt, smal lint, real, doubl e precision,
char (N),varchar (N),dat e,ti me,ti mestanp,andi nt er val , aswell asother types of general
utility and arich set of geometric types. PostgreSQL can be customized with an arbitrary number of user-
defined data types. Consequently, type names are not key words in the syntax, except where required to
support special cases in the SQL standard.

The second example will store cities and their associated geographical location:

CREATE TABLE cities (
nane var char (80),
| ocation poi nt

)
Thepoi nt typeisan example of a PostgreSQL -specific data type.
Finally, it should be mentioned that if you don't need a table any longer or want to recreate it differently

you can remove it using the following command:

DROP TABLE t abl enane;

2.4. Populating a Table With Rows

The | NSERT statement is used to popul ate a table with rows:

I NSERT | NTO weat her VALUES (' San Franci sco', 46, 50, 0.25,
'1994-11-27");

Note that all data types use rather obvious input formats. Constants that are not simple numeric values
usually must be surrounded by singlequotes(*), asintheexample. Thedat e typeisactually quiteflexible
in what it accepts, but for this tutorial we will stick to the unambiguous format shown here.

The SQL Language

Thepoi nt type requires a coordinate pair as input, as shown here:

I NSERT I NTO cities VALUES (' San Francisco', '(-194.0, 53.0)');

The syntax used so far requires you to remember the order of the columns. An aternative syntax allows
you to list the columns explicitly:

| NSERT | NTO weat her (city, tenp_lo, tenp_hi, prcp, date)
VALUES (' San Francisco', 43, 57, 0.0, '1994-11-29");

Y ou canlist the columnsin adifferent order if you wish or even omit some columns, e.g., if the precipitation
is unknown:

| NSERT | NTO weat her (date, city, tenp_hi, tenp_lo)
VALUES (' 1994-11-29', 'Hayward', 54, 37);

Many devel opers consider explicitly listing the columns better style than relying on the order implicitly.
Please enter al the commands shown above so you have some datato work with in the following sections.

Y ou could aso have used COPY to load large amounts of data from flat-text files. Thisis usually faster
because the COPY command is optimized for this application while allowing lessflexibility than | NSERT.
An example would be:

COPY weat her FROM '/ hone/ user/weat her.txt';
where the file name for the source file must be available on the machine running the backend process, not

the client, since the backend process reads the file directly. Y ou can read more about the COPY command
in COPY.

2.5. Querying a Table

To retrieve data from a table, the table is queried. An SQL SELECT statement is used to do this. The
statement is divided into a select list (the part that lists the columns to be returned), a table list (the part
that lists the tables from which to retrieve the data), and an optional qualification (the part that specifies
any restrictions). For example, to retrieve all the rows of tableweat her , type:

SELECT * FROM weat her;

Here* isashorthand for “all columns’. * So the same result would be had with:

SELECT city, tenp_lo, temp_hi, prcp, date FROM weat her;

The output should be:

city | temp_lo | tenp_hi | prcp | date

1 While SELECT * is useful for off-the-cuff queries, it is widely considered bad style in production code, since adding a column to the table
would change the results.

10

The SQL Language

--------------- T LT T gy
San Franci sco | 46 | 50 | 0.25 | 1994-11-27
San Franci sco | 43 | 57 | 0 | 1994-11-29
Haywar d | 37 | 54 | | 1994-11-29

(3 rows)

Y ou can write expressions, not just simple column references, in the select list. For example, you can do:

SELECT city, (tenp_hi+tenp |lo)/2 AS tenp_avg, date FROM weat her;

This should give:

city | temp_avg | dat e
_______________ o,
San Franci sco | 48 | 1994-11-27
San Franci sco | 50 | 1994-11-29
Haywar d | 45 | 1994-11-29
(3 rows)

Notice how the AS clause is used to relabel the output column. (The AS clauseis optional.)

A query can be “qualified” by adding a WHERE clause that specifies which rows are wanted. The WHERE
clause contains a Boolean (truth value) expression, and only rows for which the Boolean expression is
true are returned. The usual Boolean operators (AND, OR, and NOT) are alowed in the qualification. For
example, the following retrieves the weather of San Francisco on rainy days:

SELECT * FROM weat her
WHERE city = 'San Franci sco’ AND prcp > 0.0;

Result:

city | temp_lo | tenp_hi | prcp | dat e
--------------- T T L e
San Francisco | 46 | 50 | 0.25 | 1994-11-27
(1 row)

Y ou can request that the results of a query be returned in sorted order:

SELECT * FROM weat her
ORDER BY city;

city | temp_lo | tenp_hi | prcp | dat e
--------------- T T L g
Haywar d | 37 | 54 | | 1994-11-29
San Franci sco | 43 | 57 | 0 | 1994-11-29
San Franci sco | 46 | 50 | 0.25 | 1994-11-27

In this example, the sort order isn't fully specified, and so you might get the San Francisco rows in either
order. But you'd always get the results shown above if you do:

11

The SQL Language

SELECT * FROM weat her
ORDER BY city, tenp_lo;

Y ou can request that duplicate rows be removed from the result of a query:

SELECT DI STINCT city
FROM weat her ;

Haywar d
San Franci sco
(2 rows)

Here again, the result row ordering might vary. Y ou can ensure consistent results by using DI STI NCT
and ORDER BY together:

SELECT DI STINCT city
FROM weat her
ORDER BY city;

2.6. Joins Between Tables

Thusfar, our queries have only accessed one table at atime. Queries can access multiple tables at once, or
access the same table in such away that multiple rows of the table are being processed at the same time.
Queries that access multiple tables (or multiple instances of the same table) at one time are called join
gueries. They combine rows from one table with rows from a second table, with an expression specifying
which rows are to be paired. For example, to return all the weather records together with the location of
the associated city, the database needs to compare the ci t y column of each row of the weat her table
with the nane column of al rowsintheci ti es table, and select the pairs of rows where these values
match.2 This would be accomplished by the following query:

SELECT * FROM weather JON cities ON city = nang;

city | temp_lo | tenp_hi | prcp | dat e | nane
| location

San Franci sco | 46 | 50 | 0.25 | 1994-11-27 | San Francisco
| (-194,53)

San Franci sco | 43 | 57 | 0 | 1994-11-29 | San Francisco
| (-194,53)

(2 rows)

Observe two things about the result set:

2 In some database systems, including older versions of PostgreSQL, the implementation of DI STI NCT automatically orders the rows and so
ORDER BY is unnecessary. But thisis not required by the SQL standard, and current PostgreSQL does not guarantee that DI STI NCT causes the
rows to be ordered.

3 Thisis only a conceptual model. The join is usualy performed in a more efficient manner than actually comparing each possible pair of rows,
but thisisinvisible to the user.

12

The SQL Language

e Thereisnoresult row for the city of Hayward. Thisisbecausethereisno matchingentry intheci ti es
table for Hayward, so the join ignores the unmatched rowsin theweat her table. We will see shortly
how this can be fixed.

» There are two columns containing the city name. Thisis correct because the lists of columns from the
weat her and ci ti es tables are concatenated. In practice this is undesirable, though, so you will
probably want to list the output columns explicitly rather than using * :

SELECT city, tenp_lo, tenp_hi, prcp, date, location
FROM weat her JO N cities ON city = nane;

Since the columns all had different names, the parser automatically found which table they belong to. If
there were duplicate column names in the two tables you'd need to qualify the column names to show
which one you meant, asin:

SELECT weather.city, weather.tenp_ | o, weather.tenp_hi,
weat her. prcp, weather.date, cities.location
FROM weat her JO N cities ON weather.city = cities.nang;

It iswidely considered good style to qualify all column namesin ajoin query, so that the query won't fail
if aduplicate column nameis later added to one of the tables.

Join queries of the kind seen thus far can also be written in thisform:

SELECT *
FROM weat her, cities
WHERE city = nane;

This syntax pre-datesthe JO NON syntax, which was introduced in SQL-92. The tables are simply listed
in the FROMclause, and the comparison expression is added to the WHERE clause. The results from this
older implicit syntax and the newer explicit JO NON syntax are identical. But for areader of the query,
the explicit syntax makesits meaning easier to understand: Thejoin condition isintroduced by its own key
word whereas previously the condition was mixed into the WHERE clause together with other conditions.

Now we will figure out how we can get the Hayward records back in. What we want the query to do is
to scan theweat her table and for each row to find the matching ci t i es row(s). If no matching row is
found we want some “empty values’ to be substituted for theci t i es table'scolumns. Thiskind of query
iscalled an outer join. (The joins we have seen so far are inner joins.) The command looks like this:

SELECT *
FROM weat her LEFT QUTER JO N cities ON weather.city = cities. naneg;

city | temp_lo | tenp_hi | prcp | dat e | nane

| location
--------------- T LT T gy
o e e e e oo - - T ——

Haywar d | 37 | 54 | | 1994-11-29 |

|

San Franci sco | 46 | 50 | 0.25 | 1994-11-27 | San Francisco
| (-194,53)

13

The SQL Language

San Franci sco | 43 | 57 | 0 | 1994-11-29 | San Francisco
| (-194,53)
(3 rows)

This query is called aleft outer join because the table mentioned on the left of the join operator will have
each of itsrowsin the output at least once, whereas the table on the right will only have those rows output
that match some row of the left table. When outputting a |eft-table row for which there is no right-table
match, empty (null) values are substituted for the right-table columns.

Exercisee Thereare aso right outer joins and full outer joins. Try to find out what those do.

We can also join atable against itself. Thisis called a self join. As an example, suppose we wish to find
all the weather records that are in the temperature range of other weather records. So we need to compare
thetenp_l o andt enp_hi columns of each weat her row tothet enp_| o andt enp_hi columns
of al other weat her rows. We can do this with the following query:

SELECT wl.city, wl.tenp_lo AS |ow, wl.tenp_hi AS high,
w2.city, w2.tenp_lo AS |low, w2.tenp_hi AS high
FROM weat her wl JO N weat her w2
ONwl.tenmp_lo < w2.tenp_lo AND wl.tenp_hi > w2.tenp_hi;

city | low | high | city | low | high
--------------- T T LI pupup
San Francisco | 43 | 57 | San Francisco | 46 | 50
Haywar d | 37 | 54 | San Francisco | 46 | 50
(2 rows)

Here we have relabeled the weather table aswl and w2 to be able to distinguish the left and right side of
thejoin. You can also use these kinds of aliasesin other queries to save some typing, e.g.:

SELECT *
FROM weat her w JON cities ¢ ON w.city = c.naneg;

Y ou will encounter this style of abbreviating quite frequently.

2.7. Aggregate Functions

Like most other relational database products, PostgreSQL supports aggregate functions. An aggregate
function computes a single result from multiple input rows. For example, there are aggregates to compute
thecount , sum avg (average), max (maximum) and mi n (minimum) over a set of rows.

As an example, we can find the highest low-temperature reading anywhere with:

SELECT nmax(tenp_l 0) FROM weat her;

14

The SQL Language

If we wanted to know what city (or cities) that reading occurred in, we might try:

SELECT city FROM weat her WHERE tenp_|l o = max(tenp_l 0); VRONG

but this will not work since the aggregate max cannot be used in the WHERE clause. (This restriction
exists because the WHERE clause determines which rows will be included in the aggregate calculation; so
obvioudly it has to be evaluated before aggregate functions are computed.) However, asis often the case
the query can be restated to accomplish the desired result, here by using a subquery:

SELECT city FROM weat her
VWHERE tenp_l o = (SELECT nax(tenp_l o) FROM weat her);

San Franci sco

(1 row

ThisisOK becausethe subquery isan independent computation that computesits own aggregate separately
from what is happening in the outer query.

Aggregates are also very useful in combination with GROUP BY clauses. For example, we can get the
maximum low temperature observed in each city with;

SELECT city, max(tenp_| 0)
FROM weat her
GROUP BY city;

city | max
_______________ [S,
Haywar d | 37
San Francisco | 46
(2 rows)

which gives us one output row per city. Each aggregate result is computed over the table rows matching
that city. We can filter these grouped rows using HAVI NG

SELECT city, max(tenp_l o)
FROM weat her
GROUP BY city
HAVI NG max(tenp_l o) < 40;

city | max
_________ B
Hayward | 37
(1 row

which gives us the same results for only the cities that have all t enp_| o values below 40. Findly, if we
only care about cities whose names begin with “S”, we might do:

15

The SQL Language

SELECT city,
FROM weat her

WHERE city LIKE ' S% --

GROUP BY city

max(tenp_| o)

HAVI NG max(tenp_l o) < 40;

It isimportant to understand the interaction between aggregates and SQL's WHERE and HAVI NG clauses.
Thefundamental difference between WHERE and HAVI NGisthis: WHERE selectsinput rows before groups
and aggregates are computed (thus, it controls which rows go into the aggregate computation), whereas
HAVI NG selects group rows after groups and aggregates are computed. Thus, the WHERE clause must not
contain aggregate functions; it makes no sense to try to use an aggregate to determine which rows will
be inputs to the aggregates. On the other hand, the HAVI NG clause always contains aggregate functions.
(Strictly speaking, you are allowed to write a HAVI NG clause that doesn't use aggregates, but it's seldom

The LI KE operator does pattern matching and is explained in Section 9.7.

useful. The same condition could be used more efficiently at the WHERE stage.)

In the previous example, we can apply the city name restriction in WHERE, since it needs no aggregate.
This is more efficient than adding the restriction to HAVI NG, because we avoid doing the grouping and

aggregate calculations for al rows that fail the WHERE check.

2.8. Updates

Y ou can update existing rows using the UPDATE command. Suppose you discover the temperature read-
ings are all off by 2 degrees after November 28. Y ou can correct the data as follows:

UPDATE weat her

SET tenmp_hi = tenp_hi - 2, tenp_lo =tenp_lo - 2

WHERE date > '1994-11-28';
Look at the new state of the data:
SELECT * FROM weat her;

city | tenmp_lo | tenp_hi | prcp | dat e
--------------- T T L e
San Franci sco | 46 | 50 | 0.25 | 1994-11-27
San Franci sco | 41 | 55 | 0 | 1994-11-29
Haywar d | 35 | 52 | | 1994-11-29
(3 rows)

2.9. Deletions

Rows can be removed from atable using the DELETE command. Suppose you are ho longer interested in
the weather of Hayward. Then you can do the following to delete those rows from the table:

DELETE FROM weat her WHERE city

' Haywar d' ;

All weather records belonging to Hayward are removed.

16

The SQL Language

SELECT * FROM weat her;

city | temp_lo | tenp_hi | prcp | dat e
--------------- T T L e
San Franci sco | 46 | 50 | 0.25 | 1994-11-27
San Franci sco | 41 | 55 | 0 | 1994-11-29
(2 rows)

One should be wary of statements of the form

DELETE FROM t abl enane;

Without aqualification, DELETE will remove all rows from the given table, leaving it empty. The system
will not request confirmation before doing this!

17

Chapter 3. Advanced Features

3.1. Introduction

In the previous chapter we have covered the basics of using SQL to store and access your data in Post-
greSQL . Wewill now discuss some more advanced features of SQL that simplify management and prevent
loss or corruption of your data. Finally, we will look at some PostgreSQL extensions.

This chapter will on occasion refer to examplesfound in Chapter 2 to change or improve them, so it will be
useful to have read that chapter. Some examples from this chapter can also be found inadvanced. sql
inthetutorial directory. Thisfile also contains some sample datato load, which isnot repeated here. (Refer
to Section 2.1 for how to use thefile.)

3.2. Views

Refer back to the queriesin Section 2.6. Suppose the combined listing of weather records and city location
is of particular interest to your application, but you do not want to type the query each time you need
it. You can create a view over the query, which gives a name to the query that you can refer to like an
ordinary table:

CREATE VI EW nyvi ew AS
SELECT nane, tenp_lo, tenp_hi, prcp, date, |ocation
FROM weat her, cities
WHERE city = nane;

SELECT * FROM nyvi ew,

Making liberal use of views is a key aspect of good SQL database design. Views allow you to encapsu-
late the details of the structure of your tables, which might change as your application evolves, behind
consistent interfaces.

Views can be used in almost any place a real table can be used. Building views upon other views is not
uncommon.

3.3. Foreign Keys

Recall the weat her and ci ti es tables from Chapter 2. Consider the following problem: Y ou want
to make sure that no one can insert rows in the weat her table that do not have a matching entry in
theci t i es table. Thisis called maintaining the referential integrity of your data. In simplistic database
systems thiswould be implemented (if at al) by first looking at theci t i es tableto check if amatching
record exists, and then inserting or rejecting the new weat her records. This approach has a number of
problems and is very inconvenient, so PostgreSQL can do this for you.

The new declaration of the tables would look like this:

CREATE TABLE cities (
nane varchar (80) primary key,
| ocation point

)

18

Advanced Features

CREATE TABLE weat her (

city varchar (80) references cities(nane),
temp_lo int,

t enmp_hi int,

prcp real,

dat e dat e

)

Now try inserting an invalid record:
| NSERT | NTO weat her VALUES (' Berkeley', 45, 53, 0.0, '1994-11-28');

ERROR: insert or update on table "weather" violates foreign key
constraint "weather_city_fkey"
DETAIL: Key (city)=(Berkeley) is not present in table "cities".

The behavior of foreign keys can be finely tuned to your application. We will not go beyond this ssimple
exampleinthistutorial, but just refer you to Chapter 5 for moreinformation. Making correct use of foreign
keys will definitely improve the quality of your database applications, so you are strongly encouraged to
learn about them.

3.4. Transactions

Transactions are afundamental concept of all database systems. The essential point of atransaction isthat
it bundles multiple steps into a single, al-or-nothing operation. The intermediate states between the steps
are not visible to other concurrent transactions, and if some failure occurs that prevents the transaction
from completing, then none of the steps affect the database at all.

For example, consider a bank database that contains balances for various customer accounts, as well as
total deposit balances for branches. Suppose that we want to record a payment of $100.00 from Alice's
account to Bob's account. Simplifying outrageously, the SQL commands for this might look like:

UPDATE accounts SET bal ance bal ance - 100. 00
VWHERE nanme = 'Alice';
UPDATE branches SET bal ance = bal ance - 100. 00
VWHERE nane = (SELECT branch_name FROM accounts WHERE narne
"Alice');
UPDATE accounts SET bal ance = bal ance + 100. 00
VWHERE nanme = ' Bob';
UPDATE branches SET bal ance = bal ance + 100. 00
VWHERE nane = (SELECT branch_name FROM accounts WHERE narne

' Bob') ;

The details of these commands are not important here; the important point isthat there are several separate
updates involved to accomplish this rather simple operation. Our bank's officers will want to be assured
that either all these updates happen, or none of them happen. It would certainly not do for a system failure
to result in Bob receiving $100.00 that was not debited from Alice. Nor would Alice long remain a happy
customer if she was debited without Bob being credited. We need aguaranteethat if something goeswrong
partway through the operation, none of the steps executed so far will take effect. Grouping the updates
into a transaction gives us this guarantee. A transaction is said to be atomic: from the point of view of
other transactions, it either happens completely or not at al.

19

Advanced Features

We also want a guarantee that once atransaction is completed and acknowledged by the database system,
it has indeed been permanently recorded and won't be lost even if a crash ensues shortly thereafter. For
example, if we are recording a cash withdrawal by Bob, we do not want any chance that the debit to his
account will disappear in a crash just after he walks out the bank door. A transactional database guaran-
tees that all the updates made by a transaction are logged in permanent storage (i.e., on disk) before the
transaction is reported complete.

Another important property of transactional databases is closely related to the notion of atomic updates:
when multiple transactions are running concurrently, each one should not be able to see the incomplete
changes made by others. For example, if onetransaction isbusy totalling all the branch balances, it would
not do for it to include the debit from Alice's branch but not the credit to Bob's branch, nor vice versa. So
transactions must be all-or-nothing not only in terms of their permanent effect on the database, but alsoin
termsof their visibility asthey happen. The updates made so far by an open transaction areinvisibleto other
transactions until the transaction completes, whereupon all the updates become visible simultaneously.

In PostgreSQL, atransaction is set up by surrounding the SQL commands of the transaction with BEG N
and COMM T commands. So our banking transaction would actually look like:

BEG N;

UPDATE accounts SET bal ance = bal ance - 100. 00
VWHERE nanme = 'Alice';

-- etc etc

COW T;

If, partway through the transaction, we decide we do not want to commit (perhaps we just noticed that
Alice's balance went negative), we can issue the command ROLLBACK instead of COVM T, and all our
updates so far will be canceled.

PostgreSQL actually treats every SQL statement as being executed within atransaction. If you do not issue
a BEG N command, then each individual statement has an implicit BEG N and (if successful) COWM T
wrapped around it. A group of statements surrounded by BEA N and COVMM T is sometimes called a
transaction block.

Note

Some client libraries issue BEG N and COMM T commands automatically, so that you might get
the effect of transaction blocks without asking. Check the documentation for the interface you are
using.

It's possible to control the statements in a transaction in a more granular fashion through the use of save-
points. Savepointsallow you to selectively discard parts of the transaction, while committing the rest. After
defining asavepoint with SAVEPQOI NT, you can if needed roll back to the savepoint with ROLLBACK TO.
All the transaction's database changes between defining the savepoint and rolling back to it are discarded,
but changes earlier than the savepoint are kept.

After rolling back to a savepoint, it continues to be defined, so you can roll back to it severa times.
Conversely, if you are sure you won't need to roll back to a particular savepoint again, it can be released,
so the system can free some resources. Keep in mind that either releasing or rolling back to a savepoint
will automatically release all savepoints that were defined after it.

All thisis happening within the transaction block, so none of it isvisible to other database sessions. When
and if you commit the transaction block, the committed actions become visible as a unit to other sessions,
while the rolled-back actions never become visible at all.

20

Advanced Features

Remembering the bank database, suppose we debit $100.00 from Alice'saccount, and credit Bob's account,
only to find later that we should have credited Wally's account. We could do it using savepoints like this:

BEG N,

UPDATE accounts SET bal ance
WHERE nane = 'Alice';

SAVEPO NT ny_savepoi nt;

UPDATE accounts SET bal ance
VWHERE nane = ' Bob';

-- oops ... forget that and use Wally's account

ROLLBACK TO ny_savepoi nt;

UPDATE accounts SET bal ance = bal ance + 100. 00
VWHERE nane = 'Vally';

COW T,

bal ance - 100. 00

bal ance + 100. 00

Thisexampleis, of course, oversimplified, but there'salot of control possiblein atransaction block through
the use of savepoints. Moreover, ROLLBACK TOisthe only way to regain control of atransaction block
that was put in aborted state by the system due to an error, short of rolling it back completely and starting

again.
3.5. Window Functions

A window function performs a cal cul ation across a set of table rowsthat are somehow related to the current
row. Thisis comparable to the type of calculation that can be done with an aggregate function. However,
window functions do not cause rows to become grouped into a single output row like non-window aggre-
gate callswould. Instead, the rows retain their separate identities. Behind the scenes, the window function
is able to access more than just the current row of the query resullt.

Here is an example that shows how to compare each employee's salary with the average salary in his or

her department:

SELECT depnane, enpno, salary, avg(salary) OVER (PARTI TI ON BY depnane)
FROM enpsal ary;

depnane | enpno | salary | avg
----------- T fE Ry
devel op | 11 | 5200 | 5020. 0000000000000000
devel op | 7| 4200 | 5020.0000000000000000
devel op | 9 | 4500 | 5020. 0000000000000000
devel op | 8 | 6000 | 5020. 0000000000000000
devel op | 10 | 5200 | 5020. 0000000000000000
personnel | 5| 3500 | 3700. 0000000000000000
personnel | 2| 3900 | 3700. 0000000000000000
sal es | 3 4800 | 4866.6666666666666667
sal es | 1] 5000 | 4866.6666666666666667
sal es | 4 | 4800 | 4866.6666666666666667
(10 rows)

The first three output columns come directly from the table enpsal ary, and there is one output row
for each row in the table. The fourth column represents an average taken across all the table rows that
have the same depnane value asthe current row. (This actually is the same function as the non-window

21

Advanced Features

avg aggregate, but the OVER clause causes it to be treated as a window function and computed across
the window frame.)

A window function call always contains an OVER clause directly following the window function's name
and argument(s). Thisiswhat syntactically distinguishesit from a normal function or non-window aggre-
gate. The OVER clause determines exactly how the rows of the query are split up for processing by the
window function. The PARTI TI ON BY clause within OVER divides the rows into groups, or partitions,
that share the same values of the PARTI TI ON BY expression(s). For each row, the window function is
computed across the rows that fall into the same partition as the current row.

Y ou can also control the order in which rows are processed by window functions using ORDER BY within
OVER. (The window ORDER BY does not even have to match the order in which the rows are output.)
Hereisan example:

SELECT depnane, enpno, salary,
rank() OVER (PARTI TI ON BY depnane ORDER BY sal ary DESC)
FROM enpsal ary;

depname | enpno | salary | rank
----------- S
devel op | 8 | 6000 | 1
devel op | 10 | 5200 | 2
devel op | 11 | 5200 | 2
devel op | 9 | 4500 | 4
devel op | 7 | 4200 | 5
per sonnel | 2| 3900 | 1
per sonnel | 5] 3500 | 2
sal es | 1| 5000 | 1
sal es | 4 | 4800 | 2
sal es | 3| 4800 | 2
(10 rows)

As shown here, the r ank function produces a numerical rank for each distinct ORDER BY value in
the current row's partition, using the order defined by the ORDER BY clause. r ank needs no explicit
parameter, because its behavior is entirely determined by the OVER clause.

The rows considered by awindow function are those of the “virtual table” produced by the query's FROM
clause as filtered by its WHERE, GROUP BY, and HAVI NG clauses if any. For example, a row removed
because it does not meet the WHERE condition is not seen by any window function. A query can contain
multiple window functions that slice up the data in different ways using different OVER clauses, but they
all act on the same collection of rows defined by this virtual table.

We aready saw that ORDER BY can be omitted if the ordering of rowsis not important. It isalso possible
to omit PARTI TI ON BY, in which case there is asingle partition containing all rows.

There is another important concept associated with window functions: for each row, thereis a set of rows
within its partition called its window frame. Some window functions act only on the rows of the window
frame, rather than of the whole partition. By default, if ORDER BY is supplied then the frame consists of
all rows from the start of the partition up through the current row, plus any following rows that are equal
to the current row according to the ORDER BY clause. When ORDER BY is omitted the default frame
consists of all rowsin the partition. ! Hereisan exampleusing sum

! There are options to define the window frame in other ways, but this tutorial does not cover them. See Section 4.2.8 for details.

22

Advanced Features

SELECT sal ary, sun{salary) OVER () FROM enpsal ary;

salary | sum

________ Fom e a - -
5200 | 47100
5000 | 47100
3500 | 47100
4800 | 47100
3900 | 47100
4200 | 47100
4500 | 47100
4800 | 47100
6000 | 47100
5200 | 47100

(10 rows)

Above, since thereis no ORDER BY in the OVER clause, the window frame is the same as the partition,
which for lack of PARTI TI ON BY isthe whole table; in other words each sum is taken over the whole
table and so we get the same result for each output row. But if we add an ORDER BY clause, we get very
different results:

SELECT sal ary, sun{salary) OVER (ORDER BY sal ary) FROM enpsal ary;

salary | sum

________ i,
3500 | 3500
3900 | 7400
4200 | 11600
4500 | 16100
4800 | 25700
4800 | 25700
5000 | 30700
5200 | 41100
5200 | 41100
6000 | 47100

(10 rows)

Here the sum is taken from the first (lowest) salary up through the current one, including any duplicates
of the current one (notice the results for the duplicated salaries).

Window functions are permitted only in the SELECT list and the ORDER BY clause of the query. They are
forbidden elsewhere, such asin GROUP BY, HAVI NG and VWHERE clauses. This is because they logically
execute after the processing of those clauses. Also, window functions execute after non-window aggre-
gate functions. This meansit is valid to include an aggregate function call in the arguments of a window
function, but not vice versa.

If thereis aneed to filter or group rows after the window calculations are performed, you can use a sub-
select. For example:

SELECT depnane, enpno, salary, enroll_date
FROM

23

Advanced Features

(SELECT depnane, enpno, salary, enroll _date,
rank() OVER (PARTI TI ON BY depnane ORDER BY sal ary DESC,
enpno) AS pos
FROM enpsal ary
) AS ss
WHERE pos < 3;

The above query only shows the rows from the inner query having r ank less than 3.

When a query involves multiple window functions, it is possible to write out each one with a separate
OVER clause, but thisis duplicative and error-prone if the same windowing behavior is wanted for several
functions. Instead, each windowing behavior can be named in a W NDOWclause and then referenced in
OVER. For example;

SELECT sun{sal ary) OVER w, avg(salary) OVER w
FROM enpsal ary
W NDOW w AS (PARTI TI ON BY depnanme ORDER BY sal ary DESC);

More details about window functions can be found in Section 4.2.8, Section 9.22, Section 7.2.5, and the
SELECT reference page.

3.6. Inheritance

Inheritance is a concept from object-oriented databases. It opens up interesting new possibilities of data-
base design.

Let'screatetwo tables: A tableci t i es andatablecapi t al s. Naturaly, capitalsare also cities, so you
want some way to show the capitals implicitly when you list al cities. If you're really clever you might
invent some scheme like this:

CREATE TABLE capitals (

nane t ext,

popul ati on real,

el evation int, -- (in ft)
state char (2)

)

CREATE TABLE non_capitals (

nane t ext,
popul ati on real,
el evation int -- (in ft)

)

CREATE VIEWcities AS
SELECT nane, popul ation, elevation FROM capitals
UNI ON
SELECT nane, popul ation, el evation FROM non_capitals;

Thisworks OK asfar asquerying goes, but it getsugly when you need to update several rows, for onething.

A better solution isthis:

CREATE TABLE cities (

24

Advanced Features

name t ext,
popul ati on real,
el evation int -- (in ft)

);

CREATE TABLE capitals (
state char (2) UNI QUE NOT NULL
) INHERI TS (cities);

Inthiscase, arow of capi t al s inheritsall columns (hane, popul ati on,andel evat i on) fromits
parent, ci ti es. The type of the column nane ist ext , a native PostgreSQL type for variable length
character strings. Thecapi t al s table has an additional column, st at e, which showsits state abbrevi-
ation. In PostgreSQL, atable can inherit from zero or more other tables.

For example, the following query finds the names of al cities, including state capitals, that are located
at an elevation over 500 feet:

SELECT nane, el evation
FROM ci ti es
VWHERE el evati on > 500;

which returns;

nane | elevation
___________ e e e e e m - -
Las Vegas | 2174
Mari posa | 1953
Madi son | 845
(3 rows)

On the other hand, the following query finds all the cities that are not state capitals and are situated at an
elevation over 500 feet:

SELECT nane, el evation
FROM ONLY cities
VWHERE el evati on > 500;

nane | elevation
___________ .
Las Vegas | 2174
Mari posa | 1953
(2 rows)

Herethe ONLY beforeci t i es indicatesthat the query should berun over only theci t i es table, and not
tablesbelow ci t i es intheinheritance hierarchy. Many of the commandsthat we have already discussed
— SELECT, UPDATE, and DELETE — support this ONLY notation.

Note

Although inheritance is frequently useful, it has not been integrated with unique constraints or
foreign keys, which limits its usefulness. See Section 5.10 for more detail.

25

Advanced Features

3.7. Conclusion

PostgreSQL has many features not touched upon in this tutorial introduction, which has been oriented
toward newer users of SQL. These features are discussed in more detail in the remainder of this book.

If you feel you need more introductory material, please visit the PostgreSQL web site? for links to more
resources.

2 https://www.postgresqgl.org

26

https://www.postgresql.org
https://www.postgresql.org

Part Il. The SQL Language

This part describes the use of the SQL language in PostgreSQL . We start with describing the general syntax of SQL,
then explain how to create the structures to hold data, how to populate the database, and how to query it. The middle
part lists the available data types and functions for use in SQL commands. The rest treats several aspects that are
important for tuning a database for optimal performance.

Theinformationin this part isarranged so that anovice user can follow it start to end to gain afull understanding of the
topicswithout having to refer forward too many times. The chapters areintended to be self-contained, so that advanced
users can read the chaptersindividually asthey choose. The information in this part is presented in anarrative fashion
in topical units. Readers looking for a complete description of a particular command should see Part V1.

Readers of this part should know how to connect to a PostgreSQL database and issue SQL commands. Readers that
are unfamiliar with these issues are encouraged to read Part | first. SQL commands are typically entered using the
PostgreSQL interactive terminal psgl, but other programs that have similar functionality can be used as well.

Table of Contents

A, SQL SYINEBX vttt ettt ettt et e et e et e et et et e et e e et e e e 35
A1, LEXIiCal SIUCKUME ...ttt ettt ettt e e e e e enees 35
4.1.1. Identifiers and K&y WOITSuiiiiiiiiieiiii e 35
.02, CONSLANTSoeeeeeeie ettt et ettt 37
4.01.3. OPEIELOIS ...ttt ettt ettt ettt et 42
4.1.4. SPECial CharaCLEN'S ceeiii ettt e e eees 42
.05, COMMEBNES ... eeee ettt ettt e r e e e e e e e e e e en s 43
4.1.6. OPErator PrECEOBNCEceiitiieeiii et 43

4.2, VElUE EXPIESSIONSceiitiieeieii ettt ettt e ettt e et e et e et e et e e e aba s 44
4.2.1. ColUMN REFEIENCES ...ttt et 45
4.2.2. POSItiONal PalraMELErSuuiiiiiiieieei ettt e 45
A.2.3. SUDSCIIPES .. eevteeeeei ettt ettt et 45
424, Field SEIECHON ...ueiiiii e 46
4.2.5. OPErator INVOCELIONSccevuneiiitieee et e ettt et e e e et eeeeneaeeees 46
4.2.6. FUNCHON CallS ...t 47
4.2.7. AQOregate EXPIrESSIONSccuuueiiiiiieieiti ettt ettt ettt e et e e e e 47
4.2.8. WIindow FUNCHION CallSiiiiiiiiiiii e 50
4.2.9. TYPE CaSS .eviiiiieii et 52
4.2.10. Collation EXPreESSIONSoceevrieeiiiti ettt ettt e e e e e eeeans 53
4.2.11. SCAlAr SUDQUENTESceeeieeeeeii ettt ettt ettt e e e e enaens 54
4.2.12. Array CONSITUCLOIScevieitiiierie ettt et e e e e e ea e eees 54
4.2.13. ROW CONSITUCTONSevteeeieiete ettt sttt et e e e e 56
4.2.14. Expression Evaluation RUIESccooiiiiiiiiiii e 57

4.3, CalliNg FUNCLIONSeeeit ettt ettt et e e e e e e enan s 59
4.3.1. Using POSItional NOELIONccvvveieiiiiiieeeeeii et 59
4.3.2. UsiNg NamMed NOLATONccuvuiiiiiiie e 60
4.3.3. USING MiXEA NOLALTONevuieiiiiieeiiiii ettt e een e e e 60

5. Dal@ DEFINITION ..ottt et 62
DL TADIE BASICS .ottt 62
5.2, DEFAUIT VAIUBS ...ttt 63
5.3. Generated COIUMINScoouuiiiiiii ettt et e e e e e 64
B, CONSITAINTS ...ttt ettt ettt e et e et et e et et e et et e e e ena s 65
5.4.1. CheCk CONSITAINTScevuieiiiiie ettt ettt e e e e e e e 65
5.4.2. NO-NUII CONSIFAINES ...eeveieieiii et e e 68
5.4.3. UNIQUE CONSIFEINES ...e.veueieeii ettt ettt ettt e e e 69
B5AA, PHIMEANY KEYS ...ttt e e 70
545, FOrEIgN KEYS ...ttt 71
5.4.6. EXCIUSION CONSITAINTScovtieieiit et e ettt et e et e e e et e e e ene e eeees 74

5.5, SYStEM COIUMMNS ...t et e e 74
5.6. MOAITYING TADIES ...t 75
5.6.1. AddING @ COIUMN ...oiviiiiiiii e 75
5.6.2. ReEMOVING @ COIUMN ...couuiiiiiiii ettt eeans 76
5.6.3. AddING @ CONSIFAINTceevtieeiiiis ettt e e e e et e e e e e eeees 76
5.6.4. RemMOVING @ CONSITAINTccuviiiiiiii e 76
5.6.5. Changing a Column's Default Valuec.oiviiiiiiiiiiiii e 77
5.6.6. Changing a Column's Daa TYPEuueieuunieiiiiiee ittt 77
5.6.7. Renaming @ COIUMIN ... coiiiiiiiiii e 77
5.6.8. RENAMING @ TADIEciiiiiiiiiii e 77

BT PrIVIIEOES ..o 78
5.8. ROW SeCUNtY POIICIES ...oeuuieiiii e 82
5.9, SCREMAS ... 88

28

The SQL Language

5.9.1. Creating @ SCheMAc.uiiiiic e 89
5.9.2. The PUDIIC SChEMEooiiiiiiec e 90
5.9.3. The Schema Search Pathccoooiiiiiiiiiiiii e 90
5.9.4. Schemas and PrivVilEgEScoiuniiii i 92
5.9.5. The System Catalog SChEMAcovuiiiiiiieii e 92
5.0.6. USAQE PallerNSiviiiiii e 92
5.9.7. POMaDIITY ..vviiiiiiieee e 93

oI O T 1=) = Lo PP 93
oI L0 B O Y= (=3P 96

5.11. Table Partitioningiiueeiii i e e e e e e e e e 97
DAL L. OVEIVIBIW ettt e et e e e et e e e et e e e e et e e e e et e e e e eran s 97
5.11.2. Declarative Partitioningccccouiiiiiiiiiiii e 98
5.11.3. Partitioning Using INNEFtanCeccoviiiiiiiiii e 103
5.11.4. Partition PrUniNgc.uoeiuiiiiii e e e e e e e e e e et eeaaaeeaes 108
5.11.5. Partitioning and Constraint EXCIUSIONc.veviiieiiiniiiii e 109
5.11.6. Best Practices for Declarative Partitioningcc.ccoeevviiieiiineeiiieriineecneeenn, 110

I o (= o o B I - PP 111
5.13. Other Database ODJECEScvvieiii e e e e e aens 111
5.14. DePendeNnCy TraCKiNgccuuueiiueiiiiie e e e e e e e e e e e e e e e e e e et e e e eanaeeeen 112
SR T = 1Y =T o 10 = 1 o PN 114
L 1= e (] aTo [D - - Y 114
LS UL = (] oo D = U 115
SRR D= 1 (] oo I - - P 116
6.4. Returning Data from Modified ROWScccuiiiiiiiiiii e 116
2 8 = 1= PN 118
8 T @ = 4T T ORI 118
A - o L=l (0 == Lo 118
7.2.1. ThE FROMCIBUSE ...cceviiiiiiie ettt ettt ettt e et e e e e 119
7.2.2. THE WHERE ClaUSEvvuieiiiiii ettt sttt e et e e e ean s 128
7.2.3. The GROUP BY and HAVI NG ClIaUSEScccvvuiiiiiiieeeiiiie e ee e 129
7.2.4. GROUPI NG SETS, CUBE, and ROLLUPiiiiiiiiieiiieece e 131
7.2.5. Window FUNCEION PrOCESSINGcovuiiiiiieiiieeie e e e e e e e e 134

SRS = 1 o I £ U UPPPTSPPR 135
7.3. 1. SEECE-LISt [TOMS oot e 135
7.3.2. COlUMN LADEIS ...t e e eaans 136
7.3.3. Dl STINCT ettt e e et e e et s e e e et e e e eeaaaeeeees 136

7.4. Combining Queries (UNI ON, | NTERSECT, EXCEPT) ...cocvviiiiiiiiieeciiieeeceie e 137
7.5. Sorting ROWS (ORDER BY) ...iiuiiiiiiiciie et e e e e e e e e e e e et eeaneeas 138
T6. LIM T @8N0 OFFSET ..oiiiiiiiiie ettt e e e e et e e e as 139
TV A/ I S I I £ PP 140
7.8. W TH Queries (Common Table EXPreSSiONS)cc.uueeeiieiiiieriiieeiiieeiieeeeineesieeeaneens 141
7.8.1L SELECT iNW TH oo a s 141
7.8.2. RECUISIVE QUENIES ...uuiii ittt e e e e e e e e e e e et e e e eeaes 141
7.8.3. Common Table Expression Materializationccoeoviiiiiiiiiiiciiiiecie e 147
7.8.4. Data-Modifying Statements in W TH ..o, 148

S T D= = T Y/ o PRSPPI 150
S0 N [0 0= o Y == 151
e I 1 011 o = Y/ o PP 152
8.1.2. Arbitrary Precision NUMDBEISccoiiiiiiiiii e 152
8.1.3. Floating-POINt TYPES .ovun i e e e 154

ST S g Y/ o= PP 156

S I o g 1< = Y 1Y o< T PRSP 157
TG I O == o (= G Y/ o= PP 157
S = T g A T v T Y/ o 1= 159

29

The SQL Language

8.4.1. byt €a HEX FOIMELccuuiiiiiieii e 160
8.4.2. byt €a ESCApe FOIMAL ...c.uuiiiiiiii e e e e 160
R = =l T (ST Y/ 0= P 161
8.5.1. Date/TImME INPULeveniiiiiii e e e e e e e e e e e e e e e aaneees 163
8.5.2. DAE/TIME OULPULueeeeiiiieeeeeie e et e e e et e et e e et e e e et eeeeren e 167
8.5.3. TIME ZONES ...ttt e et e e et e e e eaa e aaee 168
8.5.4. INterval INPULoiieiii e e 169
8.5.5. INLEIVE OULPULueiiiitiee it e e e e e e e aa e e eannns 171
LS = ToTo =T N Y/ o= PN 172
A 1000 = =0 I Y/ o= 173
8.7.1. Declaration of Enumerated TYPES .. .cvuuiviueiiii e e e e 173
2 @ (o[1 o P 173
B.7.3. TYPE SAFELY eevviieiiii et 174
8.7.4. Implementation DELailScccuuiiiiiii e 174
R €= o 0 4= (o Y 1P 175
B.8. L. POIMES ...ttt e ettt e e a e aae 175
88,2, LINES ettt 175
8.8.3. LiNE SEOMENLSiviiiiii e e e 176
8814 BOXES ..t eiiiii e ettt ettt e et e a et a e aaaes 176
B85, PalNS ..ot 176
8.8.6. POIYQONS .. .ciiiiii i 177
S O] (o =~ PP 177
e I N\ = Y Yo (o (1= S Y o= 177
S35 R T 1= PSPPSR 178
SIS o o | S USRS 178
SR A I 1= VT o3 o | PSPPI 179
S I 1= U= Vo o | USSP 179
8.9.5. IMACATAN 8 .ouiiiiiiii e e e e e 179
IO T S (1o T I3 - 180
B.11. TeEXt SEACH TYPES o evn it 181
S 00 I O T = VT o3 A o PP PTRPTUPT 181
S I 2 A=Y o [U 1= PRSP 182
ST 2 U1 1 R I/ o= PR 184
ST Q. I 1Y/ o= PP 184
8.13.1. Creating XML ValUBSoeiiiiiiieiiiii ettt e e e 185
8.13.2. ENcoding Handlingccouuiiiiiiiii i 185
8.13.3. ACCESSING XML ValUESuiiiiiciii e 186
ST N S O NI Y/ o=~ PP 186
8.14.1. JSON Input and OULPUE SYNEAXevvvnieiieeiiiieciie e e e e e e e e e e eens 188
8.14.2. Designing JSON DOCUMENES .. .c.uuivieieineeiieeei e et e et eeeie e e e e san e eaneeennnas 189
8.14.3.] sonb Containment and EXIStENCEovviiiiiiii e 189
8.14.4. | SOND INUEXING ...evvneiii e e e e e e aaa s 191
8.14.5. | SOND SUBSCIIPLING .vuevvieiiiiee e e e e e e 194
8.14.6. TraNSFOMIS ... ettt ettt e e e e et e e e e 195
8.14.7.]SONPEEN TYPE . e 195
e I LN = Y PPN 197
8.15.1. Declaration Of Array TYPES ...cuvuiiiiieiiieeei et e e e e e e e e e e eaneees 197
8.15.2. Array ValUE INPULcovniiii e e e e e e e 198
8.15.3. ACCESSING ATTAYS ..uevtneeiineeiieeete ettt e et e e e e et e et e et e e et e e et e e et e eaneeaens 199
8.15.4. MOAITYING ATTAYS ..vuieiiieii et e e e e e e e e e e e e e e e e eanaeees 202
8.15.5. SEaArChING IN ATTAYS «oovuieiii e e e e e e e e e eaens 205
8.15.6. Array Input and OULPUL SYNEEXccvuneiiieiiiieeiii e e e e e e e e e eaenns 206
8.16. COMPOSITE TYPES ..evueiiueiiiieeit ettt e et e e et e e et e e et e e et eeaa e e st ee et e e et eetnaeesnnaaannaaes 207
8.16.1. Declaration of COmMPOSItE TYPES ...cvvureiiiieiiieeiii e e e e e e e e anas 207

30

The SQL Language

8.16.2. Constructing CompoSIte VAUEScccuuiiiiiieiiii e 208
8.16.3. AcCeSSING COMPOSIEE TYPES ...vvvneiiiiieiiieeiiieeiiie et e e et e e eae e e e eateeeaeeanaas 209
8.16.4. Modifying COmMPOSITE TYPES ...cvvuniiiiieieii e e ee e e e e e e e e aa s 210
8.16.5. Using Composite TYPes iN QUENIESueiiieiiii i e e e e e e e eaaes 210
8.16.6. Composite Type Input and OULPUE SYNEAXccevvvvirnieiiieiiii e e e eenne 213

8.7, RANGE T S ittt ettt 214
8.17.1. Built-in Range and MUItIrange TYPES ...uuevivieii e e e e e 214
8.17.2. EXAMPIES .. ettt 214
8.17.3. Inclusive and EXCIUSIVE BOUNGSuiveiiiiiiieiiiiineeiiiiine et e et e i 215
8.17.4. Infinite (Unbounded) RaNGESocvvuiiiiii e 215
8.17.5. RaNge INPUL/OULPULovvniiiieeii e e e e e e e e e e e aes 215
8.17.6. Constructing Ranges and MUItIrangeSoevvviieiiie e 217
8.17.7. DISCrete RANGE TYPES . ovvniiiiieei et et e e e e e et e e e e e e e e e et e e et e een s 217
8.17.8. Defining New RaNGE TYPES ... cvvuiiiiieeii e e e e e e e e e eaaas 218
B.17.9. INAEXING ...uniiiieii e e 219
8.17.10. CONStraiNtS 0N RANGESuiiviieiiieiieee e ee e e e e e e e e e et eeaaaeeaes 219

ST T I T4 F= T T 1Y o1~ PN 220
8.19. ObJECt 1AENLITIEr TYPES .uuuiiii i e e e et e eaaaees 221
S22 o To TR =Y 0 T 1Y/ o= TN 224
ST I s = (o 0l 1N o1 224
9. FUNCLIONS @NO OPEIAIOIS .. .evvieeeieeei et e et e e e e e e e e e e e e e e e et e e et e e et e e st e eeaneeanaees 226
1o I oo o= @ o= = (] £ PP 226
9.2. Comparison FUNCtions and OPEraLOrScvuvuieerieeiiiieeiiiee e e e e e e e et e eaeeeens 227
9.3. Mathematical FUNCtioNS and OPEratorSc.uvveiuneeiiiieiiiie e e e e e 231
9.4. String FUNCtioNS and OPEIAtOrSuiiieneeiiieiie e e e e e e e e e e aaeeees 239
LS T o T g 112 1 TP TPPTRPPTRN 246

9.5. Binary String FUNctions and OPEraorsSuoveeuuieiiieiiiie e e e e e e eeaieesaneeees 249
9.6. Bit String FUNCLiONS and OPEratorScvvvuiiiiieiiie e e ee e e e e e e e e e e eeanns 253
A = (= g TN\ = (11 o P 255
O.7. 1. LEKE oot aaaan 255
9.7.2. SIM LAR TORegular EXPreSSiONScvuueiiiieriieeiiieeeiieeaeeeaieessineesnneeenns 256
9.7.3. POSIX RegQUIAr EXPIESSIONS ... ccvuiiiiieiiiieeiiieeeiiie et e et s e e et e e e e s e e e eannaas 258

9.8. Data Type Formatting FUNCLIONScovuiiiiiiiii e e 273
9.9. Date/Time FUNCLioNS and OPEratorScceuuiiiiiieiiieeeiie e e e e e e e e e e e eaaeeees 281
9.9.1. EXTRACT, dat € _Part .ouiiiiiiiiiiieeiii e e e e e aanas 288

e 72 - L A =T A ¥ [o o 293
0.9.3. dat @ DI N oo 294
9.9.4. AT TIME ZONE ...iiiiiiiiiii ettt e e e e et e e eeaens 294
9.9.5. CUITENt DAL/ TIME ..uuiiiieii ettt e e e 295
9.9.6. Delaying EXECULIONuuiiiei i eeie e e e e e e e e e e e e e e et e ea e eeas 297

9.10. ENUM SUPPOIt FUNCLIONSiieiiiii et e e e e e e e e e e e e e e eaens 298
9.11. Geometric FUNCiONS and OPEIAtOrSccvuueiiieeiiieeiiie e ee e e e e e e e e eanes 299
9.12. Network Address FUNCtions and OPEratorsc.ueeuuieiiieeiie e e e eeie e e 306
9.13. Text Search FUNCtiONS aNd OPEIELOrSuuueviieeiieeiieeeie e e e e e e et e e e eaaeees 310
.14, UUID FUNCLIONSiieiiiis ettt ettt e ettt e e et e e et e e et e e et s e e e et e e e e enanes 316
9.15. XML FUNCLIONS ... eiiiiiie ettt e e e e e e e et e e e et e e e e et e e e e eaen s 317
9.15.1. Producing XML CONENEccuuiiiiiiiiieeiieeeieee e e e e e e e e e e e e eanaeees 317
9.15.2. XML PradiCates ...ocvvueiiiii ettt e e e e e e s 321
9.15.3. ProcessiNg XML ...uuuiiiiiiieeii ettt 323
9.15.4. Mapping TableS t0 XMLccoviiiiiiii e 328

9.16. JSON FUNCLIONS aNd OPEIELOIScvvvieirieeiiieeeiee e e e e e e e e e e e e et e e et e e e e eennns 332
9.16.1. Processing and Creating JSON Dafal........c..oevvvuieiiiieiiiieeiiieeeiieeee e e e 332
9.16.2. The SQL/JSON Path LanQUAGEccvvvuieiiiiiieeeeiiieeeeeine e et e e et e e 343

9.17. Sequence Manipulation FUNCLIONSccouiiiiiiii e e e e 351

31

The SQL Language

9.18. Conditional EXPIrESSIONScuuueiiiieiiiieeiiieeii e et e e e e e e e e e e e e e e et e e aa e ean s 352
0.18. 1. CASE ...ttt e a e et aaae 353
9.18.2. COALESCEciiitiiieieii ettt ettt e et e e e et e e e e et e e e aatnnaeaee 354
O.18.3. NULLI F ettt e e et e et e e e et n e e e eraneeaees 355
9.18.4. GREATEST a@nd LEAST ...uiiiiiiiieeeee ettt 355

9.19. Array FUNCIONS and OPEIratOrSuiieneeeiiieiiieee e e e e e e e e e e e e et e e e e e e eanaees 355

9.20. Range/Multirange FUNCtions and OPEratorsvvvevueeiiieviiieeiieeeineeeeeeaeeeaenns 359

9.21. AQQregate FUNCLIONSuuiiii e e e e e e e e e e e eaes 365

9.22. WINAOW FUNCHIONSviieiiiiiieeeei et e e e e e e e et e e e et e e e e aaa s 372

SIS Yoo 01c AV o d (= 0] PN 374
S B S Y S TSP 374
S22 3 L N USSP 375
S22 R T\ | T\ ST 375
9.23.4. ANY/SOMEouiiiiiiiii ettt e e e et e e et e e e et a e 376
0,235, AL L ottt et a e e aaaes 376
9.23.6. SINGIE-ROW COMPAITSONceviiiiiieeiiee e e e e e e e e eaa s 377

9.24. Row and Array COMPANISONSceuuieiieerieeratieeeteeeteestneestneestnaeeaneestnaesrnaesnaaees 377
LS T N N PPN 377
2\ | T\ ST 378
9.24.3. ANY/SONE (BITAY) +eevvvtneeeetinieteeiiieeeeiiaeeeeti e eestiaeeease e resse e aesnaeresnnns 378
S I = - Y) OO SPR 378
9.24.5. Row Constructor COMPAIiSONeviuueeiinieiiiieeiieeeeineesieesaneessnaeeeneasnaaes 379
9.24.6. Composite TYPe COMPANISONuuverneeeiieiieeeieeeieeeeeeeeteeeeae e st aeeanaeaanaees 380

9.25. Set REtUrNING FUNCHIONS ... covuiiiiicii e e e e e e e e e et e e e aaa s 380

9.26. System Information FUNCtions and OPEratorsevevveeiiieiiiieeiiieeeieeeieeeaeeenes 383

9.27. System AdminNistration FUNCLIONSccuuiiinieiiii e e e e e e e 402
9.27.1. Configuration Settings FUNCLIONSiiiiiieiiii e e e e 402
9.27.2. Server SIgnaling FUNCLIONSoviiiiiiie e e e e e 402
9.27.3. Backup Control FUNCLIONSuiiiiieiii e e ea s 404
9.27.4. Recovery Control FUNCLIONSocvviiiiiieeii e 406
9.27.5. Snapshot Synchronization FUNCLIONSccuoveiiiieiiin e, 408
9.27.6. Replication Management FUNCLIONScouveiiiiieii e 409
9.27.7. Database Object Management FUNCLIONSovevveeiiieiiineeieeceee e eaane 412
9.27.8. Index MantenanCe FUNCLIONSooviiuiiieeiiiiii e e e et e e e eeeii e eens 414
9.27.9. Generic File ACCESS FUNCLIONSuviiiiiiiee e 415
9.27.10. AdViSOry LOCK FUNCLIONScvvieiiiiciiee e e e e e 417

(S22 T I o o = gl oo 418

9.29. Event Trigger FUNCLIONScouuiiiii e e e e e e e e e e e 419
9.29.1. Capturing Changes at Command ENdcccocoviieiiiniiiiiiciiecee e, 420
9.29.2. Processing Objects Dropped by a DDL Commandcccocevvveviiieiiineeeinnenn. 420
9.29.3. Handling a Table ReWrite EVENtcovviiiiiiii e 422

9.30. Statistics INfOrmMation FUNCLONSiiiiiiiieiiiii e e e e eees 422
9.30.1. INSPECEING MCV LiStS ..uiiiiiiiiiieiii e e e 422

O Y/ oL o017/ = T o PPN 424

L0 @ = 4T Y PSP 424

O @ o< - o = TP 425

L0 R T o] o L P SSP 429

O R 0 IS (o] - o = 433

10.5. UNI ON, CASE, and Related CONSITUCESeviviiieiiiiieeeeiie e eeai e e e 434

10.6. SELECT OULPUL COIUMNSiiiiciii e e e e e e e e e e e e e e e et e e e e e e eanes 436

T o (== SO 437

0 O oo [o PP 437

A 1 o L= G Y/ o === PP 438
O O e I = PP 438

32

The SQL Language

2 o T = o PP 438
2 T 11 RSP 438
S 1 S 439
02 T] PSSP 439
2 G = 1 P 440

11.3. MUItICOIUMN INOEXES ...ttt e et e et e e e et eeeeaeaeeees 440
11.4. Indexes and ORDER BYcocviiiiiiiiiiiiiieeeie st e e e e e e e e e e aaaeaas 441
11.5. Combining MUItiple INAEXESciiiiiiiiece e 442
12.6. UNIQUE INAEXESciiieiiiie et e e e e e e e e e e e e e e et e e e eaaaes 443
11.7. INAEXES ON EXPIrESSIONSivvieiiiieii e e e e e e e e e e e e e et e et e e et e e ean s 443
11.8. Partial INOEXES .. .ceeviiieeeeii ettt e et e et e e et s e e e et e e e eranaaaaes 444
11.9. Index-Only Scans and Covering INAEXESccuuiiviiieeiii e 47
11.10. Operator Classes and Operator Famili€Sooevviiiiiiiiiiiiiei e, 450
11.11. Indexes and COlAIONSuuiiiieiiieiii e 451
11.12. EXamining INAEX USAgEuuivviniiiiieii e e e e e e et e et e e e e aaans 452
I o 1= G = o o PSSP 454
2 O 1 oo (0o o PP 454
12.1.1. What 1S @ DOCUMENE? ...uuiieieii ettt e e e e et e eeeaan e eeees 455
12.1.2. Basic Text MatChingooiiuiiiiiiiii e 456
12.1.3. CONfIQUIBLIONSvuiiiiieii e ce e e e e e e e e e e e e et e e e e e e e eaanas 458

12.2. TAhleS @NA INOEXES ...cevvveieieii ettt e e et e e et e e eaens 458
12.2.1. Searching @ Table ...ocvuii e 458
12.2.2. Creating INAEXEScvvvueii it e e e e e e e e aeas 459

12.3. Controlling TEXt SEAICHiiiiicii e e e e 460
12.3.1. ParSiNg DOCUMENESuiiiiiiii e cei e e e e e e e e e e e e e et e e e e eaens 460
12.3.2. ParSiNG QUETTES .. .cvuciiii e e e e e e e e e e e e e e e e ees 461
12.3.3. Ranking Search RESUILSocivuiiiii e 464
12.3.4. Highlighting RESUILS ... ccvuiiiiiieei e e 467

12,4, AdAItioNal FEALUMESevvneeiiii et e e e e e eaanns 468
12.4.1. Manipulating DOCUMENESuuiiiiiieiiiie e e e e e e e e e e e e e aae e 468
12.4.2. Manipulating QUENIEScvuiciii e e e e e e e e aaas 469
12.4.3. Triggers for Automatic UpPdatesccevueeiiiiiiiieiiie e e e e, 472
12.4.4. Gathering DOCUMENE SEALISHCS ...vvuvvinieiie e eeee e e e e e 473

T T = 474
12.6. DICHONAITES ... eieeeii et ettt ettt e et e et e e e et e e e et s e e e et e et e et neeesaaaeeennen 475
12.6.1. SEOP WOIAS .. .ccvuiiiiieiie et e e e e e e e e e e e et e e et e e e eaaeees a77
12.6.2. SIMPIE DICHIONAIY .vvueiiiieiii e et e e e e e e e aaaas a77
12.6.3. SYNONYM DICHIONGNY ...cvvuieiiiieiiie et e e e e e e e e e e e e e e e aan s 478
12.6.4. TheSaUruS DIiCtIONAIYcvvvniiiiiciii e e e e e eaa s 480
12.6.5. ISPEI DICHONAIY ...cvvniiiiiciie et e e e e e e eaaas 483
12.6.6. SNOWDEIl DICHIONAIYcvveiiiieeei e e e e e e 485

12.7. Configuration EXAMPIEccuuiiiiiciii e e e e e e e e 485
12.8. Testing and Debugging Text Searchoovviiii i, 487
12.8.1. Configuration TESHNGcvvueiiieiiii e e e e e e e e e e e anes 487
T = = i oo 490
R IC T B T Tox o) 4= VA == (o [491

12.9. Preferred Index Types for Text SEarchooovvi i 492
2200 O T o 1= o | o] oo o P 493
2 O R T 1] = o PRSP 496
G @0 o o1l = o [0y o 1 () N 498
G20 1 oo [0 1 o I PP 498
13.2. TransaCtion I1SOIAHONcccuveieiii e 498
13.2.1. Read Commiitted 1SOlation LEVElvviiiiiiiiiiiiiieece e 499
13.2.2. Repeatable Read 1S0lation LEVEccvviiiiiiiiii e 501

33

The SQL Language

13.2.3. Serializable [S0lation LEVE!ccevvviiieiii e 502

T (o[T I (T 504
13.3.1. TADIELEVE LOCKS ...evvniiiiiiieiieii et 504
13.3.2. ROW-LEVEI LOCKS ...euvuiiiiiiiee ettt e et e e e 507
13.3.3. Page-Level LOCKSciiiiiii et 508
13.3.4. DEAAIOCKS ... eeeieeieeiiii ettt s e e et e e e e e e e e e e e e 508
13.3.5. AGVISONY LOCKS ..uuiiiiicii et e e e e e e e e e aeas 509

13.4. Data Consistency Checks at the Application Levelcccoeeiiiiiiiiiiiiiiiceeeis 510
13.4.1. Enforcing Consistency with Serializable Transactionsccooeevveveevinnn. 510
13.4.2. Enforcing Consistency with Explicit Blocking LOckScccccovviiiiiiiinnennnnn. 511

ST O Y= PSR 512
13.6. LOCKINg @nd INAEXESivviiii et e e e e e e e e ees 512
o (o0 1= 0 o= T T = 513
I I U = o T I A P 513
I T o Y Y I VN 27 T P 513
14.2.2. EXPLAI N ANALYZEooviiiii et s e e e e eea e e ananaens 520
I O £ S PUPRR 525

14.2. Statistics Used by the Plannerccooviiiiiii e 526
14.2.1. SINgIE-ColUMN SEALISHCS . .ovvueiiieiiiii e e e e e e eaaes 526
A A 1= 00 (= IS 1 P 528

14.3. Controlling the Planner with Explicit JO N ClIaUSESccovviiiiieiiiieeeiieece e, 531
14.4. Populating @ Databasecvviiiiiii e 533
14.4.1. Disable AULOCOMIMILuuuiiiiiiiiee it e et et e e et e e e eaee e eeeee 533
A U £ Y @ @ P 533
14.4.3. REMOVE INAEXES ...oevvieiiiiie ettt e et e e 534
14.4.4. Remove Foreign Key CONSITaiNtScceuueeiiiiiiieiiieeeiieeeieeeneesieeeaneeenens 534
14.4.5. Increase mai nt enance_WOr K _MBmM.......coooiiiiiiii i, 534
14.4.6. Increase MAX_Wal _Si Z€ ..viiiiiiiiii i 534
14.4.7. Disable WAL Archival and Streaming Replicationccccoeviviiiiiinnennnnn. 534
14.4.8. RUN ANALYZE AFtEIWardScccvvviiiiiiiieeeeeeeieiiie s e e e e e e et e s e e e e eeaannnnn s 535
14.4.9. Some Notes about PO AUMPvuiiiiiii e e ee e e e e e e e 535

14.5. NON-DUrable SElINGSvueieeiiiiei e e e e e e e e e e e e e an s 535
ST = = O = oS 537
15.1. How Parallel QUENY WOTKSciiiiiiii i e e 537
15.2. When Can Parallel Query Be USEO?cuvviiiiiieiiiiiii e 538
15.3. Parallel PlansScccoiiiiiiiis it aaaaaae 539
15.3.1. Parallel SCaNSccuvvuiiiieeiiieiie et e e e e 539
15.3.2. Parallel JOINScovvviiiiei et 539
15.3.3. Parallel AQOregationooiiuiiiiiieii e 540
15.3.4. Parallel APPENGcoviiiii e 540
15.3.5. Parallel Plan TIPS ...ccuuuiieiiiiii et e e e e e e e e 541

15.4. Parallel SafElyoieeeiiieeiii et aaaaa 541
15.4.1. Parallel Labeling for Functions and AQQregatesSc.oovevvieiiiieiiiiieeieeeinnnns 541

Chapter 4. SQL Syntax

This chapter describesthe syntax of SQL. It formsthe foundation for understanding the following chapters
which will go into detail about how SQL commands are applied to define and modify data.

We also advise users who are already familiar with SQL to read this chapter carefully because it contains
several rules and concepts that are implemented inconsistently among SQL databases or that are specific
to PostgreSQL.

4.1. Lexical Structure

4.1.1.

SQL input consists of a sequence of commands. A command is composed of a sequence of tokens, termi-
nated by a semicolon (“;”). The end of the input stream also terminates a command. Which tokens are
valid depends on the syntax of the particular command.

A token can be a key word, an identifier, a quoted identifier, aliteral (or constant), or a special character
symbol. Tokens are normally separated by whitespace (space, tab, newline), but need not beif thereisno
ambiguity (which is generally only the case if a specia character is adjacent to some other token type).

For example, the following is (syntactically) valid SQL input:

SELECT * FROM MY_TABLE;
UPDATE MY_TABLE SET A = 5;
| NSERT | NTO MY_TABLE VALUES (3, 'hi there');

Thisisasequence of three commands, one per line (although thisis not required; more than one command
can be on aline, and commands can usefully be split across lines).

Additionally, comments can occur in SQL input. They are not tokens, they are effectively equivalent to
whitespace.

The SQL syntax is not very consistent regarding what tokens identify commands and which are operands
or parameters. The first few tokens are generally the command name, so in the above example we would
usually speak of a“SELECT”, an“UPDATE”", and an “INSERT” command. But for instance the UPDATE
command always requires a SET token to appear in a certain position, and this particular variation of
| NSERT also requires a VALUES in order to be complete. The precise syntax rules for each command
are described in Part VI.

Identifiers and Key Words

Tokens such as SELECT, UPDATE, or VALUES in the example above are examples of key words, that
is, words that have a fixed meaning in the SQL language. The tokens MY_TABLE and A are examples of
identifiers. They identify names of tables, columns, or other database objects, depending on the command
they are used in. Therefore they are sometimes simply called “names’. Key words and identifiers have
the same lexical structure, meaning that one cannot know whether atoken is an identifier or a key word
without knowing the language. A complete list of key words can be found in Appendix C.

SQL identifiers and key words must begin with a letter (a-z, but also letters with diacritical marks and
non-Latin letters) or an underscore (). Subsequent charactersin an identifier or key word can be |etters,
underscores, digits (0-9), or dollar signs ($). Notethat dollar signsare not allowed in identifiers according
to the letter of the SQL standard, so their use might render applications less portable. The SQL standard

35

SQL Syntax

will not define a key word that contains digits or starts or ends with an underscore, so identifiers of this
form are safe against possible conflict with future extensions of the standard.

The system uses no more than NAMEDATALEN-1 bytes of an identifier; longer names can be written in
commands, but they will be truncated. By default, NAVEDATAL ENis 64 so the maximum identifier length
is63 bytes. If thislimit is problematic, it can be raised by changing the NAMEDATALEN constantinsr ¢/
i ncl ude/ pg_confi g_manual . h.

Key words and unquoted identifiers are case insensitive. Therefore:

UPDATE MY_TABLE SET A = 5;
can equivalently be written as:
uPDaTE ny_TabLE SeT a = 5;

A convention often used is to write key wordsin upper case and names in lower case, e.g..

UPDATE ny_table SET a = 5;

Thereisasecond kind of identifier: the delimited identifier or quoted identifier. It isformed by enclosing
an arbitrary sequence of characters in double-quotes (). A delimited identifier is aways an identifier,
never akey word. So" sel ect " could be used to refer to a column or table named “ select”, whereas an
unquoted sel ect would be taken as a key word and would therefore provoke a parse error when used
where atable or column name is expected. The example can be written with quoted identifiers like this:

UPDATE "ny_table" SET "a" = 5;

Quoted identifiers can contain any character, except the character with code zero. (To include a double
guote, write two double quotes.) This allows constructing table or column names that would otherwise not
be possible, such as ones containing spaces or ampersands. The length limitation still applies.

Quoting an identifier also makes it case-sensitive, whereas ungquoted names are always folded to lower
case. For example, the identifiers FOO, f 0o, and " f 00" are considered the same by PostgreSQL, but
"Foo" and" FOO' aredifferent from thesethree and each other. (Thefolding of unquoted namesto lower
case in PostgreSQL is incompatible with the SQL standard, which says that unquoted names should be
folded to upper case. Thus, f 0o should be equivalent to " FOO' not " f 00" according to the standard. If
you want to write portabl e applicationsyou are advised to always quote aparticular name or never quoteit.)

A variant of quoted identifiersallowsincluding escaped Unicode charactersidentified by their code points.
Thisvariant startswith U& (upper or lower case U followed by ampersand) immediately before the opening
double quote, without any spacesin between, for example U&" f 00" . (Note that this creates an ambiguity
with the operator &. Use spaces around the operator to avoid this problem.) Inside the quotes, Unicode
characters can be specified in escaped form by writing a backslash followed by the four-digit hexadecimal
code point number or aternatively abacks ash followed by aplus sign followed by asix-digit hexadecimal
code point number. For example, the identifier " dat a" could be written as

U&" d\ 0061t \ +000061"

The following less trivial example writes the Russian word “slon” (elephant) in Cyrillic letters:

36

SQL Syntax

4.1.2.

U&"\ 0441\ 043B\ 043E\ 043D"

If a different escape character than backslash is desired, it can be specified using the UESCAPE clause
after the string, for example:

U&" d! 0061t ! +000061" UESCAPE ' !

The escape character can be any single character other than a hexadecimal digit, the plus sign, a single
guote, adouble quote, or awhitespace character. Note that the escape character iswritten in single quotes,
not double quotes, after UESCAPE.

To include the escape character in the identifier literally, write it twice.

Either the 4-digit or the 6-digit escape form can be used to specify UTF-16 surrogate pairs to compose
characters with code points larger than U+FFFF, although the availability of the 6-digit form technically
makes thisunnecessary. (Surrogate pairsare not stored directly, but are combined into asingle code point.)

If the server encoding is not UTF-8, the Unicode code point identified by one of these escape sequences
is converted to the actual server encoding; an error isreported if that's not possible.

Constants

There are three kinds of implicitly-typed constants in PostgreSQL : strings, bit strings, and numbers. Con-
stants can also be specified with explicit types, which can enable more accurate representation and more
efficient handling by the system. These alternatives are discussed in the following subsections.

4.1.2.1. String Constants

A string constant in SQL isan arbitrary sequence of characters bounded by single quotes (*), for example
"This is a string'.Toincludeasingle-quote character within astring constant, write two adjacent
singlequotes, e.g.,' Di anne' ' s hor se' . Notethat thisisnot the same asadouble-quote character ().

Two string constants that are only separated by whitespace with at least one newline are concatenated and
effectively treated asif the string had been written as one constant. For example:

SELECT ' f o0’
"bar';

isequivalent to:

SELECT ' f oobar"' ;

but:

SELECT ' f o0’ "bar';

isnot valid syntax. (This slightly bizarre behavior is specified by SQL; PostgreSQL isfollowing the stan-
dard.)

4.1.2.2. String Constants with C-Style Escapes

37

SQL Syntax

PostgreSQL also accepts“ escape” string constants, which are an extension to the SQL standard. An escape
string constant is specified by writing the letter E (upper or lower case) just before the opening single
quote, e.qg., E' f 0o’ . (When continuing an escape string constant across lines, write E only before the
first opening quote.) Within an escape string, a backslash character (\) begins a C-like backslash escape
seguence, in which the combination of backslash and following character(s) represent aspecial bytevalue,
asshownin Table4.1.

Table 4.1. Backslash Escape Sequences

Backslash Escape Sequence I nterpretation

\b backspace

\ f form feed

\n newline

\r carriage return

\ t tab

\ 0,\ 00,\ 000 (0 =0-7) octal byte value

\ xh,\ xhh (h =0-9, A-F) hexadecimal byte value

\ uxxxx, \ UXxxxxxxx (x =0-9, A—F) 16 or 32-bit hexadecimal Unicode character value

Any other character following a backslash is taken literally. Thus, to include a backslash character, write
two backslashes (\ \). Also, asingle quote can be included in an escape string by writing \ * , in addition
to the normal way of ' ' .

It isyour responsibility that the byte sequences you create, especially when using the octal or hexadecimal
escapes, compose valid characters in the server character set encoding. A useful aternative isto use Uni-
code escapes or the alternative Unicode escape syntax, explained in Section 4.1.2.3; then the server will
check that the character conversion is possible.

Caution

If the configuration parameter standard_conforming_stringsis of f , then PostgreSQL recognizes
backslash escapesin both regular and escape string constants. However, as of PostgreSQL 9.1, the
default ison, meaning that backslash escapes are recognized only in escape string constants. This
behavior is more standards-compliant, but might break applications which rely on the historical
behavior, where backslash escapes were always recognized. As a workaround, you can set this
parameter to of f , but it is better to migrate away from using backslash escapes. If you need to use
abackslash escape to represent a specia character, write the string constant with an E.

In addition to standard_conform ng_strings, the configuration parameters es
cape_string_warning and backslash_quote govern treatment of backslashesin string constants.

The character with the code zero cannot be in a string constant.

4.1.2.3. String Constants with Unicode Escapes

PostgreSQL also supports another type of escape syntax for strings that allows specifying arbitrary Uni-
code characters by code point. A Unicode escape string constant starts with U& (upper or lower case letter
U followed by ampersand) immediately before the opening quote, without any spacesin between, for ex-
ampleU&' f 00" . (Notethat this creates an ambiguity with the operator &. Use spaces around the operator
to avoid this problem.) Inside the quotes, Unicode characters can be specified in escaped form by writing a

38

SQL Syntax

backslash followed by the four-digit hexadecimal code point number or alternatively abackslash followed
by a plus sign followed by a six-digit hexadecimal code point number. For example, the string ' dat a'
could be written as

U&' d\ 0061t \ +000061'

Thefollowing less trivial example writes the Russian word “slon” (elephant) in Cyrillic letters:

U&' \ 0441\ 043B\ 043E\ 043D

If a different escape character than backslash is desired, it can be specified using the UESCAPE clause
after the string, for example:

U&' d! 0061t ! +000061" UESCAPE ' !’

The escape character can be any single character other than a hexadecimal digit, the plus sign, a single
guote, a double quote, or a whitespace character.

To include the escape character in the string literaly, write it twice.

Either the 4-digit or the 6-digit escape form can be used to specify UTF-16 surrogate pairs to compose
characters with code points larger than U+FFFF, although the availability of the 6-digit form technically
makesthisunnecessary. (Surrogate pairsare not stored directly, but are combined into asingle code point.)

If the server encoding is not UTF-8, the Unicode code point identified by one of these escape sequences
is converted to the actual server encoding; an error isreported if that's not possible.

Also, the Unicode escape syntax for string constants only works when the configuration parameter stan-
dard_conforming_strings is turned on. This is because otherwise this syntax could confuse clients that
parse the SQL statements to the point that it could lead to SQL injections and similar security issues. If
the parameter is set to off, this syntax will be rejected with an error message.

4.1.2.4. Dollar-Quoted String Constants

While the standard syntax for specifying string constants is usually convenient, it can be difficult to un-
derstand when the desired string contains many single quotes or backslashes, since each of those must
be doubled. To allow more readable queriesin such situations, PostgreSQL provides another way, called
“dollar quoting”, to write string constants. A dollar-quoted string constant consists of a dollar sign ($),
an optional “tag” of zero or more characters, another dollar sign, an arbitrary sequence of characters that
makes up the string content, a dollar sign, the same tag that began this dollar quote, and a dollar sign. For
example, here are two different ways to specify the string “Dianne's horse” using dollar quoting:

$$Di anne' s horse$$
$SonmeTag$Di anne' s hor se$SoneTag$

Noticethat inside the dollar-quoted string, single quotes can be used without needing to be escaped. Indeed,
no characters inside a dollar-quoted string are ever escaped: the string content is always written literally.
Backslashes are not special, and neither are dollar signs, unless they are part of a sequence matching the

opening tag.

It is possible to nest dollar-quoted string constants by choosing different tags at each nesting level. This
ismost commonly used in writing function definitions. For example:

39

SQL Syntax

$f uncti on$
BEG N
RETURN ($1 ~ g[\t\r\n\v\\]q);
END;
$f uncti on$

Here, the sequence g[\ t \ r\ n\ vi\] g representsadollar-quoted literal string [\ t\ r\n\ vi\],
which will be recognized when the function body is executed by PostgreSQL . But since the sequence does
not match the outer dollar quoting delimiter $f unct i on$, it is just some more characters within the
constant so far as the outer string is concerned.

The tag, if any, of a dollar-quoted string follows the same rules as an unquoted identifier, except that it
cannot contain adollar sign. Tags are case sensitive, so $t ag$St ri ng cont ent $t ag$ iscorrect, but
$TAGESt ri ng cont ent $t ag$ isnot.

A dollar-quoted string that follows a keyword or identifier must be separated from it by whitespace; oth-
erwise the dollar quoting delimiter would be taken as part of the preceding identifier.

Dollar quoting is not part of the SQL standard, but it is often a more convenient way to write compli-
cated string literals than the standard-compliant single quote syntax. It is particularly useful when repre-
senting string constants inside other constants, asis often needed in procedural function definitions. With
single-quote syntax, each backslash in the above example would have to be written as four backslashes,
which would be reduced to two backslashes in parsing the original string constant, and then to one when
the inner string constant is re-parsed during function execution.

4.1.2.5. Bit-String Constants

Bit-string constants look like regular string constants with a B (upper or lower case) immediately before
the opening quote (no intervening whitespace), e.g., B' 1001' . The only characters allowed within bit-
string constantsare 0 and 1.

Alternatively, bit-string constants can be specified in hexadecimal notation, using a leading X (upper or
lower case), e.g., X' 1FF' . This notation is equivalent to a bit-string constant with four binary digits for
each hexadecimal digit.

Both forms of bit-string constant can be continued acrosslinesin the same way asregular string constants.
Dollar quoting cannot be used in a bit-string constant.

4.1.2.6. Numeric Constants

Numeric constants are accepted in these general forms:

digits
digits.[digits][e[+-]digits]
[digits].digits[e[+-]digits]
digitse[+-]digits

wheredi gi t s isone or more decimal digits (O through 9). At least one digit must be before or after the
decimal point, if oneis used. At least one digit must follow the exponent marker (e), if one is present.
There cannot be any spaces or other characters embedded in the constant. Note that any leading plus or
minus sign is not actually considered part of the constant; it is an operator applied to the constant.

These are some examples of valid numeric constants:

40

SQL Syntax

42

3.5

4.

.001

5e2
1.925e-3

A numeric constant that contains neither a decimal point nor an exponent is initially presumed to be
typei nt eger if itsvaluefitsintypei nt eger (32 bits); otherwiseit is presumed to betypebi gi nt if
itsvaluefitsin type bi gi nt (64 bits); otherwise it istaken to betype nuner i ¢. Constants that contain
decimal points and/or exponents are alwaysinitialy presumed to betypenuneri c.

Theinitially assigned data type of a numeric constant is just a starting point for the type resolution algo-
rithms. In most cases the constant will be automatically coerced to the most appropriate type depending
on context. When necessary, you can force a numeric value to be interpreted as a specific data type by
casting it. For example, you can force anumeric value to be treated astyper eal (f | oat 4) by writing:

REAL '1.23" -- string style
1.23:: REAL -- PostgreSQ (historical) style

These are actually just special cases of the general casting notations discussed next.

4.1.2.7. Constants of Other Types

A constant of an arbitrary type can be entered using any one of the following notations:

type 'string'
"string' ::type
CAST ("string' AS type)

The string constant's text is passed to the input conversion routine for the type called t ype. Theresult is
a constant of the indicated type. The explicit type cast can be omitted if there is no ambiguity as to the
type the constant must be (for example, when it is assigned directly to a table column), in which case it
isautomatically coerced.

The string constant can be written using either regular SQL notation or dollar-quoting.

It is also possible to specify atype coercion using a function-like syntax:

typenane ('string')
but not al type names can be used in this way; see Section 4.2.9 for details.

The: :, CAST(), and function-call syntaxes can also be used to specify run-time type conversions of
arbitrary expressions, as discussed in Section 4.2.9. To avoid syntactic ambiguity, thet ype ' stri ng'
syntax can only be used to specify the type of asimple literal constant. Another restriction on thet ype
"string' syntax isthat it does not work for array types; use: : or CAST() to specify the type of an
array constant.

The CAST() syntax conformsto SQL. Thet ype ' string' syntax isageneralization of the standard:
SQL specifies this syntax only for afew data types, but PostgreSQL allows it for all types. The syntax
with: ; ishistorical PostgreSQL usage, asisthe function-call syntax.

41

SQL Syntax

4.1.3.

4.1.4.

Operators

An operator name is a sequence of up to NAMEDATALEN-1 (63 by default) characters from the following
list:

+-*[<>=~1 @QHWN& | ?

There are afew restrictions on operator names, however:

e -- and/* cannot appear anywhere in an operator name, since they will be taken as the start of a
comment.

» A multiple-character operator name cannot end in + or -, unless the name also contains at least one
of these characters:

~1@#% & | ?

For example, @ isan allowed operator name, but * - isnot. Thisrestriction allows PostgreSQL to parse
SQL -compliant queries without requiring spaces between tokens.

When working with non-SQL -standard operator names, you will usually need to separate adjacent opera-
torswith spacesto avoid ambiguity. For example, if you have defined a prefix operator named @ you can-
not write X* @Y; you must write X* @Y to ensure that PostgreSQL readsit as two operator names not one.

Special Characters

Some charactersthat are not al phanumeric have aspecial meaning that is different from being an operator.
Details on the usage can be found at the location where the respective syntax element is described. This
section only exists to advise the existence and summarize the purposes of these characters.

» A dollar sign ($) followed by digitsis used to represent a positional parameter in the body of afunction
definition or a prepared statement. In other contexts the dollar sign can be part of an identifier or a
dollar-quoted string constant.

» Parentheses(()) have their usual meaning to group expressions and enforce precedence. In some cases
parentheses are required as part of the fixed syntax of a particular SQL command.

» Brackets ([]) are used to select the elements of an array. See Section 8.15 for more information on
arrays.

e Commas (,) are used in some syntactical constructs to separate the elements of alist.

» Thesemicolon (;) terminates an SQL command. It cannot appear anywhere within acommand, except
within a string constant or quoted identifier.

» Thecolon (:) isused to select “dlices’ from arrays. (See Section 8.15.) In certain SQL dialects (such
as Embedded SQL), the colon is used to prefix variable names.

e Theasterisk (*) isused in some contextsto denote all the fields of atablerow or compositevalue. It also
has a special meaning when used as the argument of an aggregate function, namely that the aggregate
does not require any explicit parameter.

* Theperiod (.) isused in numeric constants, and to separate schema, table, and column names.

42

SQL Syntax

4.1.5. Comments

4.1.6.

A comment is a sequence of characters beginning with double dashes and extending to the end of the
line eg.:

-- This is a standard SQ. conment

Alternatively, C-style block comments can be used:

/* multiline coment
* with nesting: /* nested bl ock conment */
*/

where the comment beginswith/ * and extendsto the matching occurrence of */ . These block comments
nest, as specified in the SQL standard but unlike C, so that one can comment out larger blocks of code
that might contain existing block comments.

A comment is removed from the input stream before further syntax analysis and is effectively replaced
by whitespace.

Operator Precedence

Table 4.2 showsthe precedence and associativity of the operatorsin PostgreSQL . Most operators have the
same precedence and are | eft-associative. The precedence and associativity of the operatorsis hard-wired
into the parser. Add parentheses if you want an expression with multiple operators to be parsed in some
other way than what the precedence rulesimply.

Table 4.2. Operator Precedence (highest to lowest)

Operator/Element Associativity Description
left table/column name separator
left PostgreSQL -style typecast
[1] left array element selection
+ - right unary plus, unary minus
n left exponentiation
* | % left multiplication, division, modulo
+ - left addition, subtraction
(any other operator) left all other native and user-defined opera-
tors
BETVWEENI NLI KEI LI KESI M LAR range containment, set membership,
string matching
<>=<=>=<> comparison operators
I ST SNULL NOTNULL IS TRUE, IS FALSE, IS NULL,IS
DI STI NCT FROM etc
NOT right logical negation
AND left logical conjunction
oR left logical digunction

43

SQL Syntax

Note that the operator precedence rules also apply to user-defined operators that have the same names as
the built-in operators mentioned above. For example, if you define a“+" operator for some custom data
type it will have the same precedence as the built-in “+” operator, no matter what yours does.

When a schema-qualified operator nameis used in the OPERATOR syntax, as for examplein:

SELECT 3 OPERATOR(pg_catal og. +) 4;

the OPERATOR construct is taken to have the default precedence shown in Table 4.2 for “any other oper-
ator”. Thisistrue no matter which specific operator appears inside OPERATOR() .

Note

PostgreSQL versions before 9.5 used dlightly different operator precedence rules. In particular,
<=>= and <> used to be treated as generic operators; | S tests used to have higher priority; and
NOT BETWEEN and related constructs acted inconsistently, being taken in some cases as having
the precedence of NOT rather than BETWEEN. These rules were changed for better compliance
with the SQL standard and to reduce confusion from inconsistent treatment of logically equivalent
constructs. In most cases, these changeswill result in no behavioral change, or perhapsin “no such
operator” failures which can be resolved by adding parentheses. However there are corner cases
in which a query might change behavior without any parsing error being reported.

4.2. Value Expressions

Vaue expressions are used in avariety of contexts, such asin the target list of the SELECT command, as
new columnvaluesinl NSERT or UPDATE, or in search conditionsin anumber of commands. Theresult of
avalueexpressionissometimescalled ascalar, to distinguish it from the result of atable expression (which
isatable). Value expressions are therefore also called scalar expressions (or even simply expressions).
The expression syntax alows the calculation of values from primitive parts using arithmetic, logical, set,
and other operations.

A value expression is one of the following:
* A constant or literal value

* A column reference

A positional parameter reference, in the body of afunction definition or prepared statement
* A subscripted expression

» A field selection expression

» An operator invocation

A function call

» An aggregate expression

* A window function call

e A typecast

SQL Syntax

4.2.1.

4.2.2.

4.2.3.

A collation expression

A scalar subquery

e Anarray constructor

* A row constructor

» Another value expression in parentheses (used to group subexpressions and override precedence)

In addition to this list, there are a number of constructs that can be classified as an expression but do not
follow any general syntax rules. These generally have the semantics of a function or operator and are
explained in the appropriate location in Chapter 9. An exampleisthel S NULL clause.

We have already discussed constants in Section 4.1.2. The following sections discuss the remaining op-
tions.

Column References

A column can be referenced in the form:

correl ati on. col utTmnane

correl ati on isthe name of atable (possibly qualified with a schema name), or an dlias for a table
defined by means of a FROMclause. The correlation name and separating dot can be omitted if the column
name is unique across all the tables being used in the current query. (See also Chapter 7.)

Positional Parameters

A positional parameter referenceisused toindicate avaluethat is supplied externally to an SQL statement.
Parametersare used in SQL function definitionsand in prepared queries. Some client libraries also support
specifying data values separately from the SQL command string, in which case parameters are used to
refer to the out-of-line data values. The form of a parameter referenceis:

$nunber

For example, consider the definition of afunction, dept , as:

CREATE FUNCTI ON dept (text) RETURNS dept
AS $$ SELECT * FROM dept WHERE name = $1 $$
LANGUAGE SQL;

Here the $1 references the value of the first function argument whenever the function is invoked.

Subscripts

If an expression yields avalue of an array type, then a specific element of the array value can be extracted
by writing

expressi on[subscri pt]

or multiple adjacent elements (an “array dice”) can be extracted by writing

45

SQL Syntax

4.2.4.

4.2.5.

expression[| ower _subscri pt: upper_subscri pt]

(Here, the brackets[] are meant to appear literally.) Each subscri pt isitself an expression, which
will be rounded to the nearest integer value.

In general the array expr essi on must be parenthesized, but the parentheses can be omitted when the
expression to be subscripted is just a column reference or positional parameter. Also, multiple subscripts
can be concatenated when the original array is multidimensional. For example:

nmyt abl e. arraycol umJ 4]

nmyt abl e. two_d_col umm[17] [34]
$1[10: 42]
(arrayfunction(a,b))[42]

The parentheses in the last example are required. See Section 8.15 for more about arrays.

Field Selection

If an expression yields a value of a composite type (row type), then a specific field of the row can be
extracted by writing

expression. fiel dname

In general the row expr essi on must be parenthesized, but the parentheses can be omitted when the
expression to be selected from is just atable reference or positiona parameter. For example:

nyt abl e. mycol um
$1. somecol um
(rowfunction(a,b)).col3

(Thus, aqualified column referenceis actually just a special case of the field selection syntax.) Animpor-
tant special case is extracting afield from atable column that is of a composite type:

(conposi tecol). sonefield
(myt abl e. conposi tecol). sonefield

The parentheses are required here to show that conposi t ecol isacolumn name not a table name, or
that myt abl e isatable name not a schema name in the second case.

Y ou can ask for all fields of a composite value by writing . *:

(compositecol).*
This notation behaves differently depending on context; see Section 8.16.5 for details.
Operator Invocations

There are two possible syntaxes for an operator invocation:

expr essi on oper at or expr essi on (binary infix operator)

46

SQL Syntax

4.2.6.

4.2.7.

oper at or expr essi on (unary prefix operator)

where the oper at or token follows the syntax rules of Section 4.1.3, or is one of the key words AND,
OR, and NOT, or isaqualified operator name in the form:

OPERATOR(schemm. oper at or nane)

Which particular operators exist and whether they are unary or binary depends on what operators have
been defined by the system or the user. Chapter 9 describes the built-in operators.

Function Calls

The syntax for afunction call isthe name of afunction (possibly qualified with a schemaname), followed
by its argument list enclosed in parentheses:
function_nane ([expression [, expression ...]])

For example, the following computes the square root of 2:

sqrt(2)
The list of built-in functionsisin Chapter 9. Other functions can be added by the user.

When issuing queries in a database where some users mistrust other users, observe security precautions
from Section 10.3 when writing function calls.

The arguments can optionally have names attached. See Section 4.3 for details.

Note

A function that takes a single argument of composite type can optionally be called using field-
selection syntax, and conversely field selection can be written in functional style. That is, the
notationscol (tabl e) andt abl e. col areinterchangeable. Thisbehavior isnot SQL-standard
but is provided in PostgreSQL because it allows use of functions to emulate “computed fields’.
For more information see Section 8.16.5.

Aggregate Expressions

An aggregate expression represents the application of an aggregate function across the rows selected by a
guery. An aggregate function reduces multiple inputs to a single output value, such as the sum or average
of the inputs. The syntax of an aggregate expression is one of the following:

aggregate_nane (expression [, ...] [order_by clause]) [FILTER
(WHERE filter_clause)]

aggregate_nane (ALL expression [, ...] [order_by clause])

[FILTER (WHERE filter_clause)]

aggregate_nane (DI STINCT expression [, ...] [order_by clause])

[FILTER (WHERE filter_clause)]
aggregate nane (*) [FILTER (WHERE filter_clause)]

47

SQL Syntax

aggregate _nane ([expression [, ...]]) WTHN GROUP
(order_by clause) [FILTER (WHERE filter_clause)]

whereaggr egat e_narme isapreviously defined aggregate (possibly qualified with aschemaname) and
expr essi on isany value expression that does not itself contain an aggregate expression or a window
function call. The optional or der _by_cl ause andfi |l t er _cl ause are described below.

Thefirst form of aggregate expression invokes the aggregate once for each input row. The second formis
the same asthefirst, since ALL isthe default. The third form invokes the aggregate once for each distinct
value of the expression (or distinct set of values, for multiple expressions) found in the input rows. The
fourth form invokes the aggregate once for each input row; since no particular input value is specified,
it is generaly only useful for the count (*) aggregate function. The last form is used with ordered-set
aggregate functions, which are described below.

Most aggregate functions ignore null inputs, so that rows in which one or more of the expression(s) yield
null are discarded. This can be assumed to be true, unless otherwise specified, for all built-in aggregates.

For example, count (*) yieldsthetotal number of input rows; count (f 1) yieldsthe number of input
rowsinwhichf 1 isnon-null, sincecount ignoresnulls;andcount (di sti nct f1) yieldsthenumber
of distinct non-null valuesof f 1.

Ordinarily, theinput rows are fed to the aggregate function in an unspecified order. In many casesthis does
not matter; for example, m n produces the same result no matter what order it receivesthe inputsin. How-
ever, some aggregate functions (such asar r ay_agg and st ri ng_agg) produce results that depend on
the ordering of the input rows. When using such an aggregate, the optional or der _by_cl ause can be
used to specify the desired ordering. The or der _by_cl ause has the same syntax as for a query-level
ORDER BY clause, asdescribed in Section 7.5, except that its expressions are always just expressions and
cannot be output-column names or numbers. For example:

SELECT array_agg(a ORDER BY b DESC) FROMt abl e;

When dealing with multiple-argument aggregate functions, note that the ORDER BY clause goes after all
the aggregate arguments. For example, write this:

SELECT string agg(a, ',' ORDER BY a) FROM tabl e;
not this:
SELECT string agg(a ORDER BY a, ',') FROMtable; -- incorrect

The latter is syntactically valid, but it represents a call of a single-argument aggregate function with two
ORDER BY keys (the second one being rather useless sinceit's a constant).

If DI STI NCT is specified in addition to an or der _by_cl ause, then all the ORDER BY expressions
must match regular arguments of the aggregate; that is, you cannot sort on an expression that isnot included
inthe DI STI NCT list.

Note

The ability to specify both DI STI NCT and ORDER BY in an aggregate function is a PostgreSQL
extension.

48

SQL Syntax

Placing ORDER BY within the aggregate's regular argument list, as described so far, is used when order-
ing the input rows for general-purpose and statistical aggregates, for which ordering is optional. There
is a subclass of aggregate functions called ordered-set aggregates for which an or der _by_cl ause is
required, usually because the aggregate's computation isonly sensiblein terms of a specific ordering of its
input rows. Typical examples of ordered-set aggregates include rank and percentile calculations. For an
ordered-set aggregate, the or der _by cl ause iswritteninside W THIN GROUP (...), asshown
inthefinal syntax alternative above. The expressionsintheor der by cl ause are evaluated once per
input row just like regular aggregate arguments, sorted as per the or der _by _cl ause's requirements,
and fed to the aggregate function as input arguments. (Thisis unlike the case for anon-W THI N GROUP
order by _cl ause, which is not treated as argument(s) to the aggregate function.) The argument ex-
pressions preceding W THI N GROUP, if any, are called direct arguments to distinguish them from the
aggregated argumentslisted intheor der _by_cl ause. Unlike regular aggregate arguments, direct ar-
guments are evaluated only once per aggregate call, not once per input row. This means that they can
contain variables only if those variables are grouped by GROUP BY; this restriction is the same as if the
direct arguments were not inside an aggregate expression at all. Direct arguments are typically used for
things like percentile fractions, which only make sense as a single value per aggregation calculation. The
direct argument list can be empty; in this case, write just () not (*) . (PostgreSQL will actually accept
either spelling, but only the first way conforms to the SQL standard.)

An example of an ordered-set aggregate call is.

SELECT percentile_cont(0.5) WTH N GROUP (ORDER BY incone) FROM
househol ds;
percentil e_cont

which obtains the 50th percentile, or median, value of the i ncome column from table househol ds.
Here, 0. 5 isadirect argument; it would make no sense for the percentile fraction to be a value varying
across rows.

If FI LTER is specified, then only the input rows for whichthefi | t er _cl ause evaluates to true are
fed to the aggregate function; other rows are discarded. For example:

SELECT

count (*) AS unfiltered,

count (*) FILTER (WHERE i < 5) AS filtered
FROM generate_series(1,10) AS s(i);
unfiltered | filtered

(1 row

The predefined aggregate functions are described in Section 9.21. Other aggregate functions can be added
by the user.

An aggregate expression can only appear in the result list or HAVI NG clause of a SELECT command.
It is forbidden in other clauses, such as WHERE, because those clauses are logically evaluated before the
results of aggregates are formed.

When an aggregate expression appears in a subquery (see Section 4.2.11 and Section 9.23), the aggregate
isnormally evaluated over the rows of the subquery. But an exception occurs if the aggregate's arguments
(andfil ter_cl ause if any) contain only outer-level variables: the aggregate then bel ongs to the near-

49

SQL Syntax

4.2.8.

est such outer level, and is evaluated over the rows of that query. The aggregate expression as awholeis
then an outer reference for the subquery it appearsin, and acts as a constant over any one evaluation of that
subquery. The restriction about appearing only in the result list or HAVI NG clause applies with respect to
the query level that the aggregate belongs to.

Window Function Calls

A window function call represents the application of an aggregate-like function over some portion of the
rows selected by a query. Unlike non-window aggregate calls, thisis not tied to grouping of the selected
rows into a single output row — each row remains separate in the query output. However the window
function has accessto all the rows that would be part of the current row's group according to the grouping
specification (PARTI TI ON BY list) of the window function call. The syntax of a window function call
is one of the following:

function_nane ([expression [, expression ...]]) [FILTER
(WHERE filter_clause)] OVER wi ndow_nane
function_nane ([expression [, expression ...]]) [FILTER

(WHERE filter_clause)] OVER (wi ndow definition)
function_nane (*) [FILTER (WHERE filter_cl ause)]
OVER wi ndow_nhane
function_nane (*) [FILTER (WHERE filter_clause)] OVER
(wi ndow definition)

wherewi ndow_def i ni ti on hasthe syntax

[existing_w ndow nane]

[PARTITION BY expression [, ...]]
[ORDER BY expression [ASC | DESC | USING operator] [NULLS { FIRST
| LAST} 1 [, ---11

[frane_cl ause]

The optional f r ane_cl ause can be one of

{ RANGE | RON5 | GROUPS } frane_start [frame_exclusion]
{ RANGE | ROAS | GROUPS } BETVEEN frane_start AND frane_end
[frane_exclusion]

wherefranme_start andf ranme_end can be one of

UNBOUNDED PRECEDI NG
of f set PRECEDI NG
CURRENT ROW

of fset FOLLOW NG
UNBOUNDED FOLLOW NG

andf rame_excl usi on can be one of

EXCLUDE CURRENT ROW
EXCLUDE GROUP
EXCLUDE TI ES
EXCLUDE NO OTHERS

50

SQL Syntax

Here, expr essi on represents any value expression that does not itself contain window function calls.

wi ndow_nane is areference to a named window specification defined in the query's W NDOWCclause.
Alternatively, afull wi ndow_defi ni ti on can be given within parentheses, using the same syntax as
for defining anamed window in the W NDOWCclause; seethe SELECT reference page for details. It'sworth
pointing out that OVER wnane is not exactly equivalent to OVER (wname ...); thelatter implies
copying and modifying the window definition, and will berejected if the referenced window specification
includes a frame clause.

The PARTI TI ON BY clause groups the rows of the query into partitions, which are processed separately
by the window function. PARTI TI ON BY works similarly to a query-level GROUP BY clause, except
that its expressions are always just expressions and cannot be output-column names or numbers. Without
PARTI Tl ON BY, all rows produced by the query are treated as a single partition. The ORDER BY clause
determines the order in which the rows of a partition are processed by the window function. It works
similarly to a query-level ORDER BY clause, but likewise cannot use output-column names or numbers.
Without ORDER BY, rows are processed in an unspecified order.

Thefranme_cl ause specifies the set of rows constituting the window frame, which is a subset of the
current partition, for those window functions that act on the frame instead of the whole partition. The set
of rows in the frame can vary depending on which row is the current row. The frame can be specified in
RANGE, ROWS or GROUPS mode; in each case, it runsfromtheframe_start tothefrane_end. If
frame_end is omitted, the end defaults to CURRENT ROW

A frane_start of UNBOUNDED PRECEDI NG means that the frame starts with the first row of the
partition, and similarly af r ame_end of UNBOUNDED FOLLOW NG means that the frame ends with
the last row of the partition.

In RANGE or GROUPS mode, af r ame_st art of CURRENT ROWmeansthe frame startswith the current
row's first peer row (arow that the window's ORDER BY clause sorts as equivalent to the current row),
while af rame_end of CURRENT ROWmMmeans the frame ends with the current row's last peer row. In
ROWS5 mode, CURRENT ROWSs mply means the current row.

Inthe of f set PRECEDI NGand of f set FOLLOW NGframe options, the of f set must be an expres-
sion not containing any variables, aggregate functions, or window functions. The meaning of the of f set
depends on the frame mode:

* In ROWE mode, the of f set must yield anon-null, non-negative integer, and the option means that the
frame starts or ends the specified number of rows before or after the current row.

* InGROUPS mode, the of f set again must yield anon-null, non-negative integer, and the option means
that the frame starts or ends the specified number of peer groups before or after the current row's peer
group, where a peer group is a set of rows that are equivalent in the ORDER BY ordering. (There must
be an ORDER BY clause in the window definition to use GROUPS mode.)

* In RANGE mode, these options require that the ORDER BY clause specify exactly one column. The
of f set specifies the maximum difference between the value of that column in the current row and
its value in preceding or following rows of the frame. The data type of the of f set expression varies
depending on the data type of the ordering column. For numeric ordering columnsit istypically of the
same type as the ordering column, but for datetime ordering columnsitisani nt er val . For example,
if the ordering columnisof typedat e ort i mest anp, onecould write RANGE BETVEEN ' 1 day'
PRECEDI NG AND ' 10 days' FCOLLOW NG Theof f set isstill required to be non-null and non-
negative, though the meaning of “non-negative’ depends on its data type.

In any case, the distance to the end of the frame is limited by the distance to the end of the partition, so
that for rows near the partition ends the frame might contain fewer rows than el sewhere.

51

SQL Syntax

4.2.9.

Notice that in both ROAS and GROUPS mode, 0 PRECEDI NGand 0 FOLLOW NG are equivalent to
CURRENT ROW Thisnormally holdsin RANGE mode aswell, for an appropriate data-type-specific mean-
ing of “zero”.

Thef r ame_excl usi on option allowsrowsaround the current row to be excluded from the frame, even
if they would be included according to the frame start and frame end options. EXCLUDE CURRENT ROW
excludes the current row from the frame. EXCLUDE GROUP excludes the current row and its ordering
peers from the frame. EXCLUDE TI ES excludes any peers of the current row from the frame, but not
the current row itself. EXCLUDE NO OTHERS simply specifies explicitly the default behavior of not
excluding the current row or its peers.

The default framing option is RANGE UNBOUNDED PRECEDI NG, which is the same as RANGE BE-
TWEEN UNBOUNDED PRECEDI NG AND CURRENT ROW With ORDER BY, this sets the frame to
be all rows from the partition start up through the current row's last ORDER BY peer. Without ORDER
BY, this means all rows of the partition are included in the window frame, since all rows become peers
of the current row.

Restrictions are that f rane_st art cannot be UNBOUNDED FOLLOW NG, f rame_end cannot be
UNBOUNDED PRECEDI NG, and the f r ane_end choice cannot appear earlier in the above list of
frame_start andfrane_end optionsthanthef rane_st art choice does— for example RANGE
BETWEEN CURRENT ROW AND of f set PRECEDI NGisnot alowed. But, for example, RONE BE-
TWEEN 7 PRECEDI NG AND 8 PRECEDI NGisalowed, even though it would never select any rows.

If FI LTER is specified, then only the input rows for whichthefi | t er _cl ause evaluates to true are
fed to the window function; other rows are discarded. Only window functions that are aggregates accept
aFl LTER clause.

The built-in window functions are described in Table 9.62. Other window functions can be added by the
user. Also, any built-in or user-defined general-purpose or statistical aggregate can be used as a window
function. (Ordered-set and hypothetical-set aggregates cannot presently be used as window functions.)

The syntaxes using * are used for calling parameter-less aggregate functions as window functions, for
examplecount (*) OVER (PARTI TION BY x ORDER BY vy). Theasterisk (*) is customarily
not used for window-specific functions. Window-specific functions do not allow DI STI NCT or ORDER
BY to be used within the function argument list.

Window function calls are permitted only in the SELECT list and the ORDER BY clause of the query.

More information about window functions can be found in Section 3.5, Section 9.22, and Section 7.2.5.

Type Casts

A type cast specifies a conversion from one data type to another. PostgreSQL accepts two equivalent
syntaxes for type casts:

CAST (expression AS type)
expression: :type

The CAST syntax conforms to SQL ; the syntax with : : ishistorical PostgreSQL usage.

When acast is applied to avalue expression of aknown type, it represents arun-timetype conversion. The
cast will succeed only if a suitable type conversion operation has been defined. Notice that thisis subtly
different from the use of casts with constants, as shown in Section 4.1.2.7. A cast applied to an unadorned
string literal representsthe initial assignment of atypeto aliteral constant value, and so it will succeed for
any type (if the contents of the string literal are acceptable input syntax for the data type).

52

SQL Syntax

An explicit type cast can usually be omitted if there is no ambiguity asto the type that a value expression
must produce (for example, when it is assigned to a table column); the system will automatically apply a
type cast in such cases. However, automatic casting is only done for casts that are marked “OK to apply
implicitly” inthe system catal ogs. Other casts must beinvoked with explicit casting syntax. Thisrestriction
isintended to prevent surprising conversions from being applied silently.

It isalso possible to specify atype cast using afunction-like syntax:

typenane (expression)

However, this only worksfor types whose names are also valid as function names. For example, doubl e
preci si on cannot be used this way, but the equivalent f | oat 8 can. Also, the names i nt er val ,
time,andti mest anp can only be used in this fashion if they are double-quoted, because of syntactic
conflicts. Therefore, the use of the function-like cast syntax leads to inconsistencies and should probably
be avoided.

Note

The function-like syntax isin fact just afunction call. When one of the two standard cast syntaxes
is used to do a run-time conversion, it will internally invoke a registered function to perform the
conversion. By convention, these conversion functions have the same name as their output type,
and thus the “function-like syntax” is nothing more than a direct invocation of the underlying
conversion function. Obviously, thisis not something that a portable application should rely on.
For further details see CREATE CAST.

4.2.10. Collation Expressions

The COLLATE clause overridesthe collation of an expression. It isappended to the expression it appliesto:

expr COLLATE coll ation

where col | ati on is a possibly schema-qualified identifier. The COLLATE clause binds tighter than
operators; parentheses can be used when necessary.

If no collation is explicitly specified, the database system either derives a collation from the columns
involved in the expression, or it defaults to the default collation of the database if no column isinvolved
in the expression.

The two common uses of the COLLATE clause are overriding the sort order in an ORDER BY clause,
for example:
SELECT a, b, ¢ FROMtbhl WHERE ... ORDER BY a COLLATE "C';

and overriding the collation of afunction or operator call that has local e-sensitive results, for example:

SELECT * FROM tbl WHERE a > 'foo' COLLATE "C';

Notethat in thelatter case the COLLATE clauseis attached to an input argument of the operator we wish to
affect. It doesn't matter which argument of the operator or function call the COLLATE clauseis attached to,
becausethe collation that is applied by the operator or function isderived by considering all arguments, and

53

SQL Syntax

an explicit COLLATE clause will override the collations of all other arguments. (Attaching non-matching
COLLATE clauses to more than one argument, however, is an error. For more details see Section 24.2.)
Thus, this gives the same result as the previous example;

SELECT * FROM t bl WHERE a COLLATE "C' > 'foo0';

But thisis an error:

SELECT * FROM tbl WHERE (a > 'foo') COLLATE "C';

because it attempts to apply a collation to the result of the > operator, which is of the non-collatable data
typebool ean.

4.2.11. Scalar Subqueries

A scalar subguery is an ordinary SELECT query in parentheses that returns exactly one row with one
column. (See Chapter 7 for information about writing queries.) The SELECT query is executed and the
single returned value is used in the surrounding value expression. It is an error to use a query that returns
more than one row or more than one column as a scalar subquery. (But if, during a particular execution,
the subquery returns no rows, there is no error; the scalar result is taken to be null.) The subquery can
refer to variables from the surrounding query, which will act as constants during any one evaluation of the
subquery. See also Section 9.23 for other expressions involving subqueries.

For example, the following finds the largest city population in each state:

SELECT nane, (SELECT nmax(pop) FROM cities WHERE cities.state =
st at es. nane)
FROM st at es;

4.2.12. Array Constructors

An array constructor is an expression that builds an array value using values for its member elements. A
simple array constructor consists of the key word ARRAY, a left square bracket [, a list of expressions
(separated by commas) for the array element values, and finally aright square bracket] . For example:

SELECT ARRAY[1, 2, 3+4];
array

By default, the array element type is the common type of the member expressions, determined using the
samerulesasfor UNI ONor CASE constructs (see Section 10.5). Y ou can override this by explicitly casting
the array constructor to the desired type, for example:

SELECT ARRAY[1,2,22.7]::integer[];
array

SQL Syntax

This has the same effect as casting each expression to the array element type individually. For more on
casting, see Section 4.2.9.

Multidimensional array values can be built by nesting array constructors. In the inner constructors, the key
word ARRAY can be omitted. For example, these produce the same result:

SELECT ARRAY[ARRAY[1, 2], ARRAY[3, 4]];
array

{{1,2},{3, 4}}
(1 row

SELECT ARRAY[[1,2],[3,4]];
array

{{1,2},{3, 4}}
(1 row

Since multidimensional arrays must be rectangular, inner constructors at the same level must produce sub-
arrays of identical dimensions. Any cast applied to the outer ARRAY constructor propagates automatically
to all the inner constructors.

Multidimensional array constructor elements can be anything yielding an array of the proper kind, not
only asub-ARRAY construct. For example:

CREATE TABLE arr(f1 int[], f2 int[]);
I NSERT | NTO arr VALUES (ARRAY[[1,2],[3,4]], ARRAY[[5,6],[7,8]11);

SELECT ARRAY[f1, f2, '{{9,10},{11,12}} ::int[]] FROM arr
array

{{{1,2},{3,4}},{{5,6},{7,8}},{{9, 10}, {11, 12} }}
(1 row

Y ou can construct an empty array, but since it's impossible to have an array with no type, you must ex-
plicitly cast your empty array to the desired type. For example:

SELECT ARRAY[]::integer[];
array

{}
(1 row

It is also possible to construct an array from the results of a subquery. In thisform, the array constructor
iswritten with the key word ARRAY followed by a parenthesized (not bracketed) subquery. For example:

SELECT ARRAY(SELECT oi d FROM pg_proc WHERE pronanme LIKE 'bytea%);
array

{2011, 1954, 1948, 1952, 1951, 1244, 1950, 2005, 1949, 1953, 2006, 31, 2412}

55

SQL Syntax

(1 row

SELECT ARRAY(SELECT ARRAY[i, i*2] FROM generate_series(1,5) AS a(i));
array

{{1,2},{2,4},{3,6},{4,8},{5, 10}}

(1 row)

The subguery must return a single column. If the subquery's output column is of a non-array type, the
resulting one-dimensional array will have an element for each row in the subquery result, with an element
type matching that of the subquery's output column. If the subquery's output column is of an array type,
the result will be an array of the same type but one higher dimension; in this case al the subquery rows
must yield arrays of identical dimensionality, else the result would not be rectangular.

The subscripts of an array value built with ARRAY aways begin with one. For more information about
arrays, see Section 8.15.

4.2.13. Row Constructors

A row constructor is an expression that builds a row value (also called a composite value) using values
for its member fields. A row constructor consists of the key word ROW a left parenthesis, zero or more
expressions (separated by commas) for the row field values, and finally aright parenthesis. For example:

SELECT RON1,2.5,'"this is a test');
The key word ROWis optional when there is more than one expression in the list.

A row constructor can include the syntax r owval ue. *, which will be expanded to alist of the elements
of the row value, just as occurs when the . * syntax is used at the top level of a SELECT list (see Sec-
tion 8.16.5). For example, if tablet hascolumnsf 1 and f 2, these are the same;

SELECT RON(t.*, 42) FROMt;
SELECT RON(t.f1, t.f2, 42) FROMt;

Note

Before PostgreSQL 8.2, the . * syntax was not expanded in row constructors, so that writing
ROWNt.*, 42) created atwo-field row whose first field was another row value. The new be-
havior is usually more useful. If you need the old behavior of nested row values, write the inner
row value without . *, for instance RON(t, 42).

By default, the value created by a ROWNexpression is of an anonymous record type. If necessary, it can be
cast to anamed composite type — either the row type of atable, or acomposite type created with CREATE
TYPE AS. An explicit cast might be needed to avoid ambiguity. For example:

CREATE TABLE nytable(fl1 int, f2 float, f3 text);

CREATE FUNCTI ON get f 1(nytabl e) RETURNS int AS ' SELECT $1.f1' LANGUAGE
SQL;

56

SQL Syntax

-- No cast needed since only one getfl() exists
SELECT getf1(RON1,2.5,'this is a test'));
getfl

CREATE TYPE nyrowype AS (fl1 int, f2 text, f3 nuneric);

CREATE FUNCTI ON get f 1(myr owt ype) RETURNS int AS ' SELECT $1.f1'
LANGUAGE SQL;

-- Now we need a cast to indicate which function to call:
SELECT getf1(RON1,2.5,'this is a test'));
ERROR: function getfl(record) is not unique

SELECT getf1(RON1,2.5,'this is a test')::mytable);
getfl

SELECT getf1(CAST(ROWN11,'this is a test',2.5) AS nyrowtype));
getfl

11
(1 row

Row constructors can be used to build composite values to be stored in a composite-type table column,
or to be passed to a function that accepts a composite parameter. Also, it is possible to compare two row
valuesor testarow with1 S NULL or I S NOT NULL, for example:

SELECT RON1,2.5,'this is a test') = RON1, 3, 'not the sanme');

SELECT RONtable.*) IS NULL FROMtable; -- detect all-null rows

For more detail see Section 9.24. Row constructors can also be used in connection with subqueries, as
discussed in Section 9.23.

4.2.14. Expression Evaluation Rules

The order of evaluation of subexpressionsis not defined. In particular, theinputs of an operator or function
are not necessarily evaluated |eft-to-right or in any other fixed order.

Furthermore, if the result of an expression can be determined by evaluating only some parts of it, then
other subexpressions might not be evaluated at all. For instance, if one wrote:

SELECT true OR sonefunc();

then somef unc() would (probably) not be called at all. The same would be the case if one wrote:

SELECT sonefunc() OR true;

57

SQL Syntax

Note that this is not the same as the left-to-right “short-circuiting” of Boolean operators that is found in
some programming languages.

As a consequence, it is unwise to use functions with side effects as part of complex expressions. It is
particularly dangerous to rely on side effects or evaluation order in WHERE and HAVI NG clauses, since
those clauses are extensively reprocessed as part of developing an execution plan. Boolean expressions
(ANDYOR/NOT combinations) in those clauses can be reorganized in any manner alowed by the laws of
Boolean algebra.

When it is essential to force evaluation order, a CASE construct (see Section 9.18) can be used. For exam-
ple, thisis an untrustworthy way of trying to avoid division by zero in a WHERE clause:

SELECT ... WHERE x > 0 AND y/x > 1.5;
But thisis safe:
SELECT ... WHERE CASE WHEN x > 0 THEN y/x > 1.5 ELSE fal se END;

A CASE construct used in this fashion will defeat optimization attempts, so it should only be done when
necessary. (In this particular example, it would be better to sidestep the problem by writingy > 1. 5*x
instead.)

CASE is not a cure-all for such issues, however. One limitation of the technique illustrated above is that
it does not prevent early evaluation of constant subexpressions. As described in Section 38.7, functions
and operators marked | MMUTABLE can be evaluated when the query is planned rather than when it is
executed. Thus for example

SELECT CASE WHEN x > 0 THEN x ELSE 1/0 END FROM t ab;

islikely to result in a division-by-zero failure due to the planner trying to simplify the constant subexpres-
sion, even if every row inthetablehasx > 0 so that the ELSE arm would never be entered at run time.

While that particular example might seem silly, related cases that don't obviously involve constants can
occur in queries executed within functions, since the values of function arguments and local variables
can be inserted into queries as constants for planning purposes. Within PL/pgSQL functions, for example,
using an | F-THEN-EL SE statement to protect a risky computation is much safer than just nesting it in a
CASE expression.

Another limitation of the same kind is that a CASE cannot prevent evaluation of an aggregate expression
contained within it, because aggregate expressions are computed before other expressions in a SELECT
list or HAVI NGclause are considered. For example, the following query can cause a division-by-zero error
despite seemingly having protected against it:

SELECT CASE WHEN nmi n(enpl oyees) > 0
THEN avg(expenses / enpl oyees)
END
FROM depart ment s;

Them n() andavg() aggregates are computed concurrently over all the input rows, so if any row has
enpl oyees equal to zero, the division-by-zero error will occur before there is any opportunity to test
the result of mi n() . Instead, use a WHERE or FI LTER clause to prevent problematic input rows from
reaching an aggregate function in the first place.

58

SQL Syntax

4.3. Calling Functions

4.3.1.

PostgreSQL allows functions that have named parameters to be called using either positional or named
notation. Named notation is especially useful for functionsthat have alarge number of parameters, sinceit
makes the associations between parameters and actual arguments more explicit and reliable. In positional
notation, a function call is written with its argument values in the same order as they are defined in the
function declaration. In named notation, the arguments are matched to the function parameters by name
and can be written in any order. For each notation, also consider the effect of function argument types,
documented in Section 10.3.

In either notation, parametersthat have default values given in the function declaration need not be written
inthecall at al. But thisis particularly useful in named notation, since any combination of parameters can
be omitted; while in positional notation parameters can only be omitted from right to left.

PostgreSQL also supports mixed notation, which combines positional and named notation. In this case,
positional parameters are written first and named parameters appear after them.

The following examples will illustrate the usage of al three notations, using the following function def-
inition:

CREATE FUNCTI ON concat | ower _or _upper(a text, b text, uppercase

bool ean DEFAULT fal se)

RETURNS t ext

AS

$$

SELECT CASE
VWHEN $3 THEN UPPER($1 || ' ' || $2)
ELSE LONER(S$1 || " " || $2)
END;

$$

LANGUAGE SQL | MMUTABLE STRI CT;

Function concat _| ower _or _upper has two mandatory parameters, a and b. Additionally there is
one optional parameter upper case which defaultstof al se. Thea and b inputs will be concatenated,
and forced to either upper or lower case depending on the upper case parameter. The remaining details
of thisfunction definition are not important here (see Chapter 38 for more information).

Using Positional Notation

Positional notation is the traditional mechanism for passing arguments to functions in PostgreSQL. An
exampleis:

SELECT concat | ower _or_upper('Hello', '"Wrld, true);
concat _| ower _or _upper

HELLO WORLD
(1 row)

All arguments are specified in order. The result is upper case since upper case is specified ast r ue.
Another exampleis:

59

SQL Syntax

4.3.2.

4.3.3.

SELECT concat _| ower _or_upper (' Hello', "Wrld');
concat _| ower _or _upper

hell o world

(1 row

Here, theupper case parameter is omitted, so it receivesits default value of f al se, resulting in lower
case output. In positional notation, arguments can be omitted from right to left solong asthey have defaults.

Using Named Notation

In named notation, each argument's nameis specified using => to separateit from the argument expression.
For example:

SELECT concat | ower_or_upper(a => "Hello', b => "Wrld);
concat _| ower _or _upper

hello world

(1 row

Again, the argument upper case was omitted so it isset to f al se implicitly. One advantage of using
named notation is that the arguments may be specified in any order, for example:

SELECT concat _| ower _or _upper(a => 'Hello', b => "Wrld' , uppercase =>
true);
concat _| ower _or _upper

HELLO WORLD
(1 row)

SELECT concat | ower _or_upper(a => '"Hell o', uppercase => true, b =>
"World');
concat _| ower _or _upper

HELLO WORLD
(1 row)

An older syntax based on ":=" is supported for backward compatibility:

SELECT concat _| ower _or_upper(a := "Hello', uppercase := true, b :=
"World');
concat _| ower _or _upper
HELLO WORLD

(1 row

Using Mixed Notation

The mixed notation combines positional and named notation. However, as already mentioned, named
arguments cannot precede positional arguments. For example:

60

SQL Syntax

SELECT concat _| ower _or_upper('Hello', '"Wrld', uppercase => true);
concat _| ower _or _upper

HELLO WORLD
(1 row

In the above query, the arguments a and b are specified positionally, while upper case is specified
by name. In this example, that adds little except documentation. With a more complex function having
numerous parameters that have default values, named or mixed notation can save a great deal of writing
and reduce chances for error.

Note

Named and mixed call notations currently cannot be used when calling an aggregate function (but
they do work when an aggregate function is used as awindow function).

61

Chapter 5. Data Definition

This chapter covers how one creates the database structures that will hold one's data. In arelational data-
base, the raw datais stored in tables, so the majority of this chapter is devoted to explaining how tables
are created and modified and what features are available to control what datais stored in the tables. Sub-
sequently, we discuss how tables can be organized into schemas, and how privileges can be assigned to
tables. Finally, we will briefly look at other features that affect the data storage, such as inheritance, table
partitioning, views, functions, and triggers.

5.1. Table Basics

A tablein arelational database is much like atable on paper: It consists of rows and columns. The number
and order of the columns is fixed, and each column has a name. The number of rows is variable — it
reflects how much datais stored at a given moment. SQL does not make any guarantees about the order
of the rows in atable. When atable is read, the rows will appear in an unspecified order, unless sorting
isexplicitly requested. Thisis covered in Chapter 7. Furthermore, SQL does not assign unique identifiers
to rows, so it is possible to have several completely identical rows in atable. This is a consequence of
the mathematical model that underlies SQL but is usualy not desirable. Later in this chapter we will see
how to deal with thisissue.

Each column has a data type. The data type constrains the set of possible values that can be assigned to a
column and assigns semantics to the data stored in the column so that it can be used for computations. For
instance, a column declared to be of a numerical type will not accept arbitrary text strings, and the data
stored in such a column can be used for mathematical computations. By contrast, a column declared to be
of a character string type will accept amost any kind of data but it does not lend itself to mathematical
calculations, although other operations such as string concatenation are available.

PostgreSQL includes a sizable set of built-in data types that fit many applications. Users can also define
their own data types. Most built-in data types have obvious names and semantics, so we defer a detailed
explanation to Chapter 8. Some of the frequently used datatypesarei nt eger for whole numbers, nu-
nmer i ¢ for possibly fractional numbers, t ext for character strings, dat e for dates, t i me for time-of-
day values, and t i mest anp for values containing both date and time.

To create atable, you use the aptly named CREATE TABLE command. In this command you specify at
least a name for the new table, the names of the columns and the data type of each column. For example:

CREATE TABLE ny_first_table (
first_colum text,
second_col um i nt eger

)

This creates a table named ny_first_tabl e with two columns. The first column is named
first_col um and hasadatatype of t ext ; the second column has the name second_col um and
thetypei nt eger . The table and column names follow the identifier syntax explained in Section 4.1.1.
The type names are usually also identifiers, but there are some exceptions. Note that the column list is
comma-separated and surrounded by parentheses.

Of course, the previous example was heavily contrived. Normally, you would give names to your tables
and columns that convey what kind of datathey store. So let's ook at a more realistic example:

62

Data Definition

CREATE TABLE products (
product _no i nteger,
name text,
price nunmeric

)

(Thenurer i c type can store fractional components, as would be typical of monetary amounts.)

Tip

When you create many interrelated tables it is wise to choose a consistent naming pattern for the
tablesand columns. For instance, thereisachoice of using singular or plural nounsfor table names,
both of which are favored by some theorist or other.

Thereisalimit on how many columns a table can contain. Depending on the column types, it is between
250 and 1600. However, defining a table with anywhere near this many columns is highly unusua and
often a questionable design.

If you no longer need atable, you can remove it using the DROP TABLE command. For example:

DROP TABLE mny _first _table;
DROP TABLE products;

Attempting to drop atable that does not exist is an error. Nevertheless, it is common in SQL script files
to unconditionally try to drop each table before creating it, ignoring any error messages, so that the script
works whether or not the table exists. (If you like, you can use the DROP TABLE | F EXI STS variant
to avoid the error messages, but thisis not standard SQL.)

If you need to modify atable that already exists, see Section 5.6 later in this chapter.

With the tools discussed so far you can create fully functional tables. The remainder of this chapter is
concerned with adding features to the table definition to ensure data integrity, security, or convenience.
If you are eager to fill your tables with data now you can skip ahead to Chapter 6 and read the rest of
this chapter later.

5.2. Default Values

A column can be assigned a default value. When a new row is created and no values are specified for
some of the columns, those columnswill befilled with their respective default values. A datamanipulation
command can al so request explicitly that acolumn be set to its default value, without having to know what
that valueis. (Details about data manipulation commands are in Chapter 6.)

If no default value is declared explicitly, the default value is the null value. This usually makes sense
because a null value can be considered to represent unknown data.

In atable definition, default values are listed after the column data type. For example:
CREATE TABLE products (

product _no i nteger,
name text,

63

Data Definition

price numeric DEFAULT 9. 99
)

The default value can be an expression, which will be evaluated whenever the default value is inserted
(not when the table is created). A common example is for at i mest anp column to have a default of
CURRENT _TI MESTAMP, so that it gets set to the time of row insertion. Another common example is
generating a“serial number” for each row. In PostgreSQL thisistypically done by something like:

CREATE TABLE products (
product no i nteger DEFAULT nextval (' products_product _no_seq'),

)

where the next val () function supplies successive values from a sequence object (see Section 9.17).
This arrangement is sufficiently common that there's a specia shorthand for it:

CREATE TABLE products (
product _no SERI AL,

)
The SERI AL shorthand is discussed further in Section 8.1.4.

5.3. Generated Columns

A generated column is a special column that is always computed from other columns. Thus, it is for
columnswhat aview isfor tables. There are two kinds of generated columns: stored and virtual. A stored
generated column is computed when it is written (inserted or updated) and occupies storage asif it werea
normal column. A virtual generated column occupies no storage and is computed when it isread. Thus, a
virtual generated columnissimilar to aview and astored generated columnissimilar toamaterialized view
(except that it is always updated automatically). PostgreSQL currently implements only stored generated
columns.

Tocreate agenerated column, usethe GENERATED ALWAYS AS clausein CREATE TABLE, for example:

CREATE TABLE peopl e (

hei ght _cm nureri c,
hei ght _i n numeri ¢ GENERATED ALWAYS AS (height_cm/ 2.54) STORED
)

The keyword STORED must be specified to choose the stored kind of generated column. See CREATE
TABLE for more details.

A generated column cannot be written to directly. In | NSERT or UPDATE commands, a value cannot be
specified for agenerated column, but the keyword DEFAULT may be specified.

Consider the differences between a column with a default and a generated column. The column default is
evaluated once when therow isfirst inserted if no other value was provided; agenerated column is updated
whenever the row changes and cannot be overridden. A column default may not refer to other columns of
the table; a generation expression would normally do so. A column default can use volatile functions, for
exampler andon{) or functionsreferring to the current time; thisis not allowed for generated columns.

64

Data Definition

Several restrictions apply to the definition of generated columns and tables involving generated columns:

» The generation expression can only use immutable functions and cannot use subqueries or reference
anything other than the current row in any way.

» A generation expression cannot reference another generated column.
A generation expression cannot reference a system column, except t abl eoi d.
A generated column cannot have a column default or an identity definition.

* A generated column cannot be part of a partition key.

Foreign tables can have generated columns. See CREATE FOREIGN TABLE for details.

For inheritance:

« If aparent column is a generated column, a child column must also be a generated column using the
same expression. In the definition of the child column, leave off the GENERATED clause, as it will
be copied from the parent.

« In case of multiple inheritance, if one parent column is a generated column, then all parent columns
must be generated columns and with the same expression.

« |f aparent columnisnot agenerated column, achild column may be defined to be agenerated column
or not.

Additional considerations apply to the use of generated columns.

» Generated columns maintain access privileges separately from their underlying base columns. So, it
is possible to arrange it so that a particular role can read from a generated column but not from the
underlying base columns.

» Generated columns are, conceptually, updated after BEFORE triggers have run. Therefore, changes
made to base columns in a BEFORE trigger will be reflected in generated columns. But conversely, it
is not allowed to access generated columns in BEFORE triggers.

5.4. Constraints

5.4.1.

Datatypesare away to limit the kind of datathat can be stored in atable. For many applications, however,
the constraint they provideistoo coarse. For example, acolumn containing aproduct price should probably
only accept positive values. But thereis no standard datatype that accepts only positive numbers. Another
issueisthat you might want to constrain column datawith respect to other columns or rows. For example,
in atable containing product information, there should be only one row for each product number.

To that end, SQL allows you to define constraints on columns and tables. Constraints give you as much
control over the datain your tables as you wish. If a user attempts to store datain a column that would
violate aconstraint, an error israised. Thisapplieseven if the value came from the default value definition.

Check Constraints

A check constraint is the most generic constraint type. It allows you to specify that the value in a certain
column must satisfy a Boolean (truth-value) expression. For instance, to require positive product prices,
you could use:

65

Data Definition

CREATE TABLE products (
product _no i nteger,
name text,
price nuneric CHECK (price > 0)

)

Asyou see, the constraint definition comes after the data type, just like default value definitions. Default
values and constraints can be listed in any order. A check constraint consists of the key word CHECK
followed by an expression in parentheses. The check constraint expression should involve the column thus
constrained, otherwise the constraint would not make too much sense.

Y ou can also give the constraint a separate name. This clarifies error messages and allows you to refer to
the constraint when you need to change it. The syntax is:

CREATE TABLE products (
product _no i nteger,
name text,
price numeri c CONSTRAI NT positive_price CHECK (price > 0)

)

So, to specify a named constraint, use the key word CONSTRAI NT followed by an identifier followed by
the constraint definition. (If you don't specify a constraint name in this way, the system chooses a name
for you.)

A check constraint can also refer to several columns. Say you store aregular price and adiscounted price,
and you want to ensure that the discounted price is lower than the regular price:

CREATE TABLE products (
product _no i nteger,
name text,
price nuneric CHECK (price > 0),
di scounted_price nunmeric CHECK (discounted_price > 0),
CHECK (price > discounted_price)

)

The first two constraints should look familiar. The third one uses a new syntax. It is not attached to a
particular column, instead it appears as a separate item in the comma-separated column list. Column def-
initions and these constraint definitions can be listed in mixed order.

We say that the first two constraints are column constraints, whereas the third one is a table constraint
because it is written separately from any one column definition. Column constraints can also be written
as table constraints, while the reverse is not necessarily possible, since a column constraint is supposed
to refer to only the column it is attached to. (PostgreSQL doesn't enforce that rule, but you should follow
it if you want your table definitions to work with other database systems.) The above example could also
be written as:

CREATE TABLE products (
product _no i nteger,
name text,
price nuneric,

66

Data Definition

CHECK (price > 0),

di scounted_price nuneric,

CHECK (di scounted_price > 0),
CHECK (price > discounted_price)

or even:

CREATE TABLE products (

)

product _no i nteger,

name text,

price numeric CHECK (price > 0),

di scounted_price numeric,

CHECK (di scounted price > 0 AND price > discounted price)

It's amatter of taste.

Names can be assigned to table constraints in the same way as column constraints:

CREATE TABLE products (

)

product _no i nteger,

name text,

price nuneric,

CHECK (price > 0),

di scounted_price numeric,

CHECK (di scounted_price > 0),

CONSTRAI NT val i d_di scount CHECK (price > discounted _price)

It should be noted that a check constraint is satisfied if the check expression evaluates to true or the null
value. Since most expressions will evaluate to the null value if any operand is null, they will not prevent
null valuesin the constrained columns. To ensure that a column does not contain null values, the not-null
constraint described in the next section can be used.

Note

PostgreSQL does not support CHECK constraints that reference table data other than the new or
updated row being checked. While a CHECK constraint that violates this rule may appear to work
in simple tests, it cannot guarantee that the database will not reach a state in which the constraint
condition is false (due to subsequent changes of the other row(s) involved). This would cause a
database dump and reload to fail. The reload could fail even when the complete database state
is consistent with the constraint, due to rows not being loaded in an order that will satisfy the
constraint. If possible, use UNI QUE, EXCLUDE, or FOREI GN KEY constraints to express cross-
row and cross-table restrictions.

If what you desire is a one-time check against other rows at row insertion, rather than a contin-
uously-maintained consistency guarantee, a custom trigger can be used to implement that. (This
approach avoids the dump/rel oad problem because pg_dump does not reinstall triggers until after
reloading data, so that the check will not be enforced during a dump/reload.)

67

Data Definition

Note

PostgreSQL assumes that CHECK constraints conditions are immutable, that is, they will always
give the same result for the same input row. This assumption is what justifies examining CHECK
constraints only when rows are inserted or updated, and not at other times. (The warning above
about not referencing other table dataisreally aspecia case of thisrestriction.)

An example of acommon way to break this assumption isto reference a user-defined functionina
CHECK expression, and then change the behavior of that function. PostgreSQL does not disallow
that, but it will not noticeif there are rowsin the table that now violate the CHECK constraint. That
would cause a subsequent database dump and reload to fail. The recommended way to handle such
achangeisto drop the constraint (using ALTER TABLE), adjust the function definition, and re-
add the constraint, thereby rechecking it against all table rows.

5.4.2. Not-Null Constraints

A not-null constraint simply specifies that a column must not assume the null value. A syntax example:

CREATE TABLE products (
product _no i nteger NOT NULL,
name text NOT NULL,
price nuneric

)

A not-null constraint is always written as a column constraint. A not-null constraint is functionally equiv-
alent to creating a check constraint CHECK (col unm_nane |'S NOT NULL), but in PostgreSQL
creating an explicit not-null constraint is more efficient. The drawback is that you cannot give explicit
names to not-null constraints created this way.

Of course, a column can have more than one constraint. Just write the constraints one after another:

CREATE TABLE products (
product _no i nteger NOT NULL,
name text NOT NULL,
price numeric NOT NULL CHECK (price > 0)

)
The order doesn't matter. It does not necessarily determine in which order the constraints are checked.

The NOT NULL constraint has an inverse: the NULL constraint. This does not mean that the column must
be null, which would surely be useless. Instead, this simply selects the default behavior that the column
might be null. The NULL constraint is not present in the SQL standard and should not be used in portable
applications. (It was only added to PostgreSQL to be compatible with some other database systems.) Some
users, however, like it because it makes it easy to toggle the constraint in a script file. For example, you
could start with:

CREATE TABLE products (
product _no integer NULL,
name text NULL,
price nunmeric NULL

68

Data Definition

5.4.3.

)
and then insert the NOT key word where desired.

Tip

In most database designs the majority of columns should be marked not null.

Unique Constraints

Unique constraints ensure that the data contained in a column, or a group of columns, is unique among
all therowsin thetable. The syntax is:

CREATE TABLE products (
product _no i nteger UNI QUE,
name text,
price nuneric

)

when written as a column constraint, and:

CREATE TABLE products (
product _no i nteger,
name text,
price nuneric,

UNI QUE (product_no)

)
when written as a table constraint.
To define aunique constraint for agroup of columns, write it as atable constraint with the column names

separated by commas:

CREATE TABLE exanpl e (

a integer,
b integer,
c integer,

UNI QUE (a, c)
);

This specifies that the combination of values in the indicated columns is unique across the whole table,
though any one of the columns need not be (and ordinarily isn't) unique.

Y ou can assign your own name for a unique constraint, in the usual way:

CREATE TABLE products (
product _no i nteger CONSTRAI NT rust_be_different UN QUE,
name text,
price nuneric

)

69

Data Definition

5.4.4.

Adding a unique constraint will automatically create a unique B-tree index on the column or group of
columns listed in the constraint. A unigqueness restriction covering only some rows cannot be written as a
unique constraint, but it is possible to enforce such arestriction by creating a unique partial index.

In general, aunique constraint is violated if there is more than one row in the table where the values of all
of the columns included in the constraint are equal. However, two null values are never considered equal
in this comparison. That means even in the presence of a unique constraint it is possible to store duplicate
rows that contain a null value in at least one of the constrained columns. This behavior conforms to the
SQL standard, but we have heard that other SQL databases might not follow this rule. So be careful when
developing applications that are intended to be portable.

Primary Keys

A primary key constraint indicates that a column, or group of columns, can be used as a unique identifier
for rowsin thetable. Thisrequires that the values be both unique and not null. So, the following two table
definitions accept the same data:

CREATE TABLE products (
product _no i nteger UN QUE NOT NULL,
name text,
price nuneric

)

CREATE TABLE products (
product _no i nteger PRI MARY KEY,
name text,
price nuneric

)

Primary keys can span more than one column; the syntax is similar to unique constraints:

CREATE TABLE exampl e (

a integer,
b integer,
c integer,

PRI MARY KEY (a, c)
)

Adding a primary key will automatically create a unigue B-tree index on the column or group of columns
listed in the primary key, and will force the column(s) to be marked NOT NULL.

A table can have at most one primary key. (There can be any number of unique and not-null constraints,
which are functionally almost the same thing, but only one can beidentified asthe primary key.) Relational
database theory dictatesthat every table must have aprimary key. Thisruleisnot enforced by PostgreSQL,
but it isusually best to follow it.

Primary keys are useful both for documentation purposes and for client applications. For example, a GUI
application that allows modifying row values probably needs to know the primary key of atable to be
able to identify rows uniquely. There are also various ways in which the database system makes use of a
primary key if one has been declared; for example, the primary key defines the default target column(s)
for foreign keysreferencing its table.

70

Data Definition

5.4.5. Foreign Keys

A foreign key constraint specifies that the values in a column (or a group of columns) must match the
values appearing in some row of another table. We say this maintains the referential integrity between
two related tables.

Say you have the product table that we have used several times already:

CREATE TABLE products (
product _no integer PRI MARY KEY,
name text,
price nuneric

)

L et's al so assume you have atable storing orders of those products. We want to ensure that the orderstable
only contains orders of products that actually exist. So we define a foreign key constraint in the orders
table that references the products table;

CREATE TABLE orders (
order _id integer PRI MARY KEY,
product _no i nteger REFERENCES products (product_no),
qgquantity integer

)

Now it is impossible to create orders with non-NULL pr oduct _no entries that do not appear in the
products table.

We say that in this situation the orderstabl e isthe referencing table and the productstable is the referenced
table. Similarly, there are referencing and referenced columns.

Y ou can also shorten the above command to:

CREATE TABLE orders (
order _id integer PRI MARY KEY,
product _no i nteger REFERENCES products,
qguantity integer

)

because in absence of a column list the primary key of the referenced table is used as the referenced
column(s).

Y ou can assign your own name for aforeign key constraint, in the usual way.

A foreign key can also constrain and reference a group of columns. As usual, it then needs to be written
in table constraint form. Here is a contrived syntax example:

CREATE TABLE t1 (
a i nteger PRI MARY KEY,
b integer,
c integer,
FOREI GN KEY (b, c¢) REFERENCES other _table (cl, c2)

71

Data Definition

)

Of course, the number and type of the constrained columns need to match the number and type of the
referenced columns.

Sometimesit is useful for the “ other table” of aforeign key constraint to be the sametable; thisis called a
self-referential foreign key. For example, if you want rows of atable to represent nodes of atree structure,
you could write

CREATE TABLE tree (
node_id integer PRI MARY KEY,
parent id integer REFERENCES tree,
name text,

)

A top-level node would have NULL par ent _i d, whilenon-NULL par ent _i d entrieswould be con-
strained to reference valid rows of the table.

A table can have more than one foreign key constraint. Thisis used to implement many-to-many relation-
ships between tables. Say you have tables about products and orders, but now you want to allow one order
to contain possibly many products (which the structure above did not allow). You could use this table
structure:

CREATE TABLE products (
product _no integer PRI MARY KEY,
name text,
price nuneric

)

CREATE TABLE orders (
order _id integer PRI MARY KEY,
shi ppi ng_addr ess text,

)

CREATE TABLE order_itens (
product _no i nteger REFERENCES products,
order_id integer REFERENCES orders,
qgquantity integer,
PRI MARY KEY (product_no, order _id)

)

Notice that the primary key overlaps with the foreign keysin the last table.

We know that the foreign keys disallow creation of orders that do not relate to any products. But what if
aproduct is removed after an order is created that references it? SQL allows you to handle that as well.
Intuitively, we have afew options:

 Disalow deleting areferenced product
» Delete the orders as well
e Something else?

72

Data Definition

To illustrate this, |et's implement the following policy on the many-to-many relationship example above:
when someone wants to remove a product that is still referenced by an order (viaor der _i t ens), we
disallow it. If someone removes an order, the order items are removed as well:

CREATE TABLE products (
product _no integer PRI MARY KEY,
name text,
price nunmeric

)

CREATE TABLE orders (
order _id integer PRI MARY KEY,
shi ppi ng_addr ess text,

)

CREATE TABLE order _itens (
product _no i nteger REFERENCES products ON DELETE RESTRI CT,
order _id integer REFERENCES orders ON DELETE CASCADE,
qgquantity integer,
PRI MARY KEY (product_no, order _id)

)

Restricting and cascading deletes are the two most common options. RESTRI CT prevents deletion of a
referenced row. NO ACTI ON meansthat if any referencing rows still exist when the constraint is checked,
an error is raised; this is the default behavior if you do not specify anything. (The essential difference
between these two choicesis that NO ACTI ON allows the check to be deferred until later in the transac-
tion, whereas RESTRI CT does not.) CASCADE specifies that when a referenced row is deleted, row(s)
referencing it should be automatically deleted aswell. There are two other options: SET NULL and SET
DEFAULT. These cause the referencing column(s) in the referencing row(s) to be set to nulls or their de-
fault values, respectively, when the referenced row is deleted. Note that these do not excuse you from
observing any constraints. For example, if an action specifiesSET DEFAULT but the default value would
not satisfy the foreign key constraint, the operation will fail.

Analogous to ON DELETE there is also ON UPDATE which is invoked when a referenced column is
changed (updated). The possible actions are the same. In this case, CASCADE means that the updated
values of the referenced column(s) should be copied into the referencing row(s).

Normally, a referencing row need not satisfy the foreign key constraint if any of its referencing columns
arenull. If MATCH FULL isadded to the foreign key declaration, areferencing row escapes satisfying the
constraint only if all its referencing columns are null (so a mix of null and non-null values is guaranteed
to fail aMATCH FULL constraint). If you don't want referencing rows to be able to avoid satisfying the
foreign key constraint, declare the referencing column(s) as NOT NULL.

A foreign key must reference columns that either are a primary key or form a unique constraint. This
means that the referenced columns always have an index (the one underlying the primary key or unique
constraint); so checks on whether a referencing row has a match will be efficient. Since a DELETE of a
row from the referenced table or an UPDATE of areferenced column will require a scan of the referencing
tablefor rows matching the old value, it is often agood ideato index the referencing columnstoo. Because
thisis not aways needed, and there are many choices available on how to index, declaration of aforeign
key constraint does not automatically create an index on the referencing columns.

More information about updating and deleting dataisin Chapter 6. Also see the description of foreign key
constraint syntax in the reference documentation for CREATE TABLE.

73

Data Definition

5.4.6. Exclusion Constraints

Exclusion constraints ensure that if any two rows are compared on the specified columns or expressions
using the specified operators, at least one of these operator comparisons will return false or null. The
syntax is.

CREATE TABLE circles (
c circle,
EXCLUDE USI NG gist (c WTH &&)

)
See also CREATE TABLE ... CONSTRAINT ... EXCLUDE for details.

Adding an exclusion constraint will automatically create an index of the type specified in the constraint
declaration.

5.5. System Columns

Every table has several system columns that are implicitly defined by the system. Therefore, these names
cannot be used as names of user-defined columns. (Note that these restrictions are separate from whether
the nameisakey word or not; quoting a name will not allow you to escape these restrictions.) Y ou do not
really need to be concerned about these columns; just know they exist.

tabl eoi d

The OID of the table containing this row. This column is particularly handy for queries that select
from partitioned tables (see Section 5.11) or inheritance hierarchies (see Section 5.10), since without
it, it'sdifficult to tell which individual table arow came from. Thet abl eoi d can be joined against
theoi d column of pg_cl ass to obtain the table name.

Xm n

The identity (transaction ID) of the inserting transaction for this row version. (A row version is an
individual state of arow; each update of arow creates a new row version for the same logical row.)

cmn
The command identifier (starting at zero) within the inserting transaction.
Xmax

The identity (transaction ID) of the deleting transaction, or zero for an undeleted row version. It is
possiblefor this column to be nonzeroin avisiblerow version. That usually indicatesthat the deleting
transaction hasn't committed yet, or that an attempted deletion was rolled back.

cmax
The command identifier within the deleting transaction, or zero.
ctid

The physical location of the row version within its table. Note that although thect i d can be used to
locate the row version very quickly, arow'sct i d will changeif it is updated or moved by VACUUM
FULL. Therefore ct i d is useless as a long-term row identifier. A primary key should be used to
identify logical rows.

74

Data Definition

Transaction identifiers are also 32-hit quantities. In along-lived database it is possible for transaction 1Ds
to wrap around. Thisis not afatal problem given appropriate maintenance procedures; see Chapter 25 for
details. It is unwise, however, to depend on the uniqueness of transaction I1Ds over the long term (more
than one hillion transactions).

Command identifiers are also 32-bit quantities. This creates ahard limit of 2% (4 billion) SQL commands
within a single transaction. In practice this limit is not a problem — note that the limit is on the number
of SQL commands, not the number of rows processed. Also, only commands that actually modify the
database contents will consume a command identifier.

5.6. Modifying Tables

5.6.1.

When you create a table and you realize that you made a mistake, or the requirements of the application
change, you can drop the table and create it again. But thisis not a convenient option if the table is already
filled with data, or if thetableisreferenced by other database objects (for instance aforeign key constraint).
Therefore PostgreSQL provides afamily of commands to make modificationsto existing tables. Note that
thisis conceptually distinct from atering the data contained in the table: here we are interested in atering
the definition, or structure, of the table.

You can:

* Add columns

* Remove columns

» Add constraints

* Remove constraints

» Change default values

» Change column data types
* Rename columns

* Renametables

All these actions are performed using the ALTER TABLE command, whose reference page contains de-
tails beyond those given here.

Adding a Column

To add a column, use acommand like:

ALTER TABLE products ADD COLUWN descri ption text;

Thenew columnisinitially filled with whatever default valueisgiven (null if you don't specify aDEFAULT
clause).

Tip

From PostgreSQL 11, adding a column with a constant default value no longer means that each
row of the table needs to be updated when the ALTER TABLE statement is executed. |nstead,
the default value will be returned the next time the row is accessed, and applied when the tableis
rewritten, making the ALTER TABLE very fast even on large tables.

However, if the default valueisvolatile (e.g., cl ock_ti mest anp()) each row will need to be
updated with the value calculated at thetime ALTER TABLE is executed. To avoid a potentially
lengthy update operation, particularly if you intend tofill the column with mostly nondefault values

75

Data Definition

5.6.2.

5.6.3.

5.6.4.

anyway, it may be preferable to add the column with no default, insert the correct values using
UPDATE, and then add any desired default as described below.

Y ou can a'so define constraints on the column at the same time, using the usual syntax:

ALTER TABLE products ADD COLUMWN description text CHECK (description <>
)

In fact all the options that can be applied to a column description in CREATE TABLE can be used here.
Keep in mind however that the default value must satisfy the given constraints, or the ADD will fail.
Alternatively, you can add constraints later (see below) after you've filled in the new column correctly.

Removing a Column

To remove a column, use acommand like:

ALTER TABLE products DROP COLUWN descri ption;

Whatever data was in the column disappears. Table constraints involving the column are dropped, too.
However, if the column is referenced by a foreign key constraint of another table, PostgreSQL will not
silently drop that constraint. Y ou can authorize dropping everything that depends on the column by adding
CASCADE:

ALTER TABLE products DROP COLUWN descri ption CASCADE;

See Section 5.14 for a description of the general mechanism behind this,

Adding a Constraint

To add a constraint, the table constraint syntax is used. For example:

ALTER TABLE products ADD CHECK (nane <> '');

ALTER TABLE products ADD CONSTRAI NT sone_nane UNI QUE (product no);

ALTER TABLE products ADD FOREI GN KEY (product _group_id) REFERENCES
product _groups;

To add a not-null constraint, which cannot be written as atable constraint, use this syntax:

ALTER TABLE products ALTER COLUWN product _no SET NOT NULL;

The constraint will be checked immediately, so the table data must satisfy the constraint before it can be
added.

Removing a Constraint

To remove a constraint you need to know its name. If you gave it a name then that's easy. Otherwise the
system assigned a generated name, which you need to find out. The psgl command\ d t abl enane can
be helpful here; other interfaces might also provide away to inspect table details. Then the command is:

ALTER TABLE products DROP CONSTRAI NT sone_nane;

76

Data Definition

5.6.5.

5.6.6.

5.6.7.

5.6.8.

(If you are dealing with a generated constraint name like $2, don't forget that you'll need to double-quote
it to makeit avalid identifier.)

As with dropping a column, you need to add CASCADE if you want to drop a constraint that something
else depends on. An exampleisthat aforeign key constraint depends on aunique or primary key constraint
on the referenced column(s).

Thisworks the same for all constraint types except not-null constraints. To drop a not null constraint use:

ALTER TABLE products ALTER COLUWN product_no DROP NOT NULL;

(Recall that not-null constraints do not have names.)

Changing a Column's Default Value

To set anew default for a column, use acommand like:

ALTER TABLE products ALTER COLUWN price SET DEFAULT 7.77;

Note that this doesn't affect any existing rows in the table, it just changes the default for future | NSERT
commands.

To remove any default value, use:

ALTER TABLE products ALTER COLUWN price DROP DEFAULT;

This is effectively the same as setting the default to null. As a consequence, it is not an error to drop a
default where one hadn't been defined, because the default isimplicitly the null value.

Changing a Column's Data Type

To convert acolumn to a different data type, use acommand like:

ALTER TABLE products ALTER COLUMWN price TYPE nuneric(10, 2);

Thiswill succeed only if each existing entry in the column can be converted to the new type by an implicit
cast. If amore complex conversion is needed, you can add a USI NG clause that specifies how to compute
the new values from the old.

PostgreSQL will attempt to convert the column's default value (if any) to the new type, as well as any
congtraints that involve the column. But these conversions might fail, or might produce surprising results.
It's often best to drop any constraints on the column before atering its type, and then add back suitably
modified constraints afterwards.

Renaming a Column

To rename a column:

ALTER TABLE products RENAME COLUWN product _no TO product nunber;

Renaming a Table

77

Data Definition

To rename atable:

ALTER TABLE products RENAMVE TO iterns;

5.7. Privileges

When an object iscreated, it isassigned an owner. The owner isnormally therolethat executed the creation
statement. For most kinds of objects, theinitial stateisthat only the owner (or a superuser) can do anything
with the object. To allow other rolesto useit, privileges must be granted.

There are different kinds of privileges: SELECT, | NSERT, UPDATE, DELETE, TRUNCATE, REFER-
ENCES, TRl GGER, CREATE, CONNECT, TEMPORARY, EXECUTE, and USAGE. The privileges applica-
ble to a particular object vary depending on the object's type (table, function, etc). More detail about the
meanings of these privileges appears below. The following sections and chapters will also show you how
these privileges are used.

The right to modify or destroy an object is inherent in being the object's owner, and cannot be granted
or revoked in itself. (However, like all privileges, that right can be inherited by members of the owning
role; see Section 22.3.)

An object can be assigned to anew owner with an ALTER command of the appropriate kind for the object,
for example

ALTER TABLE tabl e_nane OANER TO new_owner ;

Superusers can always do this; ordinary roles can only do it if they are both the current owner of the object
(or amember of the owning role) and a member of the new owning role.

To assign privileges, the GRANT command is used. For example, if j oe is an existing role, and ac-
count s isan existing table, the privilege to update the table can be granted with:

GRANT UPDATE ON accounts TO j oe;
Writing ALL in place of a specific privilege grants all privileges that are relevant for the object type.

The specia “role” name PUBLI C can be used to grant a privilege to every role on the system. Also,
“group” roles can be set up to help manage privileges when there are many users of a database — for
details see Chapter 22.

To revoke a previously-granted privilege, use the fittingly named REVOKE command:

REVOKE ALL ON accounts FROM PUBLI C;

Ordinarily, only the object's owner (or a superuser) can grant or revoke privileges on an object. However,
itispossibleto grant aprivilege “with grant option”, which givesthe recipient theright to grant it in turn to
others. If the grant option is subsequently revoked then all who received the privilege from that recipient
(directly or through a chain of grants) will lose the privilege. For details see the GRANT and REVOKE
reference pages.

An object's owner can choose to revoke their own ordinary privileges, for example to make atable read-
only for themselves as well as others. But owners are always treated as holding all grant options, so they
can always re-grant their own privileges.

78

Data Definition

The available privileges are:
SELECT

Allows SELECT from any column, or specific column(s), of atable, view, materialized view, or other
table-like object. Also allows use of COPY TO. This privilege is a'so needed to reference existing
columnvaluesin UPDATE or DEL ETE. For sequences, this privilege also allowsuse of thecur r val
function. For large objects, this privilege allows the object to be read.

| NSERT

Allows | NSERT of anew row into atable, view, etc. Can be granted on specific column(s), in which
case only those columns may be assigned to in the | NSERT command (other columns will therefore
receive default values). Also allows use of COPY FROM

UPDATE

Allows UPDATE of any column, or specific column(s), of atable, view, etc. (In practice, any nontrivial
UPDATE command will require SELECT privilege as well, since it must reference table columns to
determine which rows to update, and/or to compute new values for columns.) SELECT ... FOR
UPDATE and SELECT ... FOR SHARE aso require this privilege on at least one column, in
addition to the SELECT privilege. For sequences, this privilege alows use of the next val and
set val functions. For large objects, this privilege allows writing or truncating the object.

DELETE

Allows DELETE of arow from atable, view, etc. (In practice, any nontrivial DELETE command will
require SELECT privilege as well, since it must reference table columns to determine which rows
to delete.)

TRUNCATE
Allows TRUNCATE on atable.
REFERENCES
Allows creation of aforeign key constraint referencing atable, or specific column(s) of atable.
TRI GGER
Allows creation of atrigger on atable, view, etc.
CREATE

For databases, allows new schemas and publications to be created within the database, and alows
trusted extensions to be installed within the database.

For schemas, alows new objects to be created within the schema. To rename an existing object, you
must own the object and have this privilege for the containing schema.

For tablespaces, allows tables, indexes, and temporary files to be created within the tablespace, and
allows databases to be created that have the tablespace as their default tablespace.

Note that revoking this privilege will not alter the existence or location of existing objects.
CONNECT

Allows the grantee to connect to the database. This privilege is checked at connection startup (in
addition to checking any restrictionsimposed by pg_hba. conf).

79

Data Definition

TEMPORARY
Allows temporary tables to be created while using the database.

EXECUTE

Allows calling afunction or procedure, including use of any operatorsthat are implemented on top of
the function. Thisis the only type of privilege that is applicable to functions and procedures.

USAGE

For procedural languages, alows use of the language for the creation of functions in that language.
Thisisthe only type of privilege that is applicable to procedural languages.

For schemas, allows access to objects contained in the schema (assuming that the objects own priv-
ilege requirements are also met). Essentially this allows the grantee to “look up” objects within the
schema. Without this permission, it is still possible to see the object names, e.g., by querying system
catalogs. Also, after revoking this permission, existing sessions might have statements that have pre-
viously performed this lookup, so thisis not acompletely secure way to prevent object access.

For sequences, allows use of the cur r val and next val functions.

For types and domains, allows use of the type or domain in the creation of tables, functions, and other
schema objects. (Note that this privilege does not control al “usage” of the type, such asvalues of the
type appearing in queries. It only prevents objects from being created that depend on the type. The
main purpose of this privilege is controlling which users can create dependencies on a type, which
could prevent the owner from changing the type later.)

For foreign-data wrappers, alows creation of new servers using the foreign-data wrapper.

For foreign servers, allows creation of foreign tables using the server. Grantees may also create, alter,
or drop their own user mappings associated with that server.

The privileges required by other commands are listed on the reference page of the respective command.

PostgreSQL grants privileges on sometypes of objectsto PUBLI Cby default when the objects are created.
No privilegesaregranted to PUBL | Cby default ontables, table columns, sequences, foreign datawrappers,
foreign servers, large objects, schemas, or tablespaces. For other types of objects, the default privileges
granted to PUBLI C are as follows: CONNECT and TEMPORARY (create temporary tables) privileges for
databases, EXECUTE privilege for functions and procedures; and USAGE privilege for languages and data
types (including domains). The object owner can, of course, REVOKE both default and expressly granted
privileges. (For maximum security, issue the REVOKE in the same transaction that creates the object; then
there is no window in which another user can use the object.) Also, these default privilege settings can be
overridden using the ALTER DEFAULT PRIVILEGES command.

Table 5.1 showsthe one-letter abbreviationsthat are used for these privilege typesin ACL (Access Control

List) values. You will see these lettersin the output of the psgl commands listed below, or when looking
at ACL columns of system catalogs.

Table5.1. ACL Privilege Abbreviations

Privilege Abbreviation Applicable Object Types

SELECT r (“read”) LARCGE OBJECT, SEQUENCE, TABLE (and ta-
ble-like objects), table column

| NSERT a (“append”) TABLE, table column

80

Data Definition

Privilege Abbreviation Applicable Object Types

UPDATE w (“write”) LARGE OBJECT, SEQUENCE, TABLE, table col-
umn

DELETE d TABLE

TRUNCATE D TABLE

REFERENCES X TABLE, table column

TRI GGER t TABLE

CREATE C DATABASE, SCHEVA, TABLESPACE

CONNECT (o] DATABASE

TEMPORARY T DATABASE

EXECUTE X FUNCTI QN, PROCEDURE

USAGE U DOVAI N, FOREI GN DATA WRAPPER,
FOREI GN SERVER, LANGUAGE, SCHEMA, SE-
QUENCE, TYPE

Table 5.2 summarizes the privileges available for each type of SQL object, using the abbreviations shown
above. It also shows the psgl command that can be used to examine privilege settings for each object type.

Table5.2. Summary of Access Privileges

Object Type All Privileges Default PUBLI C |psgl Command
Privileges
DATABASE CTc Tc \
DOVAI N u u \ dD+
FUNCTI ON or PROCEDURE X X \ df +
FOREI GN DATA WRAPPER U none \ dew+
FORElI GN SERVER U none \ des+
LANGUAGE u u \dL+
LARGE OBJECT rw none
SCHEMA uc none \ dn+
SEQUENCE rwJ none \dp
TABLE (and table-like objects) ar wdDxt none \dp
Table column ar wx none \dp
TABLESPACE C none \ db+
TYPE U U \dT+

The privileges that have been granted for a particular object are displayed asalist of acl i t ementries,
where each acl i t emdescribes the permissions of one grantee that have been granted by a particular
grantor. For example, cal vi n=r *w hobbes specifiesthat therolecal vi n hasthe privilege SELECT
(r) with grant option (*) as well as the non-grantable privilege UPDATE (W), both granted by the role
hobbes. If cal vi n aso has some privileges on the same object granted by a different grantor, those
would appear asaseparateacl i t ementry. An empty granteefieldinanacl i t emstandsfor PUBLI C.

As an example, suppose that user mi r i amcreates table nyt abl e and does:

81

Data Definition

GRANT SELECT ON nytabl e TO PUBLI C,
GRANT SELECT, UPDATE, |NSERT ON nytable TO admi n;
GRANT SELECT (col 1), UPDATE (col1) ON nytable TO miriamrw,

Then psgl's\ dp command would show:

=> \dp nytable
Access privil eges

Schema | Nane | Type | Access privil eges | Col um
privil eges | Policies
-------- T
oo e e e e oo oo - S
public | nytable | table | mriamrarwdDxt/mriam+| col 1:

+|

| | | =r/mriam +| mriamrw=srw

mriam |

| | | adm n=arw/ mriam |
|
(1 row

If the “ Access privileges’ column is empty for a given object, it means the object has default privileges
(that is, its privileges entry in the relevant system catalog is null). Default privileges always include all
privileges for the owner, and can include some privileges for PUBLI C depending on the object type, as
explained above. Thefirst GRANT or REVOKE on an object will instantiate the default privileges (produc-
ing, for example, i ri am=ar wdDxt / mi ri am and then modify them per the specified request. Simi-
larly, entriesare shown in“ Column privileges’ only for columnswith nondefault privileges. (Note: for this
purpose, “default privileges’ always means the built-in default privileges for the object's type. An object
whose privileges have been affected by an ALTER DEFAULT PRI VI LEGES command will always be
shown with an explicit privilege entry that includes the effects of the ALTER.)

Notice that the owner's implicit grant options are not marked in the access privileges display. A * will
appear only when grant options have been explicitly granted to someone.

5.8. Row Security Policies

In addition to the SQL -standard privilege system available through GRANT, tables can have row security
policiesthat restrict, on aper-user basis, which rows can be returned by normal queriesor inserted, updated,
or deleted by data modification commands. This feature is also known as Row-Level Security. By default,
tables do not have any policies, so that if a user has access privileges to a table according to the SQL
privilege system, all rowswithin it are equally available for querying or updating.

When row security is enabled on atable (with ALTER TABLE ... ENABLE ROW LEVEL SECURITY),
al normal access to the table for selecting rows or modifying rows must be allowed by a row security
policy. (However, the table's owner istypically not subject to row security policies.) If no policy existsfor
the table, a default-deny policy is used, meaning that no rows are visible or can be modified. Operations
that apply to the whole table, such as TRUNCATE and REFERENCES, are not subject to row security.

Row security policies can be specific to commands, or to roles, or to both. A policy can be specified to
apply to ALL commands, or to SELECT, | NSERT, UPDATE, or DELETE. Multiple roles can be assigned
to agiven policy, and normal role membership and inheritance rules apply.

To specify which rows are visible or modifiable according to apolicy, an expressionisrequired that returns
aBooleanresult. Thisexpression will be evaluated for each row prior to any conditionsor functionscoming
fromtheuser'squery. (The only exceptionstothisrulearel eakpr oof functions, which are guaranteed to

82

Data Definition

not leak information; the optimizer may choose to apply such functions ahead of the row-security check.)
Rows for which the expression does not return t r ue will not be processed. Separate expressions may be
specified to provide independent control over the rows which are visible and the rows which are allowed
to be modified. Policy expressions are run as part of the query and with the privileges of the user running
the query, although security-definer functions can be used to access data not available to the calling user.

Superusers and roles with the BYPASSRL S attribute always bypass the row security system when access-
ing a table. Table owners normally bypass row security as well, though a table owner can choose to be
subject to row security with ALTER TABLE ... FORCE ROW LEVEL SECURITY.

Enabling and disabling row security, as well as adding policies to atable, is aways the privilege of the
table owner only.

Policiesare created using the CREATE POLICY command, atered usingthe ALTER POLICY command,
and dropped using the DROP POLICY command. To enable and disable row security for a given table,
usethe ALTER TABLE command.

Each policy has a name and multiple policies can be defined for atable. As policies are table-specific,
each policy for atable must have a unique name. Different tables may have policies with the same name.

When multiple policies apply to agiven query, they are combined using either OR (for permissive policies,
which are the default) or using AND (for restrictive policies). Thisis similar to the rule that a given role
has the privileges of al roles that they are a member of. Permissive vs. restrictive policies are discussed
further below.

As asimple example, here is how to create a policy on theaccount relation to alow only members of
the manager s role to access rows, and only rows of their accounts:

CREATE TABLE accounts (nmanager text, conpany text, contact_emil
text);

ALTER TABLE accounts ENABLE ROW LEVEL SECURITY;

CREATE POLI CY account _managers ON accounts TO managers
USI NG (manager = current_user);

The policy aboveimplicitly providesaW TH CHECK clauseidentical toits USI NGclause, so that the con-
straint applies both to rows selected by acommand (so amanager cannot SELECT, UPDATE, or DELETE
existing rows belonging to a different manager) and to rows modified by a command (so rows belonging
to a different manager cannot be created vial NSERT or UPDATE).

If noroleis specified, or the special user name PUBLI Cis used, then the policy appliesto all users on the
system. To alow all usersto access only their own row in auser s table, asimple policy can be used:

CREATE PQOLI CY user _policy ON users
USI NG (user_nanme = current_user);

Thisworks similarly to the previous example.

To use adifferent policy for rowsthat are being added to the table compared to those rowsthat are visible,
multiple policies can be combined. This pair of policies would allow al users to view all rows in the
user s table, but only modify their own:

CREATE PCLI CY user_sel _policy ON users

83

Data Definition

FOR SELECT
USI NG (true);

CREATE PCLI CY user _nmod_policy ON users
USI NG (user_nanme = current_user);

In a SELECT command, these two policies are combined using OR, with the net effect being that all rows
can be selected. In other command types, only the second policy applies, so that the effects are the same
as before.

Row security can also be disabled with the ALTER TABLE command. Disabling row security does not
remove any policies that are defined on the table; they are simply ignored. Then all rows in the table are
visible and modifiable, subject to the standard SQL privileges system.

Below isalarger example of how thisfeature can be used in production environments. The tablepasswd
emulates a Unix password file:

-- Sinmple passwd-file based exampl e
CREATE TABLE passwd (

user _nane text UNI QUE NOT NULL,
pwhash t ext,
ui d int PRI MARY KEY,
gid int NOT NULL,
real nane text NOT NULL,
hone_phone t ext,
extra_info t ext,
home_dir text NOT NULL,
shel | text NOT NULL
)
CREATE RCLE admin; -- Admi nistrator
CREATE RCLE bob; -- Normal user
CREATE ROLE alice; -- Normal user

-- Popul ate the table
| NSERT | NTO passwd VALUES

("admin', ' xxx',0,0," Admn',"'111-222-3333" ,null,"/root','/bin/dash');
| NSERT | NTO passwd VALUES

("bob',"'xxx"',1,1,"Bob',"' 123-456-7890', null,"'/honme/bob',"'/bin/zsh');
| NSERT | NTO passwd VALUES

("alice',"xxx",2,1," Alice','098-765-4321" ,null,"/home/alice','/bin/
zsh');

-- Be sure to enable row | evel security on the table
ALTER TABLE passwd ENABLE ROW LEVEL SECURITY;

-- Create policies

-- Adm nistrator can see all rows and add any rows

CREATE PCLI CY admin_all ON passwd TO admin USING (true) WTH CHECK
(true);

-- Nornmal users can view all rows

CREATE POLI CY al | _vi ew ON passwd FOR SELECT USI NG (true);

-- Normal users can update their own records, but

-- limt which shells a normal user is allowed to set

CREATE PCLI CY user _nmod ON passwd FOR UPDATE

84

Data Definition

USI NG (current _user = user_nane)
W TH CHECK (
current _user = user_nanme AND
shell IN ('/bin/bash',"/bin/sh','/bin/dash','/bin/zsh',"'/bin/
tcsh')

)

-- Allow admin all normal rights
GRANT SELECT, | NSERT, UPDATE, DELETE ON passwd TO admi n;
-- Users only get select access on public col ums
GRANT SELECT
(user _name, uid, gid, real _name, home_phone, extra_info, hone_dir,
shel 1)
ON passwd TO public;
-- Allow users to update certain col ums
GRANT UPDATE
(pwhash, real name, home_phone, extra_info, shell)
ON passwd TO public;

As with any security settings, it's important to test and ensure that the system is behaving as expected.
Using the example above, this demonstrates that the permission system is working properly.

-- admin can view all rows and fields
post gres=> set role admn;

SET
post gres=> t abl e passwd;
user_nane | pwhash | uid | gid | real _name | home_phone
extra_info | home_dir | shel
----------- T T T I ppup R
o m e o - - o m e e e oo - T ——
adm n | xxx | 0 | 0| Admin | 111-222-3333
| /root | /bin/dash
bob | xxx | 1] 1| Bob | 123-456-7890
| /hone/ bob | /bin/zsh
alice | xxx | 2| 1| Aice | 098-765-4321
| /hone/alice | /bin/zsh
(3 rows)

-- Test what Alice is able to do

postgres=> set role alice;

SET

post gres=> t abl e passwd;

ERROR: permi ssion denied for relation passwd

post gres=> sel ect

user _nane, real _name, home_phone, extra_i nfo, hone_dir, shell from passwd;

user_nane | real _name | honme_phone | extra_info | hone_dir |
shel |
----------- Ty
.

adm n | Admin | 111-222-3333 | | /root | /
bi n/ dash

bob | Bob | 123-456-7890 | | /home/ bob | /
bi n/ zsh

85

Data Definition

alice | Alice | 098-765-4321 | | /hone/alice | /
bi n/ zsh

(3 rows)

post gr es=> update passwd set user_nane = 'joe';

ERROR: permi ssion denied for relation passwd
-- Alice is allowed to change her own real nanme, but no others

post gr es=> update passwd set real _nane = 'Alice Doe';

UPDATE 1

post gr es=> update passwd set real _nane = 'John Doe' where user_nane =
"admin';

UPDATE 0

post gr es=> update passwd set shell = '/bin/xx";

ERROR: new row vi ol ates WTH CHECK OPTION for "passwd”

post gres=> del ete from passwd;

ERROR: permi ssion denied for relation passwd

postgres=> insert into passwd (user_nane) values ('xxx');

ERROR: permi ssion denied for relation passwd

-- Alice can change her own password; RLS silently prevents updating
ot her rows

post gr es=> update passwd set pwhash = 'abc’;

UPDATE 1

All of the policies constructed thus far have been permissive policies, meaning that when multiple poli-
cies are applied they are combined using the “OR” Boolean operator. While permissive policies can be
constructed to only allow access to rows in the intended cases, it can be simpler to combine permissive
policies with restrictive policies (which the records must pass and which are combined using the “AND”
Boolean operator). Building on the example above, we add arestrictive policy to require the administrator
to be connected over alocal Unix socket to access the records of the passwd table:

CREATE PCLI CY admi n_Il ocal _only ON passwd AS RESTRI CTI VE TO admi n
USI NG (pg_catal og.inet_client_addr() IS NULL);

We can then see that an administrator connecting over a network will not see any records, due to the
restrictive policy:

=> SELECT current _user;
current _user

=> sel ect inet_client_addr();
i net _client_addr

127.0.0.1
(1 row

=> TABLE passwd;
user_nane | pwhash | uid | gid | real _name | hone_phone | extra_info
| home_dir | shell

86

Data Definition

(0 rows)

=> UPDATE passwd set pwhash = NULL;
UPDATE 0

Referential integrity checks, such as unique or primary key constraints and foreign key references, al-
ways bypass row security to ensure that dataintegrity is maintained. Care must be taken when devel oping
schemas and row level policies to avoid “covert channel” leaks of information through such referential
integrity checks.

In some contextsit isimportant to be sure that row security is not being applied. For example, when taking
abackup, it could be disastrous if row security silently caused some rows to be omitted from the backup.
In such a situation, you can set the row_security configuration parameter to of f . This does not in itself
bypass row security; what it does is throw an error if any query's results would get filtered by a policy.
The reason for the error can then be investigated and fixed.

In the examples above, the policy expressions consider only the current values in the row to be accessed
or updated. Thisisthe simplest and best-performing case; when possible, it's best to design row security
applications to work this way. If it is necessary to consult other rows or other tables to make a policy
decision, that can be accomplished using sub-SELECTS, or functionsthat contain SELECTS, in the policy
expressions. Be aware however that such accesses can create race conditions that could alow information
leskage if care is not taken. As an example, consider the following table design:

-- definition of privilege groups
CREATE TABLE groups (group_id int PRI MARY KEY,
group_name text NOT NULL);

I NSERT | NTO gr oups VALUES

(1, "low),
(2, 'medium),
(5, "high");
GRANT ALL ON groups TO alice; -- alice is the admi nistrator

GRANT SELECT ON groups TO public;

-- definition of users' privilege |levels
CREATE TABLE users (user_nane text PRI MARY KEY,
group_id int NOT NULL REFERENCES groups);

| NSERT | NTO users VALUES
("alice', 5),
(" bob', 2),
("mallory', 2);

GRANT ALL ON users TO alice;
GRANT SELECT ON users TO public;

-- table holding the information to be protected
CREATE TABLE information (info text,
group_id int NOT NULL REFERENCES groups);

I NSERT | NTO i nf or mati on VALUES
('barely secret', 1),
("slightly secret', 2),

87

Data Definition

('very secret', 5);
ALTER TABLE i nfornati on ENABLE ROW LEVEL SECURI TY;

-- a row shoul d be visible to/updatable by users whose security
group_id is
-- greater than or equal to the row s group_id
CREATE PCLICY fp_s ONinformation FOR SELECT

USI NG (group_id <= (SELECT group_id FROM users WHERE user _nane
current _user));
CREATE POLICY fp_u ON information FOR UPDATE

USI NG (group_id <= (SELECT group_id FROM users WHERE user _nane
current _user));

-- we rely only on RLS to protect the information table
GRANT ALL ON i nformation TO public;

Now suppose that al i ce wishesto change the “dlightly secret” information, but decidesthat mal | ory
should not be trusted with the new content of that row, so she does:

BEG N,

UPDATE users SET group_id = 1 WHERE user_nane = '"mallory';

UPDATE i nformation SET info = 'secret frommallory' WHERE group_id =
2;

COW T;

That looks safe; there is no window wherein mal | or y should be able to see the “secret from mallory”
string. However, there is arace condition here. If mal | or y is concurrently doing, say,

SELECT * FROM i nformati on WHERE group_id = 2 FOR UPDATE;

and her transaction isin READ COVM TTED mode, it is possible for her to see “secret from mallory”.
That happensif her transaction reachesthei nf or nmat i on row just after al i ce'sdoes. It blockswaiting
for al i ce's transaction to commit, then fetches the updated row contents thanks to the FOR UPDATE
clause. However, it does not fetch an updated row for the implicit SELECT from user s, because that
sub-SELECT did not have FOR UPDATE; instead the user s row is read with the snapshot taken at the
start of the query. Therefore, the policy expression tests the old value of mal | or y's privilege level and
allows her to see the updated row.

There are several ways around this problem. One simple answer isto use SELECT ... FOR SHARE
in sub-SELECTs in row security policies. However, that requires granting UPDATE privilege on the ref-
erenced table (here user s) to the affected users, which might be undesirable. (But another row security
policy could be applied to prevent them from actually exercising that privilege; or the sub-SELECT could
be embedded into a security definer function.) Also, heavy concurrent use of row share locks on the ref-
erenced table could pose a performance problem, especially if updates of it are frequent. Another solution,
practical if updates of the referenced table are infrequent, isto take an ACCESS EXCLUSI VE lock on the
referenced table when updating it, so that no concurrent transactions could be examining old row values.
Or one could just wait for al concurrent transactions to end after committing an update of the referenced
table and before making changes that rely on the new security situation.

For additional details see CREATE POLICY and ALTER TABLE.

5.9. Schemas

88

Data Definition

5.9.1.

A PostgreSQL database cluster contains one or more named databases. Roles and afew other object types
are shared across the entire cluster. A client connection to the server can only access data in a single
database, the one specified in the connection request.

Note

Users of a cluster do not necessarily have the privilege to access every database in the cluster.
Sharing of role names means that there cannot be different roles named, say, j oe intwo databases
in the same cluster; but the system can be configured to allow j oe access to only some of the
databases.

A database contains one or more named schemas, which in turn contain tables. Schemas a so contain other
kinds of named objects, including data types, functions, and operators. The same object name can be used
in different schemas without conflict; for example, both schenal and myschenma can contain tables
named myt abl e. Unlike databases, schemas are not rigidly separated: a user can access objects in any
of the schemas in the database they are connected to, if they have privileges to do so.

There are several reasons why one might want to use schemas:
» To alow many users to use one database without interfering with each other.
» To organize database objectsinto logical groups to make them more manageable.

 Third-party applications can be put into separate schemas so they do not collide with the names of other
objects.

Schemas are analogous to directories at the operating system level, except that schemas cannot be nested.

Creating a Schema

To create a schema, use the CREATE SCHEMA command. Give the schema a name of your choice. For
example:

CREATE SCHEMA nyschenmm;

To create or access objects in a schema, write a qualified name consisting of the schema name and table
name separated by adot:

schema. tabl e

This works anywhere a table name is expected, including the table modification commands and the data
access commands discussed in the following chapters. (For brevity we will speak of tables only, but the
same ideas apply to other kinds of named objects, such as types and functions.)

Actualy, the even more general syntax

dat abase. schenn. t abl e

can be used too, but at present thisisjust for pro forma compliance with the SQL standard. If you write a
database name, it must be the same as the database you are connected to.

So to create atable in the new schema, use:

89

Data Definition

5.9.2.

5.9.3.

CREATE TABLE myschema. nytabl e (

)

To drop aschemaif it'sempty (all objectsin it have been dropped), use:

DROP SCHENMA nyschens;

To drop a schemaincluding al contained objects, use:

DROP SCHENMA nyschenma CASCADE;
See Section 5.14 for a description of the general mechanism behind this.

Often you will want to create a schema owned by someone else (since this is one of the ways to restrict
the activities of your users to well-defined namespaces). The syntax for that is:

CREATE SCHEMA schena_name AUTHORI ZATI ON user _nane;

Y ou can even omit the schema name, in which case the schema name will be the same as the user name.
See Section 5.9.6 for how this can be useful.

Schema names beginning with pg_ are reserved for system purposes and cannot be created by users.

The Public Schema

In the previous sections we created tables without specifying any schema names. By default such tables
(and other objects) are automatically put into aschemanamed “public’. Every new database contains such
aschema. Thus, the following are equivalent:

CREATE TABLE products (...);
and:
CREATE TABLE public.products (...);

The Schema Search Path

Qualified names are tedious to write, and it's often best not to wire a particular schemanameinto applica-
tions anyway. Therefore tables are often referred to by unqualified names, which consist of just the table
name. The system determines which table is meant by following a search path, which isalist of schemas
tolook in. The first matching table in the search path is taken to be the one wanted. If thereisno matchin
the search path, an error is reported, even if matching table names exist in other schemas in the database.

The ahility to create like-named objects in different schemas complicates writing a query that references
precisely the same objects every time. It also opens up the potential for users to change the behavior of
other users queries, maliciously or accidentally. Due to the prevalence of unqualified names in queries
and their use in PostgreSQL internals, adding a schema to sear ch_pat h effectively trusts all users
having CREATE privilege on that schema. When you run an ordinary query, amalicious user ableto create

90

Data Definition

objects in a schema of your search path can take control and execute arbitrary SQL functions as though
you executed them.

Thefirst schema named in the search path is called the current schema. Aside from being the first schema
searched, it is also the schemain which new tableswill be created if the CREATE TABLE command does
not specify a schema name.

To show the current search path, use the following command:

SHOW sear ch_pat h;

In the default setup this returns:

search_path

"$user", public

The first element specifies that a schema with the same name as the current user is to be searched. If no
such schema exists, the entry is ignored. The second element refers to the public schema that we have
seen already.

The first schema in the search path that exists is the default location for creating new objects. That is
the reason that by default objects are created in the public schema. When objects are referenced in any
other context without schema qualification (table modification, data modification, or query commands)
the search path is traversed until a matching object is found. Therefore, in the default configuration, any
unqualified access again can only refer to the public schema.

To put our new schemain the path, we use:

SET search_path TO nyschens, publi c;

(We omit the $user here because we have no immediate need for it.) And then we can access the table
without schema qualification:

DROP TABLE nyt abl e;
Also, since nyschena isthefirst element in the path, new objects would by default be created in it.

We could also have written:

SET search_path TO nyschenms;

Then we no longer have accessto the public schemawithout explicit qualification. Thereisnothing special
about the public schema except that it exists by default. It can be dropped, too.

See also Section 9.26 for other ways to manipul ate the schema search path.

The search path worksin the same way for data type names, function names, and operator names asit does
for table names. Data type and function names can be qualified in exactly the same way as table names. If
you need to write a qualified operator name in an expression, thereis a special provision: you must write

91

Data Definition

5.9.4.

5.9.5.

5.9.6.

OPERATOR(schemma. oper at or)

Thisis needed to avoid syntactic ambiguity. An exampleis:

SELECT 3 OPERATOR(pg_catal og. +) 4;

In practice one usually relies on the search path for operators, so as not to have to write anything so ugly
asthat.

Schemas and Privileges

By default, users cannot access any objects in schemas they do not own. To alow that, the owner of the
schema must grant the USAGE privilege on the schema To allow users to make use of the objects in the
schema, additional privileges might need to be granted, as appropriate for the object.

A user can aso beallowed to create objectsin someone el se's schema. To allow that, the CREATE privilege
on the schema needs to be granted. Note that by default, everyone has CREATE and USAGE privileges on
the schemapubl i c. Thisalowsall usersthat are able to connect to a given database to create objectsin
itspubl i ¢ schema. Some usage patterns call for revoking that privilege:

REVOKE CREATE ON SCHEMA public FROM PUBLI C

(Thefirst “public” is the schema, the second “public” means “every user”. In thefirst senseit is an iden-
tifier, in the second sense it is a key word, hence the different capitalization; recall the guidelines from
Section4.1.1.)

The System Catalog Schema

Inadditionto publ i ¢ and user-created schemas, each database containsapg_cat al og schema, which
containsthe system tablesand all the built-in datatypes, functions, and operators. pg_cat al og isalways
effectively part of the search path. If it is not named explicitly in the path then it is implicitly searched
before searching the path's schemas. This ensures that built-in names will always be findable. However,
you can explicitly place pg_cat al og at the end of your search path if you prefer to have user-defined
names override built-in names.

Since system table names begin with pg_, it isbest to avoid such names to ensure that you won't suffer a
conflict if somefuture version definesasystem table named the same asyour table. (With the default search
path, an unqualified reference to your table name would then be resolved as the system table instead.)
System tables will continue to follow the convention of having names beginning with pg_, so that they
will not conflict with unqualified user-table names so long as users avoid the pg_ prefix.

Usage Patterns

Schemas can be used to organize your data in many ways. A secure schema usage pattern prevents un-
trusted users from changing the behavior of other users queries. When a database does not use a secure
schema usage pattern, users wishing to securely query that database would take protective action at the
beginning of each session. Specifically, they would begin each session by setting sear ch_pat h to the
empty string or otherwise removing non-superuser-writable schemas from sear ch_pat h. Therearea
few usage patterns easily supported by the default configuration:

 Constrain ordinary users to user-private schemas. To implement this, issue REVOKE CREATE ON
SCHEMA publ i ¢ FROM PUBLI C, and create aschemafor each user with the same name asthat user.
Recall that the default search path starts with $user , which resolves to the user name. Therefore, if

92

Data Definition

5.9.7.

5.10

each user has a separate schema, they accesstheir own schemas by default. After adopting thispatternin
adatabase where untrusted users had already logged in, consider auditing the public schemafor objects
named like objects in schemapg_cat al og. This pattern is a secure schema usage pattern unless an
untrusted user is the database owner or holds the CREATEROLE privilege, in which case no secure
schema usage pattern exists.

* Remove the public schema from the default search path, by modifying post gr esql . conf or by
issuing ALTER ROLE ALL SET search_path = "S$user". Everyone retains the ability to
create objectsin the public schema, but only qualified names will choose those objects. While qualified
table references are fine, cals to functions in the public schema will be unsafe or unreliable. If you
create functions or extensions in the public schema, use the first pattern instead. Otherwise, like the
first pattern, thisis secure unless an untrusted user is the database owner or holds the CREATEROLE

privilege.

» Keep the default. All users access the public schema implicitly. This simulates the situation where
schemas are not available at all, giving a smooth transition from the non-schema-aware world. How-
ever, thisis never a secure pattern. It is acceptable only when the database has a single user or a few
mutually-trusting users.

For any pattern, to install shared applications (tablesto be used by everyone, additional functions provided
by third parties, etc.), put them into separate schemas. Remember to grant appropriate privileges to allow
the other users to access them. Users can then refer to these additional objects by qualifying the names
with a schemaname, or they can put the additional schemas into their search path, as they choose.

Portability

Inthe SQL standard, the notion of objectsin the same schemabeing owned by different usersdoes not exist.
Moreover, some implementations do not allow you to create schemas that have a different name than their
owner. Infact, the concepts of schemaand user are nearly equivalent in a database system that implements
only the basic schema support specified in the standard. Therefore, many users consider qualified names
to really consist of user _nane. t abl e_nane. Thisis how PostgreSQL will effectively behave if you
create a per-user schemafor every user.

Also, there is no concept of apubl i ¢ schemain the SQL standard. For maximum conformance to the
standard, you should not use the publ i ¢ schema.

Of course, some SQL database systems might not implement schemas at all, or provide namespace sup-
port by allowing (possibly limited) cross-database access. If you need to work with those systems, then
maximum portability would be achieved by not using schemas at all.

Inheritance

PostgreSQL implements table inheritance, which can be a useful tool for database designers. (SQL:1999
and later define atypeinheritance feature, which differsin many respectsfrom the features described here.)

Let's start with an example: suppose we are trying to build a data model for cities. Each state has many
cities, but only one capital. We want to be able to quickly retrieve the capital city for any particular state.
This can be done by creating two tables, one for state capitals and one for cities that are not capitals.
However, what happens when we want to ask for data about a city, regardless of whether it is a capital
or not? The inheritance feature can help to resolve this problem. We define the capi t al s table so that
itinheritsfromci ti es:

CREATE TABLE cities (

93

Data Definition

name t ext,
popul ati on fl oat,
el evati on i nt -- in feet

)

CREATE TABLE capitals (
state char (2)
) INHERI TS (cities);

Inthiscase, thecapi t al s tableinheritsall the columns of its parent table, ci t i es. State capitals also
have an extracolumn, st at e, that shows their state.

In PostgreSQL, a table can inherit from zero or more other tables, and a query can reference either all
rows of atable or al rows of atable plus al of its descendant tables. The latter behavior is the default.
For example, the following query finds the names of al cities, including state capitals, that are located
at an elevation over 500 feet:

SELECT nane, el evation
FROM cities
VWHERE el evati on > 500;

Given the sample data from the PostgreSQL tutorial (see Section 2.1), this returns:

name | elevation
___________ o,
Las Vegas | 2174
Mari posa | 1953
Madi son | 845

On the other hand, the following query finds all the cities that are not state capitals and are situated at an
elevation over 500 feet:

SELECT nane, el evation
FROM ONLY cities
VWHERE el evati on > 500;

nane | elevation
___________ N,
Las Vegas | 2174
Mari posa | 1953

Here the ONLY keyword indicates that the query should apply only to ci t i es, and not any tables below
ci t i es intheinheritance hierarchy. Many of the commands that we have already discussed — SELECT,
UPDATE and DELETE — support the ONLY keyword.

Y ou can aso writethetable namewith atrailing * to explicitly specify that descendant tables areincluded:

SELECT nane, el evation
FROM ci ti es*
VWHERE el evati on > 500;

Writing * isnot necessary, since thisbehavior is awaysthe default. However, this syntax is till supported
for compatibility with older releases where the default could be changed.

94

Data Definition

In some cases you might wish to know which table a particular row originated from. There is a system
column called t abl eoi d in each table which can tell you the originating table:

SELECT c.tableoid, c.name, c.elevation
FROM cities c
VWHERE c. el evati on > 500;

which returns:

tabl eoid | name | elevation
__________ e
139793 | Las Vegas | 2174
139793 | Mariposa | 1953
139798 | Madi son | 845

(If you try to reproduce this example, you will probably get different numeric OIDs.) By doing ajoin with
pg_cl ass you can see the actual table names:

SELECT p.relnane, c.nanme, c.elevation
FROM cities ¢, pg_class p
WHERE c. el evati on > 500 AND c.tabl eoid = p.oid;

which returns;

rel name | name | elevation
__________ e
cities | Las Vegas | 2174
cities | Mariposa | 1953
capitals | Madi son | 845

Another way to get the same effect is to use ther egcl ass alias type, which will print the table OID
symbolically:

SELECT c. tabl eoi d: :regcl ass, c.nane, c.elevation
FROM cities ¢
WHERE c. el evati on > 500;

Inheritance does not automatically propagate data from | NSERT or COPY commands to other tablesin
the inheritance hierarchy. In our example, the following | NSERT statement will fail:

I NSERT I NTO cities (name, popul ation, elevation, state)
VALUES (' Al bany', NULL, NULL, 'NY');

We might hope that the data would somehow be routed to the capi t al s table, but this does not happen:
| NSERT alwaysinsertsinto exactly thetable specified. In some casesit is possibleto redirect the insertion
using arule (see Chapter 41). However that does not help for the above case because theci ti es table
does not contain the column st at e, and so the command will be rejected before the rule can be applied.

All check constraints and not-null constraints on a parent table are automatically inherited by its children,
unless explicitly specified otherwise with NO | NHERI T clauses. Other types of constraints (unique, pri-
mary key, and foreign key constraints) are not inherited.

95

Data Definition

A table can inherit from more than one parent table, in which case it has the union of the columns defined
by the parent tables. Any columns declared in the child table's definition are added to these. If the same
column name appears in multiple parent tables, or in both a parent table and the child's definition, then
these columnsare“merged” so that thereisonly one such columninthe child table. To be merged, columns
must have the sasme datatypes, else an error israised. Inheritable check constraints and not-null constraints
are merged in asimilar fashion. Thus, for example, a merged column will be marked not-null if any one
of the column definitions it came from is marked not-null. Check constraints are merged if they have the
same name, and the merge will fail if their conditions are different.

Table inheritance is typically established when the child table is created, using the | NHERI TS clause of
the CREATE TABLE statement. Alternatively, a table which is already defined in a compatible way can
have a new parent relationship added, using the | NHERI T variant of ALTER TABLE. To do thisthe new
child table must already include columns with the same names and types as the columns of the parent. It
must also include check constraints with the same names and check expressions as those of the parent.
Similarly an inheritance link can be removed from a child using the NO | NHERI T variant of ALTER
TABLE. Dynamically adding and removing inheritance links like this can be useful when the inheritance
relationship is being used for table partitioning (see Section 5.11).

One convenient way to create a compatible table that will later be made a new child isto use the L1 KE
clausein CREATE TABLE. Thiscreatesanew tablewith the same columns asthe sourcetable. If thereare
any CHECK constraints defined on the source table, the | NCLUDI NG CONSTRAI NTS option to LI KE
should be specified, as the new child must have constraints matching the parent to be considered compat-
ible.

A parent table cannot be dropped while any of itschildren remain. Neither can columnsor check constraints
of child tables be dropped or altered if they are inherited from any parent tables. If you wish to remove a
table and al of its descendants, one easy way is to drop the parent table with the CASCADE option (see
Section 5.14).

ALTER TABLE will propagate any changes in column data definitions and check constraints down the
inheritance hierarchy. Again, dropping columnsthat are depended on by other tablesis only possible when
using the CASCADE option. ALTER TABLE follows the same rules for duplicate column merging and
rejection that apply during CREATE TABLE.

Inherited queries perform access permission checks on the parent table only. Thus, for example, granting
UPDATE permission ontheci t i es table implies permission to update rowsinthe capi t al s tableas
well, when they are accessed through ci t i es. This preserves the appearance that the data is (also) in
the parent table. But the capi t al s table could not be updated directly without an additional grant. In
asimilar way, the parent tabl€e's row security policies (see Section 5.8) are applied to rows coming from
child tables during an inherited query. A child tabl€e's policies, if any, are applied only when it isthe table
explicitly named in the query; and in that case, any policies attached to its parent(s) are ignored.

Foreign tables (see Section 5.12) can also be part of inheritance hierarchies, either as parent or child tables,
just as regular tables can be. If aforeign table is part of an inheritance hierarchy then any operations not
supported by the foreign table are not supported on the whole hierarchy either.

5.10.1. Caveats

Note that not all SQL commands are able to work on inheritance hierarchies. Commands that are used
for data querying, data modification, or schema modification (e.g., SELECT, UPDATE, DELETE, most
variants of ALTER TABLE, but not | NSERT or ALTER TABLE ... RENAME) typicaly default
to including child tables and support the ONLY notation to exclude them. Commands that do database
maintenance and tuning (e.g., REI NDEX, VACUUM) typically only work onindividual, physical tablesand
do not support recursing over inheritance hierarchies. Therespective behavior of each individual command
is documented in its reference page (SQL Commands).

96

Data Definition

5.11.

A seriouslimitation of theinheritance featureisthat indexes (including unique constraints) and foreign key
constraints only apply to singletables, not to their inheritance children. Thisistrue on both the referencing
and referenced sides of aforeign key constraint. Thus, in the terms of the above example:

e Ifwedeclaredci t i es.nanme tobe UNI QUE or aPRI MARY KEY, thiswould not stopthecapi tal s
table from having rows with names duplicating rows in ci ti es. And those duplicate rows would
by default show up in queries from ci ti es. In fact, by default capi t al s would have no unique
congtraint at al, and so could contain multiple rows with the same name. You could add a unique
congtraint to capi t al s, but thiswould not prevent duplication comparedtoci ti es.

e Similarly, if we were to specify that ci t i es.name REFERENCES some other table, this constraint
would not automatically propagate to capi t al s. In this case you could work around it by manually
adding the same REFERENCES constraint to capi t al s.

 Specifying that another table's column REFERENCES ci ti es(nanme) would allow the other table
to contain city names, but not capital names. There is no good workaround for this case.

Some functionality not implemented for inheritance hierarchies is implemented for declarative partition-
ing. Considerable care is needed in deciding whether partitioning with legacy inheritance is useful for
your application.

Table Partitioning

PostgreSQL supports basic table partitioning. This section describes why and how to implement partition-
ing as part of your database design.

5.11.1. Overview

Partitioning refers to splitting what is logically one large table into smaller physical pieces. Partitioning
can provide several benefits:

* Query performance can be improved dramatically in certain situations, particularly when most of the
heavily accessed rows of the table are in asingle partition or a small number of partitions. Partitioning
effectively substitutes for the upper tree levels of indexes, making it more likely that the heavily-used
parts of the indexes fit in memory.

» When queriesor updates access alarge percentage of asingle partition, performance can beimproved by
using a sequential scan of that partition instead of using an index, which would require random-access
reads scattered across the whole table.

» Bulk loads and deletes can be accomplished by adding or removing partitions, if the usage pattern is
accounted for in the partitioning design. Dropping an individual partition using DROP TABLE, or doing
ALTER TABLE DETACH PARTI TI ON, is far faster than a bulk operation. These commands also
entirely avoid the VACUUMoverhead caused by abulk DELETE.

» Seldom-used data can be migrated to cheaper and slower storage media.

These benefits will normally be worthwhile only when a table would otherwise be very large. The exact
point at which atable will benefit from partitioning depends on the application, although arule of thumb
isthat the size of the table should exceed the physical memory of the database server.

PostgreSQL offers built-in support for the following forms of partitioning:
Range Partitioning

The table is partitioned into “ranges’ defined by a key column or set of columns, with no overlap
between the ranges of values assigned to different partitions. For example, one might partition by date

97

Data Definition

ranges, or by ranges of identifiersfor particular business objects. Each range's bounds are understood
as being inclusive at the lower end and exclusive at the upper end. For example, if one partition's
rangeisfrom1 to 10, and the next one'srangeisfrom 10 to 20, then value 10 belongs to the second
partition not the first.

List Partitioning
The table is partitioned by explicitly listing which key value(s) appear in each partition.
Hash Partitioning

The table is partitioned by specifying a modulus and a remainder for each partition. Each partition
will hold the rows for which the hash value of the partition key divided by the specified modulus will
produce the specified remainder.

If your application needs to use other forms of partitioning not listed above, aternative methods such as
inheritance and UNI ON ALL views can be used instead. Such methods offer flexibility but do not have
some of the performance benefits of built-in declarative partitioning.

5.11.2. Declarative Partitioning

PostgreSQL allowsyou to declare that atableisdivided into partitions. Thetablethat isdivided isreferred
to as a partitioned table. The declaration includes the partitioning method as described above, plus alist
of columns or expressions to be used as the partition key.

The partitioned table itself isa“virtual” table having no storage of its own. Instead, the storage belongs to
partitions, which are otherwise-ordinary tables associated with the partitioned table. Each partition stores
a subset of the data as defined by its partition bounds. All rows inserted into a partitioned table will be
routed to the appropriate one of the partitions based on the values of the partition key column(s). Updating
the partition key of arow will cause it to be moved into a different partition if it no longer satisfies the
partition bounds of its original partition.

Partitions may themselves be defined as partitioned tables, resulting in sub-partitioning. Although all par-
titions must have the same columns as their partitioned parent, partitions may have their own indexes,
constraints and default values, distinct from those of other partitions. See CREATE TABLE for more de-
tails on creating partitioned tables and partitions.

Itisnot possibleto turn aregular table into a partitioned table or vice versa. However, it is possible to add
an existing regular or partitioned table as a partition of a partitioned table, or remove a partition from apar-
titioned table turning it into a standalone table; this can simplify and speed up many maintenance process-
es. See ALTER TABLE to learn more about the ATTACH PARTI TI ON and DETACH PARTI TI ON
sub-commands.

Partitions can also be foreign tables, although considerable care is needed because it is then the user's
responsibility that the contents of the foreign table satisfy the partitioning rule. There are some other
restrictions as well. See CREATE FOREIGN TABLE for more information.

5.11.2.1. Example

Suppose we are constructing a database for a large ice cream company. The company measures peak
temperatures every day as well asice cream salesin each region. Conceptually, we want atable like:

CREATE TABLE neasurenent (
city_ id int not null,
| ogdat e date not null,

98

Data Definition

peakt enmp int,
uni t sal es i nt

)

We know that most querieswill accessjust the last week's, month's or quarter's data, since the main use of
thistable will beto prepare online reports for management. To reduce the amount of old data that needsto
be stored, we decide to keep only the most recent 3 years worth of data. At the beginning of each month
we will remove the oldest month's data. In this situation we can use partitioning to help us meet al of our
different requirements for the measurementstable.

To use declarative partitioning in this case, use the following steps:
1. Create the measur enment table as a partitioned table by specifying the PARTI TI ON BY clause,

which includes the partitioning method (RANGE in this case) and the list of column(s) to use as the
partition key.

CREATE TABLE neasurenent (

city_id int not null,
| ogdat e date not null,
peakt ermp i nt,

uni t sal es i nt

) PARTI TI ON BY RANCE (| ogdat e);

2. Create partitions. Each partition's definition must specify bounds that correspond to the partitioning
method and partition key of the parent. Note that specifying bounds such that the new partition's values
would overlap with those in one or more existing partitions will cause an error.

Partitions thus created are in every way normal PostgreSQL tables (or, possibly, foreign tables). It is
possible to specify atablespace and storage parameters for each partition separately.

For our example, each partition should hold one month's worth of data, to match the requirement of
deleting one month's data at atime. So the commands might look like:

CREATE TABLE neasur enent _y2006n02 PARTI TI ON OF neasur enent
FOR VALUES FROM (' 2006-02-01') TO ('2006-03-01");

CREATE TABLE neasur enent _y2006n03 PARTI TI ON OF neasur enment
FOR VALUES FROM (' 2006-03-01') TO ('2006-04-01");

CREATE TABLE nmeasurenent _y2007mll PARTI TI ON OF neasur enment
FOR VALUES FROM (' 2007-11-01') TO ('2007-12-01");

CREATE TABLE nmeasurenent _y2007nml2 PARTI TI ON OF neasur enent
FOR VALUES FROM (' 2007-12-01') TO ('2008-01-01")
TABLESPACE f astt abl espace;

CREATE TABLE neasur enment _y2008n01 PARTI TI ON OF neasur enent
FOR VALUES FROM (' 2008-01-01') TO ('2008-02-01")
W TH (paral l el _workers = 4)
TABLESPACE f astt abl espace;

(Recall that adjacent partitions can share a bound value, since range upper bounds are treated as ex-
clusive bounds.)

99

Data Definition

If you wish to implement sub-partitioning, again specify the PARTI TI ON BY clausein the commands
used to create individual partitions, for example:

CREATE TABLE nmeasur enment _y2006n02 PARTI TI ON OF neasur enment
FOR VALUES FROM (' 2006-02-01') TO ('2006-03-01")
PARTI TI ON BY RANGE (peaktenp);

After creating partitions of measur enment _y2006n02, any datainserted into measur enent that
is mapped to neasur enent _y2006n02 (or data that is directly inserted into neasur ermen-
t _y2006n02, whichisallowed provided its partition constraint is satisfied) will be further redirected
to one of its partitions based on the peakt enp column. The partition key specified may overlap with
the parent's partition key, although care should be taken when specifying the bounds of a sub-partition
such that the set of data it accepts constitutes a subset of what the partition's own bounds allow; the
system does not try to check whether that's really the case.

Inserting data into the parent table that does not map to one of the existing partitions will cause an
error; an appropriate partition must be added manually.

Itisnot necessary to manually create table constraints describing the partition boundary conditionsfor
partitions. Such constraints will be created automatically.

3. Create an index on the key column(s), as well as any other indexes you might want, on the partitioned
table. (The key index is not strictly necessary, but in most scenariosit is helpful.) This automatically
creates a matching index on each partition, and any partitions you create or attach later will also have
such an index. An index or unique constraint declared on a partitioned table is “virtual” in the same
way that the partitioned table is: the actual dataisin child indexes on the individual partition tables.

CREATE | NDEX ON measur enent (| ogdate);
4. Ensure that the enable partition pruning configuration parameter is not disabled in post -
gresql . conf . Ifitis, querieswill not be optimized as desired.

In the above example we would be creating a new partition each month, so it might be wise to write a
script that generates the required DDL automatically.

5.11.2.2. Partition Maintenance

Normally the set of partitions established when initially defining the table is not intended to remain static.
It is common to want to remove partitions holding old data and periodically add new partitions for new
data. One of the most important advantages of partitioning is precisely that it allows this otherwise painful
task to be executed nearly instantaneously by manipulating the partition structure, rather than physically
moving large amounts of data around.

The simplest option for removing old datais to drop the partition that is no longer necessary:

DROP TABLE neasur enent _y2006n02;

Thiscan very quickly delete millions of records because it doesn't haveto individually delete every record.
Note however that the above command requirestaking an ACCESS EXCLUSI VE lock on the parent table.

Another option that is often preferableisto remove the partition from the partitioned table but retain access
toitasatableinitsown right. This has two forms:

100

Data Definition

ALTER TABLE measur enment DETACH PARTI TI ON measur enment _y2006nD2;
ALTER TABLE measur enment DETACH PARTI TI ON measur ement _y2006n02
CONCURRENTLY;

These alow further operations to be performed on the data before it is dropped. For example, thisis often
auseful time to back up the data using COPY, pg_dump, or similar tools. It might also be a useful timeto
aggregate datainto smaller formats, perform other data manipulations, or run reports. Thefirst form of the
command requiresan ACCESS EXCLUSI VE lock on the parent table. Adding the CONCURRENTLY qual-
ifier asin the second form allowsthe detach operation to require only SHARE UPDATE EXCLUSI VE lock
on the parent table, but see ALTER TABLE ... DETACH PARTI Tl ONfor details on the restrictions.

Similarly we can add anew partition to handle new data. We can create an empty partition in the partitioned
table just as the origina partitions were created above:

CREATE TABLE neasurenent _y2008nD2 PARTI TI ON OF neasur ement
FOR VALUES FROM (' 2008-02-01') TO ('2008-03-01")
TABLESPACE f astt abl espace;

As an alternative, it is sometimes more convenient to create the new table outside the partition structure,
and make it aproper partition later. This allows new datato be loaded, checked, and transformed prior to it
appearing in the partitioned table. The CREATE TABLE ... LI KEoptionishelpful to avoid tediously
repeating the parent table's definition:

CREATE TABLE neasur enent _y2008n0D2
(LI KE nmeasurenment | NCLUDI NG DEFAULTS | NCLUDI NG CONSTRAI NTS)
TABLESPACE f astt abl espace;

ALTER TABLE neasur enent _y2008nD2 ADD CONSTRAI NT y2008nmD2
CHECK (| ogdate >= DATE '2008-02-01' AND | ogdate < DATE
' 2008-03-01');

\ copy neasurenent _y2008n02 from ' measurenent y2008nD2'
-- possibly sonme other data preparation work

ALTER TABLE neasur enent ATTACH PARTI TI ON nmeasur enent _y2008nm02
FOR VALUES FROM (' 2008-02-01') TO ('2008-03-01");

The ATTACH PARTI TI ON command requires taking a SHARE UPDATE EXCLUSI VE lock on the
partitioned table.

Before running the ATTACH PARTI TI ONcommand, it isrecommended to create a CHECK constraint on
the table to be attached that matches the expected partition constraint, as illustrated above. That way, the
system will be able to skip the scan which is otherwise needed to validate the implicit partition constraint.
Without the CHECK constraint, the table will be scanned to validate the partition constraint while holding
an ACCESS EXCLUSI VE lock on that partition. It is recommended to drop the now-redundant CHECK
congtraint after the ATTACH PARTI Tl ONis complete. If the table being attached is itself a partitioned
table, then each of its sub-partitions will be recursively locked and scanned until either a suitable CHECK
constraint is encountered or the leaf partitions are reached.

Similarly, if the partitioned table hasa DEFAULT partition, it isrecommended to create a CHECK constraint
which excludesthe to-be-attached partition's constraint. If thisisnot done then the DEFAULT partition will
be scanned to verify that it contains no records which should belocated in the partition being attached. This
operation will be performed whilst holding an ACCESS EXCLUSI VE lock onthe DEFAULT partition.

101

Data Definition

If the DEFAULT partition isitself apartitioned table, then each of its partitionswill be recursively checked
in the same way as the table being attached, as mentioned above.

Asexplained above, it is possible to create indexes on partitioned tables so that they are applied automat-
ically to the entire hierarchy. Thisis very convenient, as not only will the existing partitions become in-
dexed, but also any partitions that are created in the future will. One limitation is that it's not possible to
use the CONCURRENTLY qualifier when creating such a partitioned index. To avoid long lock times, it is
possibleto use CREATE | NDEX ON ONLY the partitioned table; such an index ismarked invalid, and the
partitions do not get theindex applied automatically. The indexes on partitions can be created individually
using CONCURRENTLY, and then attached to theindex on the parent using ALTER | NDEX .. ATTACH
PARTI Tl ON. Once indexes for all partitions are attached to the parent index, the parent index is marked
valid automatically. Example:

CREATE | NDEX neasur enent _usls_idx ON ONLY neasurenent (unitsales);

CREATE | NDEX neasur enent _usls_ 200602 _i dx
ON neasur enment _y2006n02 (unitsal es);
ALTER | NDEX neasur enent _usl s_i dx
ATTACH PARTI TI ON neasur enent _usl s_200602_i dx;

This technique can be used with UNI QUE and PRI MARY KEY constraints too; the indexes are created
implicitly when the constraint is created. Example:

ALTER TABLE ONLY neasurenent ADD UNIQUE (city_id, |ogdate);

ALTER TABLE neasur enent _y2006n02 ADD UNIQUE (city id, |ogdate);
ALTER | NDEX neasurenent _city id_| ogdate_key
ATTACH PARTI TI ON neasur enent _y2006n02 _city id_| ogdate_key;

5.11.2.3. Limitations

The following limitations apply to partitioned tables:

 Unique constraints (and hence primary keys) on partitioned tables must include all the partition key
columns. Thislimitation exists because theindividual indexes making up the constraint can only directly
enforce uniqueness within their own partitions; therefore, the partition structure itself must guarantee
that there are not duplicatesin different partitions.

» Thereisnoway to create an exclusion constraint spanning the whole partitioned table. It isonly possible
to put such a constraint on each leaf partition individually. Again, this limitation stems from not being
able to enforce cross-partition restrictions.

* BEFORE ROWtriggerson | NSERT cannot change which partition isthefinal destination for anew row.

» Mixing temporary and permanent relations in the same partition tree is not allowed. Hence, if the par-
titioned table is permanent, so must be its partitions and likewise if the partitioned table is temporary.
When using temporary relations, all members of the partition tree have to be from the same session.

Individual partitions are linked to their partitioned table using inheritance behind-the-scenes. However, it
isnot possible to use all of the generic features of inheritance with declaratively partitioned tables or their
partitions, as discussed below. Notably, a partition cannot have any parents other than the partitioned table

102

Data Definition

it is a partition of, nor can a table inherit from both a partitioned table and a regular table. That means
partitioned tables and their partitions never share an inheritance hierarchy with regular tables.

Since a partition hierarchy consisting of the partitioned table and its partitions is still an inheritance hier-
archy, t abl eoi d and all the normal rules of inheritance apply as described in Section 5.10, with afew
exceptions:

5.11.3.

Partitions cannot have columns that are not present in the parent. It is not possible to specify columns
when creating partitionswith CREATE TABLE, nor isit possible to add columnsto partitions after-the-
fact using ALTER TABLE. Tables may be added as a partition with ALTER TABLE ... ATTACH
PARTI TI ONonly if their columns exactly match the parent.

Both CHECK and NOT NULL constraints of a partitioned table are always inherited by all its partitions.
CHECK constraints that are marked NO | NHERI T are not allowed to be created on partitioned tables.
You cannot drop a NOT NULL constraint on a partition's column if the same constraint is present in
the parent table.

Using ONLY to add or drop aconstraint on only the partitioned table is supported aslong asthere are no
partitions. Once partitions exist, using ONLY will result in an error. Instead, constraints on the partitions
themselves can be added and (if they are not present in the parent table) dropped.

As a partitioned table does not have any data itself, attempts to use TRUNCATE ONLY on a partitioned
table will always return an error.

Partitioning Using Inheritance

While the built-in declarative partitioning is suitable for most common use cases, there are some circum-
stances where amore flexible approach may be useful. Partitioning can be implemented using table inher-
itance, which allows for several features not supported by declarative partitioning, such as:

5.11.3.1.

For declarative partitioning, partitions must have exactly the same set of columns as the partitioned
table, whereas with table inheritance, child tables may have extra columns not present in the parent.

Table inheritance allows for multiple inheritance.
Declarative partitioning only supportsrange, list and hash partitioning, whereastable inheritance allows

data to be divided in a manner of the user's choosing. (Note, however, that if constraint exclusion is
unable to prune child tables effectively, query performance might be poor.)

Example

This example builds a partitioning structure equivalent to the declarative partitioning example above. Use
the following steps:

1.

Create the “root” table, from which all of the “child” tables will inherit. This table will contain no
data. Do not define any check constraints on this table, unless you intend them to be applied equally
to al child tables. Thereis no point in defining any indexes or unique constraints on it, either. For our
example, the root tableisthe measur enent table as originally defined:

CREATE TABLE neasurenent (

city id int not null,
| ogdat e date not null,
peakt enmp i nt,

103

Data Definition

uni t sal es i nt
)
. Create several “child” tables that each inherit from the root table. Normally, these tables will not add
any columnsto the set inherited from the root. Just as with declarative partitioning, these tablesarein
every way normal PostgreSQL tables (or foreign tables).

CREATE TABLE nmeasur enent _y2006n02

() INHERI TS (rmeasurenent);
CREATE TABLE measur enent _y2006n03 (

I NHERI TS (neasurenent);

~— —

CREATE TABLE neasurenent _y2007nll () I NHERI TS (measurenent);
CREATE TABLE neasurenent _y2007nl2 () I NHERI TS (measurenent);
CREATE TABLE neasurenent _y2008n01 () I NHERI TS (measurenent);
. Add non-overlapping table constraints to the child tables to define the allowed key valuesin each.

Typica exampleswould be:

CHECK (x = 1)

CHECK (county IN ('Oxfordshire', 'Buckinghanshire',
"Warwi ckshire'))

CHECK (outletID >= 100 AND outletlD < 200)

Ensure that the constraints guarantee that there is no overlap between the key values permitted in
different child tables. A common mistake is to set up range constraints like:

CHECK (outlet| D BETWEEN 100 AND 200)
CHECK (outlet| D BETWEEN 200 AND 300)

Thisiswrong sinceit isnot clear which child table the key value 200 bel ongsin. Instead, ranges should
be defined in this style:

CREATE TABLE measur enent _y2006n02 (

CHECK (| ogdate >= DATE ' 2006- 02-01' AND | ogdate < DATE
' 2006- 03-01")
) INHERI TS (measurenent);

CREATE TABLE measur enent _y2006n03 (

CHECK (| ogdate >= DATE ' 2006- 03-01' AND | ogdate < DATE
' 2006- 04- 01")
) INHERI TS (measurenent);

CREATE TABLE measur enent _y2007nl1 (
CHECK (| ogdate >= DATE ' 2007-11-01'" AND | ogdate < DATE
'2007-12-01")
) INHERI TS (rmeasurenent);

CREATE TABLE measur enent _y2007nl2 (
CHECK (| ogdate >= DATE ' 2007-12-01' AND | ogdate < DATE
' 2008-01-01")
) INHERI TS (rmeasurenent);

104

Data Definition

CREATE TABLE measur enent _y2008n01 (
CHECK (| ogdate >= DATE '2008-01-01' AND | ogdate < DATE
' 2008- 02-01")
) INHERI TS (measurenent);
. For each child table, create anindex on the key column(s), aswell asany other indexesyou might want.

CREATE | NDEX measur enent _y2006n02_| ogdat e ON neasur enent _y2006n02
(1 ogdate);
CREATE | NDEX measur enent _y2006n03_I| ogdat e ON neasur enent _y2006n03
(1 ogdate);
CREATE | NDEX measur enent _y2007nml1_| ogdat e ON neasur enent _y2007nill
(1 ogdate);
CREATE | NDEX measur enent _y2007nml2_| ogdat e ON neasur enent _y2007ni2
(1 ogdate);
CREATE | NDEX measur enent _y2008n01_I| ogdat e ON neasur enent _y2008n01
(1 ogdate);
. Wewant our applicationto beabletosay | NSERT | NTO neasur enent ... and havethedatabe
redirected into the appropriate child table. We can arrange that by attaching a suitable trigger function
totheroot table. If datawill be added only to the latest child, we can use avery simpletrigger function:

CREATE OR REPLACE FUNCTI ON neasurement _i nsert _trigger()

RETURNS TRI GGER AS $$

BEG N
I NSERT | NTO measur enment _y2008nmD1 VALUES (NEW *);
RETURN NULL;

END,

$$

LANGUAGE pl pgsql ;

After creating the function, we create a trigger which calls the trigger function:

CREATE TRI GCGER i nsert _neasurenent _trigger
BEFORE | NSERT ON neasur enent
FOR EACH ROW EXECUTE FUNCTI ON neasur enent i nsert _trigger();

We must redefine the trigger function each month so that it always insertsinto the current child table.
The trigger definition does not need to be updated, however.

We might want to insert data and have the server automatically locate the child table into which the
row should be added. We could do this with a more complex trigger function, for example:

CREATE OR REPLACE FUNCTI ON neasuremnent _i nsert _trigger()
RETURNS TRI GGER AS $$
BEG N
IF (NEW I ogdate >= DATE ' 2006- 02-01' AND
NEW | ogdat e < DATE ' 2006- 03-01') THEN
I NSERT | NTO neasur enment _y2006n02 VALUES (NEW *);
ELSIF (NEW | ogdate >= DATE ' 2006-03-01' AND
NEW | ogdat e < DATE ' 2006- 04-01') THEN
I NSERT | NTO neasur enment _y2006n03 VALUES (NEW *);

105

Data Definition

ELSIF (NEW I ogdate >= DATE ' 2008-01-01' AND
NEW | ogdat e < DATE ' 2008-02-01') THEN
| NSERT | NTO measur enment _y2008nm01 VALUES (NEW *);
ELSE
RAI SE EXCEPTION ' Date out of range. Fix the
measur enent _insert _trigger() function!';
END | F;
RETURN NULL;
END,
$$
LANGUAGE pl pgsal ;

The trigger definition is the same as before. Note that each | F test must exactly match the CHECK
constraint for its child table.

While thisfunction is more complex than the single-month case, it doesn't need to be updated as often,
since branches can be added in advance of being needed.

Note

In practice, it might be best to check the newest child first, if most inserts go into that child. For
simplicity, we have shown the trigger'stestsin the same order asin other parts of thisexample.

A different approach to redirecting inserts into the appropriate child table is to set up rules, instead of
atrigger, on the root table. For example:

CREATE RULE neasurenent _insert_y2006n02 AS
ON I NSERT TO measur ement WHERE
(logdate >= DATE ' 2006- 02- 01' AND | ogdate < DATE
' 2006- 03-01')
DO | NSTEAD
I NSERT | NTO neasur enment _y2006n02 VALUES (NEW *);

CREATE RULE neasurenent _insert_y2008n01 AS
ON I NSERT TO measur ement WHERE
(logdate >= DATE ' 2008-01-01'" AND | ogdate < DATE
' 2008-02-01")
DO | NSTEAD
I NSERT | NTO neasur enment _y2008n01 VALUES (NEW *);

A rule has significantly more overhead than a trigger, but the overhead is paid once per query rather
than once per row, so this method might be advantageous for bulk-insert situations. In most cases,
however, the trigger method will offer better performance.

Be aware that COPY ignoresrules. If you want to use COPY to insert data, you'll need to copy into the
correct child table rather than directly into the root. COPY doesfiretriggers, so you can useit normally
if you use the trigger approach.

Another disadvantage of the rule approach is that there is no simple way to force an error if the set of
rules doesn't cover the insertion date; the data will silently go into the root table instead.

. Ensurethat the constraint_exclusion configuration parameter isnot disabledinpost gr esql . conf;
otherwise child tables may be accessed unnecessarily.

106

Data Definition

Aswe can see, acomplex table hierarchy could require asubstantial amount of DDL. Inthe above example
we would be creating a new child table each month, so it might be wise to write a script that generates
the required DDL automatically.

5.11.3.2. Maintenance for Inheritance Partitioning

To remove old data quickly, simply drop the child table that is no longer necessary:

DROP TABLE neasurenent _y2006n02;

To remove the child table from the inheritance hierarchy table but retain accessto it asatablein itsown
right:

ALTER TABLE neasur enent _y2006nD2 NO | NHERI T neasur enent;

To add anew child table to handle new data, create an empty child table just asthe original children were
created above:

CREATE TABLE measur enent _y2008n02 (

CHECK (| ogdate >= DATE ' 2008-02-01' AND | ogdate < DATE
' 2008-03-01")
) INHERI TS (neasurenent);

Alternatively, one may want to create and popul ate the new child table before adding it to the table hier-
archy. This could alow data to be loaded, checked, and transformed before being made visible to queries
on the parent table.

CREATE TABLE neasur enent _y2008n0D2
(LI KE nmeasuremnment | NCLUDI NG DEFAULTS | NCLUDI NG CONSTRAI NTS) ;
ALTER TABLE neasur enent _y2008n02 ADD CONSTRAI NT y2008n0D2
CHECK (| ogdate >= DATE ' 2008-02-01' AND | ogdate < DATE
'2008-03-01');
\ copy neasurenent _y2008n02 from ' measurenent y2008nD2'
-- possibly sonme other data preparation work
ALTER TABLE neasur enent _y2008n02 | NHERI T nmeasur enent ;

5.11.3.3. Caveats

The following caveats apply to partitioning implemented using inheritance:

» Thereisno automatic way to verify that all of the CHECK constraints are mutually exclusive. It is safer
to create code that generates child tables and creates and/or modifies associated objects than to write
each by hand.

* Indexes and foreign key constraints apply to single tables and not to their inheritance children, hence
they have some caveats to be aware of .

» The schemes shown here assume that the values of arow's key column(s) never change, or at least do
not change enough to require it to move to another partition. An UPDATE that attempts to do that will
fail because of the CHECK constraints. If you need to handle such cases, you can put suitable update
triggers on the child tables, but it makes management of the structure much more complicated.

* If you are using manual VACUUMor ANAL YZE commands, don't forget that you need to run them on
each child tableindividually. A command like:

107

Data Definition

ANALYZE nmeasur enent ;
will only process the root table.

* | NSERT statements with ON CONFLI CT clauses are unlikely to work as expected, as the ON CON-
FLI CT action is only taken in case of unique violations on the specified target relation, not its child
relations.

» Triggersor ruleswill be neededto routerowsto thedesired child table, unlessthe applicationisexplicitly
aware of the partitioning scheme. Triggers may be complicated to write, and will be much slower than
the tuple routing performed internally by declarative partitioning.

5.11.4. Partition Pruning

Partition pruning is a query optimization technique that improves performance for declaratively parti-
tioned tables. As an example:

SET enabl e_partition_pruning = on; -- the default
SELECT count (*) FROM neasur enent WHERE | ogdat e >= DATE ' 2008-01-01';

Without partition pruning, the above query would scan each of the partitions of the measur enent table.
With partition pruning enabled, the planner will examine the definition of each partition and prove that the
partition need not be scanned because it could not contain any rows meeting the query's WHERE clause.
When the planner can prove this, it excludes (prunes) the partition from the query plan.

By using the EXPLAIN command and the enable_partition_pruning configuration parameter, it's possible
to show the difference between a plan for which partitions have been pruned and one for which they have
not. A typical unoptimized plan for thistype of table setup is:

SET enabl e_partition_pruning = off;
EXPLAI N SELECT count (*) FROM neasur enent WHERE | ogdat e >= DATE
' 2008-01-01';
QUERY PLAN

Aggregate (cost=188.76..188.77 rows=1 wi dt h=8)
-> Append (cost=0.00..181.05 rows=3085 wi dt h=0)
-> Seq Scan on neasurenent_ y2006n0D2 (cost=0.00..33.12
rows=617 wi dt h=0)
Filter: (logdate >= '2008-01-01'::date)
-> Seq Scan on neasurenent_ y2006nD3 (cost=0.00..33.12
rows=617 wi dt h=0)
Filter: (logdate >= '2008-01-01'::date)

-> Seq Scan on neasurenment_ y2007nll (cost=0.00..33.12
rows=617 wi dt h=0)
Filter: (logdate >= '2008-01-01'::date)
-> Seq Scan on neasurenent y2007nl2 (cost=0.00..33.12
rows=617 wi dt h=0)
Filter: (logdate >= '2008-01-01'::date)
-> Seq Scan on neasurenment y2008nD1 (cost=0.00..33.12
rows=617 wi dt h=0)

108

Data Definition

Filter: (logdate >= '2008-01-01'::date)

Someor all of the partitions might use index scansinstead of full-table sequential scans, but the point here
is that there is no need to scan the older partitions at all to answer this query. When we enable partition
pruning, we get a significantly cheaper plan that will deliver the same answer:

SET enabl e_partition_pruning = on;
EXPLAI N SELECT count (*) FROM neasur enent WHERE | ogdat e >= DATE
' 2008-01-01';
QUERY PLAN

Aggregate (cost=37.75..37.76 rows=1 wi dt h=8)
-> Seq Scan on neasurenent_y2008n01 (cost=0.00..33.12 rows=617
wi dt h=0)
Filter: (logdate >= '2008-01-01'::date)

Note that partition pruning is driven only by the constraints defined implicitly by the partition keys, not
by the presence of indexes. Therefore it isn't necessary to define indexes on the key columns. Whether an
index needs to be created for a given partition depends on whether you expect that queries that scan the
partition will generally scan a large part of the partition or just a small part. An index will be helpful in
the latter case but not the former.

Partition pruning can be performed not only during the planning of a given query, but also during its
execution. Thisis useful as it can alow more partitions to be pruned when clauses contain expressions
whose values are not known at query planning time, for example, parameters defined in a PREPARE
statement, using a value obtained from a subquery, or using a parameterized value on the inner side of a
nested loop join. Partition pruning during execution can be performed at any of the following times:

» During initialization of the query plan. Partition pruning can be performed here for parameter values
which are known during the initialization phase of execution. Partitions which are pruned during this
stage will not show up in the query's EXPLAI N or EXPLAI N ANALYZE. It is possible to determine
the number of partitions which were removed during this phase by observing the “ Subplans Removed”
property in the EXPLAI N output.

» During actual execution of the query plan. Partition pruning may also be performed here to remove
partitions using values which are only known during actual query execution. Thisincludes values from
subqueries and values from execution-time parameters such as those from parameterized nested loop
joins. Since the value of these parameters may change many times during the execution of the query,
partition pruning is performed whenever one of the execution parameters being used by partition pruning
changes. Determining if partitions were pruned during this phase requires careful inspection of the
| oops property inthe EXPLAI N ANAL YZE output. Subplans corresponding to different partitionsmay
have different values for it depending on how many times each of them was pruned during execution.
Some may be shown as(never execut ed) if they were pruned every time.

Partition pruning can be disabled using the enable_partition_pruning setting.

5.11.5. Partitioning and Constraint Exclusion

Constraint exclusion is a query optimization technique similar to partition pruning. While it is primarily
used for partitioning implemented using the legacy inheritance method, it can be used for other purposes,
including with declarative partitioning.

Constraint exclusionworksinavery similar way to partition pruning, except that it uses each table's CHECK
constraints— which givesit its name — whereas partition pruning uses the tabl €'s partition bounds, which

109

Data Definition

exist only in the case of declarative partitioning. Another difference is that constraint exclusion is only
applied at plan time; there is no attempt to remove partitions at execution time.

The fact that constraint exclusion uses CHECK constraints, which makes it slow compared to partition
pruning, can sometimes be used as an advantage: because constraints can be defined even on declarative-
ly-partitioned tables, in addition to their internal partition bounds, constraint exclusion may be ableto elide
additional partitions from the query plan.

The default (and recommended) setting of constraint_exclusion isneither on nor of f , but an intermediate
setting called par ti ti on, which causes the technique to be applied only to queriesthat are likely to be
working oninheritance partitioned tables. The on setting causesthe planner to examine CHECK constraints
in al queries, even ssmple ones that are unlikely to benefit.

The following caveats apply to constraint exclusion:

» Constraint exclusion isonly applied during query planning, unlike partition pruning, which can also be
applied during query execution.

 Constraint exclusion only works when the query's WHERE clause contains constants (or externally sup-
plied parameters). For example, a comparison against a non-immutable function such as CURREN-
T_TI MESTAMP cannot be optimized, since the planner cannot know which child table the function's
value might fall into at run time.

» Keep the partitioning constraints simple, else the planner may not be able to prove that child tables
might not need to be visited. Use simple equality conditions for list partitioning, or simple range tests
for range partitioning, asillustrated in the preceding examples. A good rule of thumb isthat partitioning
congtraints should contain only comparisons of the partitioning column(s) to constants using B-tree-
indexable operators, because only B-tree-indexable column(s) are allowed in the partition key.

» All constraints on al children of the parent table are examined during constraint exclusion, so large
numbers of children are likely to increase query planning time considerably. So the legacy inheritance
based partitioning will work well with up to perhaps a hundred child tables; don't try to use many
thousands of children.

5.11.6. Best Practices for Declarative Partitioning

The choice of how to partition atable should be made carefully, as the performance of query planning and
execution can be negatively affected by poor design.

One of the most critical design decisionswill be the column or columns by which you partition your data.
Often the best choice will be to partition by the column or set of columns which most commonly appear in
WHERE clauses of queries being executed on the partitioned table. WHERE clauses that are compatible with
the partition bound constraints can be used to prune unneeded partitions. However, you may be forced
into making other decisions by requirements for the PRI MARY KEY or a UNI QUE constraint. Removal
of unwanted data is aso afactor to consider when planning your partitioning strategy. An entire partition
can be detached fairly quickly, so it may be beneficial to design the partition strategy in such away that
all datato be removed at onceislocated in asingle partition.

Choosing the target number of partitions that the table should be divided into is also a critical decision to
make. Not having enough partitions may mean that indexes remain too large and that datalocality remains
poor which could result in low cache hit ratios. However, dividing the table into too many partitions can
also cause issues. Too many partitions can mean longer query planning times and higher memory con-
sumption during both query planning and execution, as further described below. When choosing how to
partition your table, it's also important to consider what changes may occur in the future. For example, if
you choose to have one partition per customer and you currently have a small number of large customers,
consider the implications if in several years you instead find yourself with a large number of small cus-

110

Data Definition

5.12

5.13

tomers. In this case, it may be better to choose to partition by HASH and choose a reasonable number
of partitions rather than trying to partition by L1 ST and hoping that the number of customers does not
increase beyond what it is practical to partition the data by.

Sub-partitioning can be useful to further divide partitions that are expected to become larger than other
partitions. Another option isto use range partitioning with multiple columnsin the partition key. Either of
these can easily lead to excessive numbers of partitions, so restraint is advisable.

It isimportant to consider the overhead of partitioning during query planning and execution. The query
planner is generaly able to handle partition hierarchies with up to a few thousand partitions fairly well,
provided that typical queries allow the query planner to prune al but a small number of partitions. Plan-
ning times become longer and memory consumption becomes higher when more partitions remain after
the planner performs partition pruning. Another reason to be concerned about having a large number of
partitions is that the server's memory consumption may grow significantly over time, especially if many
sessions touch large numbers of partitions. That's because each partition requires its metadata to be loaded
into the local memory of each session that touchesiit.

With data warehouse type workloads, it can make sense to use a larger number of partitions than with
an OL TP type workload. Generally, in data warehouses, query planning time is less of a concern as the
majority of processing time is spent during query execution. With either of these two types of workload,
it isimportant to make the right decisions early, as re-partitioning large quantities of data can be painfully
slow. Simulations of the intended workload are often beneficial for optimizing the partitioning strategy.
Never just assume that more partitions are better than fewer partitions, nor vice-versa.

Foreign Data

PostgreSQL implements portions of the SQL/MED specification, allowing you to access data that resides
outside PostgreSQL using regular SQL queries. Such data is referred to as foreign data. (Note that this
usage is not to be confused with foreign keys, which are atype of constraint within the database.)

Foreign datais accessed with help from aforeign data wrapper. A foreign datawrapper isalibrary that can
communicate with an external datasource, hiding the details of connecting to the data source and obtaining
datafromit. There are someforeign datawrappersavailableascont r i b modules; see Appendix F. Other
kinds of foreign data wrappers might be found asthird party products. If none of the existing foreign data
wrappers suit your needs, you can write your own; see Chapter 57.

To access foreign data, you need to create a foreign server object, which defines how to connect to a
particular external data source according to the set of options used by its supporting foreign data wrapper.
Then you need to create one or more foreign tables, which define the structure of theremote data. A foreign
table can be used in queries just like a normal table, but aforeign table has no storage in the PostgreSQL
server. Whenever it is used, PostgreSQL asks the foreign data wrapper to fetch data from the external
source, or transmit data to the external source in the case of update commands.

Accessing remote data may require authenticating to the external data source. This information can be
provided by a user mapping, which can provide additional data such as user names and passwords based
on the current PostgreSQL role.

For additional information, see CREATE FOREIGN DATA WRAPPER, CREATE SERVER, CREATE
USER MAPPING, CREATE FOREIGN TABLE, and IMPORT FOREIGN SCHEMA.

Other Database Objects

Tables are the central objectsin arelationa database structure, because they hold your data. But they are
not the only objects that exist in a database. Many other kinds of objects can be created to make the use

111

Data Definition

5.14

and management of the data more efficient or convenient. They are not discussed in this chapter, but we
giveyou alist here so that you are aware of what is possible:

* Views

 Functions, procedures, and operators
» Datatypesand domains

 Triggers and rewrite rules

Detailed information on these topics appearsin Part V.

Dependency Tracking

When you create complex database structures involving many tables with foreign key constraints, views,
triggers, functions, etc. you implicitly create a net of dependencies between the objects. For instance, a
table with aforeign key constraint depends on the table it references.

To ensure the integrity of the entire database structure, PostgreSQL makes sure that you cannot drop
objectsthat other objects still depend on. For example, attempting to drop the products table we considered
in Section 5.4.5, with the orders table depending on it, would result in an error message like this:

DROP TABLE products;

ERROR: cannot drop table products because other objects depend on it
DETAIL: constraint orders_product_no _fkey on table orders depends on
tabl e products

HI NT: Use DROP ... CASCADE to drop the dependent objects too.

The error message contains a useful hint: if you do not want to bother deleting all the dependent objects
individually, you can run:

DROP TABLE products CASCADE;

and all the dependent objectswill be removed, aswill any objectsthat depend on them, recursively. Inthis
case, it doesn't remove the orderstable, it only removes the foreign key constraint. It stops there because
nothing depends on the foreign key constraint. (If you want to check what DROP ... CASCADE will
do, run DROP without CASCADE and read the DETAI L output.)

Almost all DROP commands in PostgreSQL support specifying CASCADE. Of course, the nature of the
possible dependencies varies with the type of the abject. Y ou can also write RESTRI CT instead of CAS-
CADE to get the default behavior, which isto prevent dropping objects that any other objects depend on.

Note

According to the SQL standard, specifying either RESTRI CT or CASCADE is required in a DROP
command. No database system actually enforces that rule, but whether the default behavior is
RESTRI CT or CASCADE varies across systems.

If aDROP command lists multiple objects, CASCADE is only required when there are dependencies outside
the specified group. For example, when saying DROP TABLE t abl, t ab2 theexistence of aforeign
key referencing t ab1 fromt ab2 would not mean that CASCADE is needed to succeed.

112

Data Definition

For user-defined functions, PostgreSQL tracks dependencies associated with a function's externally-visi-
ble properties, such as its argument and result types, but not dependencies that could only be known by
examining the function body. As an example, consider this situation:

CREATE TYPE rai nbow AS ENUM ('red', 'orange', 'vyellow,
"green', 'blue', 'purple');

CREATE TABLE ny_col ors (col or rai nbow, note text);

CREATE FUNCTI ON get _col or_note (rai nbow) RETURNS text AS
' SELECT note FROM ny_col ors WHERE col or = $1'
LANGUACE SQ.;

(See Section 38.5 for an explanation of SQL-language functions.) PostgreSQL will be aware that the
get _col or _not e function depends on the r ai nbow type: dropping the type would force dropping
the function, because its argument type would no longer be defined. But PostgreSQL will not consider
get _col or_not e todepend onthemy_col or s table, and so will not drop the function if the tableis
dropped. While there are disadvantages to this approach, there are also benefits. The functionis still valid
in some sense if the table is missing, though executing it would cause an error; creating anew table of the
same name would allow the function to work again.

113

Chapter 6. Data Manipulation

The previous chapter discussed how to create tables and other structures to hold your data. Now it istime
to fill the tables with data. This chapter covers how to insert, update, and delete table data. The chapter
after thiswill finally explain how to extract your long-lost data from the database.

6.1. Inserting Data

When atableiscreated, it contains no data. The first thing to do before a database can be of much useisto
insert data. Dataisinserted onerow at atime. Y ou can aso insert more than one row in asingle command,
but it is not possible to insert something that is not a complete row. Even if you know only some column
values, a complete row must be created.

To create anew row, usethe INSERT command. The command requiresthe table name and column val ues.
For example, consider the products table from Chapter 5:

CREATE TABLE products (
product _no i nteger,
name text,
price nuneric

)

An example command to insert arow would be:

I NSERT | NTO products VALUES (1, 'Cheese', 9.99);

The data values are listed in the order in which the columns appear in the table, separated by commas.
Usually, the data values will be literals (constants), but scalar expressions are also allowed.

The above syntax has the drawback that you need to know the order of the columnsin the table. To avoid
thisyou can aso list the columns explicitly. For example, both of the following commands have the same
effect as the one above:

I NSERT | NTO products (product_no, nanme, price) VALUES (1, 'Cheese',
9.99);

| NSERT | NTO products (nane, price, product_no) VALUES (' Cheese', 9.99,
1);

Many users consider it good practice to always list the column names.

If you don't have values for al the columns, you can omit some of them. In that case, the columns will
be filled with their default values. For example:

| NSERT | NTO products (product_no, name) VALUES (1, ' Cheese');
| NSERT | NTO products VALUES (1, 'Cheese');

The second form is a PostgreSQL extension. It fills the columns from the left with as many values as are
given, and the rest will be defaulted.

For clarity, you can also request default values explicitly, for individual columns or for the entire row:

114

Data Manipulation

| NSERT | NTO products (product_no, name, price) VALUES (1, 'Cheese',
DEFAULT) ;
| NSERT | NTO products DEFAULT VALUES;

Y ou can insert multiple rows in a single command:

| NSERT | NTO products (product_no, nane, price) VALUES
(1, 'Cheese', 9.99),
(2, 'Bread, 1.99),
(3, "MIk', 2.99);

It isalso possible to insert the result of a query (which might be no rows, one row, or many rows):

I NSERT | NTO products (product_no, name, price)
SELECT product_no, nane, price FROM new products
WHERE r el ease_date = 'today';

This provides the full power of the SQL query mechanism (Chapter 7) for computing the rows to be
inserted.

Tip

When inserting a lot of data at the same time, consider using the COPY command. It is not as
flexibleasthe INSERT command, but ismore efficient. Refer to Section 14.4 for moreinformation
on improving bulk loading performance.

6.2. Updating Data

Themodification of datathat isalready inthe databaseisreferred to asupdating. Y ou can updateindividual
rows, all the rows in atable, or a subset of al rows. Each column can be updated separately; the other
columns are not affected.

To update existing rows, use the UPDATE command. This requires three pieces of information:

1. The name of the table and column to update
2. The new value of the column
3. Which row(s) to update

Recall from Chapter 5 that SQL does not, in general, provide a unique identifier for rows. Thereforeit is
not always possible to directly specify which row to update. Instead, you specify which conditions a row
must meet in order to be updated. Only if you have a primary key in the table (independent of whether
you declared it or not) can you reliably address individual rows by choosing a condition that matches the
primary key. Graphical database access toolsrely on thisfact to allow you to update rows individually.

For example, this command updates all products that have a price of 5 to have a price of 10:

UPDATE products SET price = 10 WHERE price = 5;

This might cause zero, one, or many rows to be updated. It is not an error to attempt an update that does
not match any rows.

115

Data Manipulation

Let'slook at that command in detail. First is the key word UPDATE followed by the table name. Asusual,
the table name can be schema-qualified, otherwise it is looked up in the path. Next is the key word SET
followed by the column name, an equal sign, and the new column value. The new column value can be
any scalar expression, not just a constant. For example, if you want to raise the price of all products by
10% you could use:

UPDATE products SET price = price * 1.10;

As you see, the expression for the new value can refer to the existing value(s) in the row. We also left
out the WHERE clause. If it is omitted, it means that all rows in the table are updated. If it is present, only
those rows that match the WHERE condition are updated. Note that the equals sign in the SET clauseisan
assignment while the one in the WHERE clause is a comparison, but this does not create any ambiguity. Of
course, the WHERE condition does not have to be an equality test. Many other operators are available (see
Chapter 9). But the expression needs to evaluate to a Boolean resullt.

Y ou can update more than one column in an UPDATE command by listing more than one assignment in
the SET clause. For example:

UPDATE nytable SET a =5, b =3, ¢ =1 WHERE a > 0;

6.3. Deleting Data

So far we have explained how to add datato tables and how to change data. What remainsisto discuss how
to remove data that is no longer needed. Just as adding data is only possible in whole rows, you can only
remove entire rows from atable. In the previous section we explained that SQL does not provide a way
to directly address individual rows. Therefore, removing rows can only be done by specifying conditions
that the rows to be removed have to match. If you have a primary key in the table then you can specify
the exact row. But you can also remove groups of rows matching a condition, or you can remove all rows
in the table at once.

Y ou use the DELETE command to remove rows; the syntax is very similar to the UPDATE command.
For instance, to remove all rows from the products table that have a price of 10, use:

DELETE FROM products WHERE price = 10;

If you simply write:

DELETE FROM products;

then all rows in the table will be deleted! Caveat programmer.

6.4. Returning Data from Modified Rows

Sometimesit is useful to obtain datafrom modified rows while they are being manipulated. The | NSERT,
UPDATE, and DELETE commands all have an optional RETURNI NG clause that supports this. Use of
RETURNI NG avoids performing an extra database query to collect the data, and is especially valuable
when it would otherwise be difficult to identify the modified rows reliably.

The allowed contents of a RETURNI NG clause are the same as a SELECT command's output list (see
Section 7.3). It can contain column names of the command's target table, or value expressions using those
columns. A common shorthand is RETURNI NG *, which selects all columns of the target table in order.

116

Data Manipulation

Inan| NSERT, thedataavailableto RETURNI NGistherow asit wasinserted. Thisisnot souseful intrivial
inserts, since it would just repeat the data provided by the client. But it can be very handy when relying
on computed default values. For example, when using aser i al column to provide unique identifiers,
RETURNI NG can return the ID assigned to a new row:

CREATE TABLE users (firstnane text, lastnane text, id serial prinmary
key);

I NSERT | NTO users (firstnane, |astnane) VALUES ('Joe', 'Cool"')
RETURNI NG i d;

The RETURNI NG clause isaso very useful with| NSERT ... SELECT.

In an UPDATE, the data available to RETURNI NGis the new content of the modified row. For example:

UPDATE products SET price = price * 1.10
WHERE price <= 99.99
RETURNI NG nane, price AS new price;

In a DELETE, the data available to RETURNI NGis the content of the deleted row. For example:

DELETE FROM product s
WHERE obsol eti on_date = 'today’
RETURNI NG *;

If there are triggers (Chapter 39) on the target table, the data available to RETURNI NG is the row as
modified by the triggers. Thus, inspecting columns computed by triggersis another common use-case for
RETURNI NG,

117

Chapter 7. Queries

The previous chapters explained how to create tables, how to fill them with data, and how to manipulate
that data. Now we finally discuss how to retrieve the data from the database.

7.1. Overview

The process of retrieving or the command to retrieve data from a database is called a query. In SQL the
SELECT command is used to specify queries. The general syntax of the SELECT command is

[WTH with_queries] SELECT select |ist FROMtabl e_expression
[sort _specification]

Thefollowing sections describe the detail s of the select list, the table expression, and the sort specification.
W TH queries are treated last since they are an advanced feature.

A simple kind of query has the form:

SELECT * FROM t abl el;

Assuming that thereisatable called t abl el, this command would retrieve al rows and all user-defined
columnsfromt abl el. (The method of retrieval depends on the client application. For example, the psgl
program will display an ASClI-art table on the screen, while client libraries will offer functionsto extract
individual values from the query result.) The select list specification * means all columns that the table
expression happens to provide. A select list can also select a subset of the available columns or make
calculations using the columns. For example, if t abl e1 has columns named a, b, and ¢ (and perhaps
others) you can make the following query:

SELECT a, b + ¢ FROM t abl el;
(assuming that b and ¢ are of anumerical datatype). See Section 7.3 for more details.

FROM t abl el isasimplekind of table expression: it reads just one table. In general, table expressions
can be complex constructs of basetables, joins, and subqueries. But you can also omit the table expression
entirely and use the SELECT command as a calculator:

SELECT 3 * 4;
Thisis more useful if the expressions in the select list return varying results. For example, you could call

afunction this way:

SELECT random();

7.2. Table Expressions

A table expression computes a table. The table expression contains a FROMclause that is optionally fol-
lowed by WHERE, GROUP BY, and HAVI NG clauses. Trivial table expressions simply refer to atable on
disk, a so-called base table, but more complex expressions can be used to modify or combine base tables
in various ways.

118

Queries

The optional WHERE, GROUP BY, and HAVI NG clauses in the table expression specify a pipeline of
successive transformations performed on the table derived in the FROMclause. All these transformations
produce avirtual table that provides the rows that are passed to the select list to compute the output rows
of the query.

7.2.1. The FROMClause

The FROMclause derives atable from one or more other tables given in acomma-separated table reference
list.

FROM tabl e_reference [, table reference [, ...]]

A tablereference can be atable name (possibly schema-qualified), or aderived table such asasubquery, a
JA N construct, or complex combinations of these. If more than one table reference islisted in the FROM
clause, the tables are cross-joined (that is, the Cartesian product of their rows is formed; see below). The
result of the FROMIist is an intermediate virtua table that can then be subject to transformations by the
WHERE, GROUP BY, and HAVI NG clauses and isfinally the result of the overall table expression.

When atable reference names atabl e that isthe parent of atableinheritance hierarchy, the table reference
produces rows of not only that table but all of its descendant tables, unless the key word ONLY precedes
the table name. However, the reference produces only the columns that appear in the named table — any
columns added in subtables are ignored.

Instead of writing ONLY before the table name, you can write* after the table name to explicitly specify
that descendant tables are included. Thereis no real reason to use this syntax any more, because searching
descendant tablesis now alwaysthe default behavior. However, it issupported for compatibility with older
releases.

7.2.1.1. Joined Tables

A joined table is a table derived from two other (rea or derived) tables according to the rules of the
particular join type. Inner, outer, and cross-joins are available. The general syntax of ajoined table is

Tl join_type T2 [join_condition]

Joins of all types can be chained together, or nested: either or both T1 and T2 can be joined tables. Paren-
theses can be used around JO N clauses to control the join order. In the absence of parentheses, JO N
clauses nest left-to-right.

Join Types

Crossjoin

Tl CROSS JAON T2

For every possible combination of rows from T1 and T2 (i.e., a Cartesian product), the joined table
will contain arow consisting of all columnsin T1 followed by all columnsin T2. If the tables have
N and M rows respectively, the joined table will have N * M rows.

FROM T1 CROSS JO N T2 isequivadentto FROM T1 INNER JON T2 ON TRUE (see
below). Itisalso equivalent to FROM T1, T2.

119

Queries

Note

This latter equivalence does not hold exactly when more than two tables appear, because
JA Nbinds moretightly than comma. For example FROM T1 CROSS JO N T2 | NNER
JO N T3 ON conditionisnotthesameasFROM T1, T2 INNER JO N T3 ON
condi ti on becausethecondi ti on canreference T1 in the first case but not the second.

Qualified joins

TL { [INNER] | { LEFT | RIGHT | FULL } [OQUTER] } JON T2

ON bool ean_expressi on

TL { [INNER] | { LEFT | RIGHT | FULL } [QUTER] } JO N T2 USI NG
(join colum list)

T1 NATURAL { [INNER] | { LEFT | RIGHT | FULL } [OQUTER] } JON T2

The words | NNER and OQUTER are optional in al forms. | NNER is the default; LEFT, Rl GHT, and
FULL imply an outer join.

The join condition is specified in the ON or USI NG clause, or implicitly by the word NATURAL.
The join condition determines which rows from the two source tables are considered to “match”, as
explained in detail below.

The possible types of qualified join are;
I NNER JO N

For each row R1 of T1, the joined table has a row for each row in T2 that satisfies the join
condition with R1.

LEFT OQUTER JO N

First, an inner join is performed. Then, for each row in T1 that does not satisfy the join condition
with any row in T2, ajoined row is added with null values in columns of T2. Thus, the joined
table aways has at least one row for each row in T1.

Rl GHT QUTER JO N

First, aninner join is performed. Then, for each row in T2 that does not satisfy the join condition
with any row in T1, ajoined row isadded with null valuesin columns of T1. Thisisthe converse
of aleft join: the result table will always have arow for each row in T2,

FULL OQUTER JO N

First, an inner join is performed. Then, for each row in T1 that does not satisfy the join condition
with any row in T2, ajoined row is added with null valuesin columns of T2. Also, for each row
of T2 that does not satisfy the join condition with any row in T1, ajoined row with null values
in the columns of T1 is added.

The ON clause is the most general kind of join condition: it takes a Boolean value expression of the
same kind asis used in a WHERE clause. A pair of rows from T1 and T2 match if the ON expression
evaluates to true.

The USI NG clause is a shorthand that allows you to take advantage of the specific situation where
both sides of the join use the same name for the joining column(s). It takes a comma-separated list

120

Queries

of the shared column names and forms a join condition that includes an equality comparison for each
one. For example, joining T1 and T2 with USI NG (a, b) producesthejoinconditionON T1. a
= T2.a AND Tl.b = T2.b.

Furthermore, the output of JO N USI NGsuppresses redundant columns: thereisno need to print both
of the matched columns, since they must have equal values. While JO N ON produces all columns
from T1 followed by all columns from T2, JO N USI NG produces one output column for each of
the listed column pairs (in the listed order), followed by any remaining columns from T1, followed
by any remaining columns from T2.

Finally, NATURAL is a shorthand form of USI NG it forms a USI NGlist consisting of all column
names that appear in both input tables. Aswith USI NG, these columns appear only once in the output
table. If there are no common column names, NATURAL JO NbehaveslikeJO N ... ON TRUE,
producing a cross-product join.

Note

USI NGis reasonably safe from column changes in the joined relations since only the listed
columns are combined. NATURAL is considerably more risky since any schema changes to
either relation that cause a new matching column name to be present will cause the join to
combine that new column as well.

To put this together, assume we have tablest 1:

_____ N,
1] a
2| b
3] ¢

andt 2

then we get the following results for the various joins;

=> SELECT * FROMt1l CROSS JO N t 2;
num| name | num| val ue

+
I
I
I
I
I
I
I

121

Queries

31 ¢ | 31 yyy
3] c | 5| zzz
(9 rows)

=> SELECT * FROMt1 INNER JON t2 ON t1. num = t2. num
num| name | num| val ue

----- B e L
1| a | 1| xxx
31 ¢ | 31 yyy

(2 rows)

=> SELECT * FROMt1 INNER JO N t2 USING (num;
num | nanme | val ue

_____ Fmm e e e e e - - -
1| a | xxx
31 ¢ | yyy

(2 rows)

=> SELECT * FROM t1 NATURAL | NNER JO N t 2;
num | nanme | val ue

_____ Fmm e e e e e - - -
1| a | xxx
31 ¢ | yyy

(2 rows)

=> SELECT * FROMt1 LEFT JON t2 ON t1. num = t2. num
num| name | num| val ue

yyy

=> SELECT * FROMt1 LEFT JO N t2 USI NG (nun;

=> SELECT * FROMt1l RIGHT JON t2 ON t1. num = t2. num
num| name | num| val ue

----- B e L
1| a | 1| xxx
31 ¢ | 31 yyy

| | 51| zzz
(3 rows)

=> SELECT * FROMt1 FULL JON t2 ON t1. num = t2. num
num| name | num| val ue

122

Queries

3| ¢ | 3| yyy
| | 5| zzz

(4 rows)

Thejoin condition specified with ON can a so contain conditionsthat do not relate directly to thejoin. This
can prove useful for some queries but needs to be thought out carefully. For example:

=> SELECT * FROMt1 LEFT JONt2 ONtl.num= t2.num AND t 2. val ue =

XXX ;
num| nanme | num| val ue
----- B T Ty
1| a | 1| xxx
2] b | |
3] ¢ | |
(3 rows)

Notice that placing the restriction in the WHERE clause produces a different result:

=> SELECT * FROMt1 LEFT JONt2 ON t1.num = t2. num WHERE t 2. val ue =

XXX ;
num| nanme | num| val ue
----- T ey S

1| a | 1| xxx
(1 row

Thisisbecause arestriction placed in the ON clause is processed before the join, while arestriction placed
in the WHERE clause is processed after the join. That does not matter with inner joins, but it matters a
lot with outer joins.

7.2.1.2. Table and Column Aliases

A temporary name can be given to tables and complex table references to be used for references to the
derived table in the rest of the query. Thisiscalled atable alias.

To create atable alias, write

FROM t abl e_reference AS ali as

or

FROM t abl e_reference alias
The AS key word is optional noise. al i as can be any identifier.

A typical application of table aliases is to assign short identifiers to long table names to keep the join
clauses readable. For example:

SELECT * FROM sone_very long_table name s JON
another fairly long nane a ON s.id = a.num

The alias becomes the new name of the table reference so far as the current query is concerned — it is not
allowed to refer to the table by the original name elsewhere in the query. Thus, thisis not valid:

123

Queries

SELECT * FROM ny_table AS m WHERE ny_table.a > 5; -- wong
Table aliases are mainly for notational convenience, but it is necessary to use them when joining a table
toitself, e.g.:
SELECT * FROM peopl e AS nother JO N people AS child ON nother.id =

chil d. mot her _i d;
Additionally, an adliasis reguired if the table reference is a subquery (see Section 7.2.1.3).
Parentheses are used to resolve ambiguities. In the following example, the first statement assignsthe alias
b to the second instance of my _t abl e, but the second statement assigns the alias to the result of the join:
SELECT * FROM ny_table AS a CROSS JON ny_table AS b ...
SELECT * FROM (ny_table AS a CROSS JON ny_table) AS b ...

Another form of table aliasing givestemporary namesto the columns of thetable, aswell asthetableitself:

FROM t abl e_reference [AS] alias (columl [, colum2 [, ...]])

If fewer column aliases are specified than the actual table has columns, the remaining columns are not
renamed. This syntax is especially useful for self-joins or subqueries.

When an alias is applied to the output of a JO N clause, the alias hides the original name(s) within the
JA N. For example:
SELECT a.* FROM ny_table AS a JO N your _table AS b ON ...

isvalid SQL, but:

SELECT a.* FROM (ny_table AS a JO N your _table AS b ON...) AS c

isnot valid; thetable aliasa isnot visible outside the dlias c.

7.2.1.3. Subqueries

Subqueries specifying a derived table must be enclosed in parentheses and must be assigned atable dias
name (asin Section 7.2.1.2). For example:
FROM (SELECT * FROM tabl el) AS alias_nane

Thisexampleisequivalentto FROM t abl el AS al i as_nane. Moreinteresting cases, which cannot
be reduced to a plain join, arise when the subquery involves grouping or aggregation.

A subquery can also be a VALUES list:

FROM (VALUES (' anne', 'smith'), ('bob', 'jones'), ('joe', "blow))
AS nanes(first, |ast)

124

Queries

Again, atable aliasis required. Assigning alias names to the columns of the VALUES list is optional, but
is good practice. For more information see Section 7.7.

7.2.1.4. Table Functions

Table functions are functions that produce a set of rows, made up of either base data types (scalar types)
or composite data types (table rows). They are used like atable, view, or subquery in the FROMclause of
a query. Columns returned by table functions can be included in SELECT, JO N, or WHERE clauses in
the same manner as columns of atable, view, or subquery.

Table functions may also be combined using the RONS FROMsyntax, with the results returned in parallel
columns; the number of result rows in this case is that of the largest function result, with smaller results
padded with null values to match.

function_call [WTH ORDI NALITY] [[AS] table_ alias [(columm_alias

[, ... DII
ROAS FROM function_call [, ...]) [WTH ORDI NALI TY]

[[AS] table alias [(colum_alias [, ... 1)11]

If the W TH ORDI NALI TY clause is specified, an additional column of type bi gi nt will be added to
thefunction result columns. This column numbersthe rows of the function result set, starting from 1. (This

is a generalization of the SQL-standard syntax for UNNEST ... W TH ORDI NALI TY.) By default,
the ordinal column is called or di nal i ty, but a different column name can be assigned to it using an
AS clause.

The special table function UNNEST may be called with any number of array parameters, and it returns
a corresponding number of columns, as if UNNEST (Section 9.19) had been called on each parameter
separately and combined using the ROAS FROMconstruct.

UNNEST(array_expression [, ...]) [WTH ORDI NALI TY]
[[AS] table_alias [(colum_alias [, ... 1)]]

If notabl e_al i as is specified, the function name is used as the table name; in the case of a ROAS
FROM) construct, the first function's name is used.

If column aliases are not supplied, then for afunction returning a base data type, the column nameis also
the same as the function name. For afunction returning acomposite type, the result columns get the names
of theindividual attributes of the type.

Some examples:

CREATE TABLE foo (fooid int, foosubid int, foonanme text);

CREATE FUNCTI ON get f 0o(i nt) RETURNS SETOF foo AS $$
SELECT * FROM f oo WHERE fooid = $1;
$$ LANGUAGE SQL;

SELECT * FROM getfoo(1) AS t1;

SELECT * FROM f oo
WHERE f oosubid IN (
SELECT foosubi d
FROM get f oo(foo.fooid) z

125

Queries

VWHERE z.fooid = foo.fooid
)

CREATE VI EW vw_get f oo AS SELECT * FROM get f 0o(1);

SELECT * FROM vw_get f 00;

In some casesiit is useful to define table functions that can return different column sets depending on how
they areinvoked. To support this, the table function can be declared as returning the pseudo-typer ecor d
with no QUT parameters. When such a function is used in a query, the expected row structure must be
specified in the query itself, so that the system can know how to parse and plan the query. This syntax
looks like:

function_call [AS] alias (column_definition [, 1)
function_call AS [alias] (columm_definition [, ...])
ROAMS FROM ... function_call AS (colum_definition [, 1)

[, ... 1)

When not using the ROA5 FROM) syntax, the col umm_def i ni ti on list replaces the column alias
list that could otherwise be attached to the FROMitem; the names in the column definitions serve as column
aliases. When using the ROA5 FROM) syntax, acol umm_def i ni ti on list can be attached to each
member function separately; or if thereis only one member function and noW TH ORDI NALI TY clause,
acol um_defi ni ti on list can bewritten in place of acolumn aiaslist following ROAS FROM) .

Consider this example:

SELECT *
FROM dbl i nk(' dbname=nydb', ' SELECT pronane, prosrc FROM pg proc')
AS t 1(pronane nane, prosrc text)
WHERE pronane LIKE ' bytea% ;

The dblink function (part of the dblink module) executes aremote query. It isdeclared to returnr ecor d
since it might be used for any kind of query. The actual column set must be specified in the calling query
so that the parser knows, for example, what * should expand to.

This example uses ROA5 FROM

SELECT *
FROM ROA6 FROM

(
json_to_recordset('[{"a":40,"b":"fo0"},
{"a":"100","b":"bar"}]")
AS (a | NTEGER, b TEXT),
generate_series(1, 3)
) AS x (p, a, s)
ORDER BY p;

40 | foo | 1
100 | bar | 2
| | 3

126

Queries

It joins two functions into a single FROMtarget. j son_t o_recor dset () isinstructed to return two
columns, thefirsti nt eger andthesecondt ext . Theresult of gener at e_seri es() isuseddirectly.
The ORDER BY clause sorts the column values as integers.

7.2.1.5. LATERAL Subqueries

Subqueries appearing in FROMican be preceded by the key word LATERAL . Thisallowsthem to reference
columns provided by preceding FROMitems. (Without LATERAL, each subquery is evaluated indepen-
dently and so cannot cross-reference any other FROMitem.)

Table functions appearing in FROMcan also be preceded by the key word LATERAL, but for functionsthe
key word is optional; the function's arguments can contain references to columns provided by preceding
FROMitemsin any case.

A LATERAL item can appear at top level in the FROMIist, or within aJO Ntree. In the latter case it can
also refer to any items that are on the left-hand side of aJO Nthat it is on the right-hand side of .

When a FROMitem contains LATERAL cross-references, evaluation proceeds as follows: for each row of
the FROMitem providing the cross-referenced column(s), or set of rows of multiple FROMitems providing
the columns, the LATERAL item is evaluated using that row or row set's values of the columns. The
resulting row(s) are joined as usual with the rows they were computed from. Thisis repeated for each row
or set of rows from the column source table(s).

A trivial example of LATERAL is

SELECT * FROM foo, LATERAL (SELECT * FROM bar WHERE bar.id =
foo. bar_id) ss;

Thisis not especially useful since it has exactly the same result as the more conventional

SELECT * FROM foo, bar WHERE bar.id = foo.bar _id;

LATERAL is primarily useful when the cross-referenced column is necessary for computing the row(s) to
bejoined. A common applicationis providing an argument value for aset-returning function. For example,
supposing that ver t i ces(pol ygon) returns the set of vertices of a polygon, we could identify close-
together vertices of polygons stored in atable with:

SELECT pl.id, p2.id, vl, v2
FROM pol ygons pl, pol ygons p2,
LATERAL vertices(pl. poly) vi,
LATERAL vertices(p2.poly) v2
WHERE (v1 <-> v2) < 10 AND pl.id != p2.id;

This query could also be written

SELECT pl.id, p2.id, vl, v2

FROM pol ygons pl CROSS JO N LATERAL vertices(pl.poly) vi,
pol ygons p2 CRCSS JO N LATERAL vertices(p2.poly) v2

WHERE (v1 <-> v2) < 10 AND pl.id != p2.id;

or in severa other equivalent formulations. (Asalready mentioned, the LATERAL key word isunnecessary
in this example, but we useit for clarity.)

127

Queries

7.2.2.

It is often particularly handy to LEFT JO Nto a LATERAL subquery, so that source rows will appear
in the result even if the LATERAL subquery produces no rows for them. For example, if get _pr oduc-
t _names() returnsthe names of products made by a manufacturer, but some manufacturersin our table
currently produce no products, we could find out which ones those are like this:

SELECT m nane

FROM manuf acturers m LEFT JO N LATERAL get_product_names(mid) pnane
ON true

VWHERE pnane | S NULL;

The WHERE Clause

The syntax of the WHERE clauseis

WHERE sear ch_condition

where sear ch_condi ti on is any value expression (see Section 4.2) that returns a value of type
bool ean.

After the processing of the FROMclause is done, each row of the derived virtua table is checked against
the search condition. If the result of the condition is true, the row is kept in the output table, otherwise
(i.e., if the result is false or null) it is discarded. The search condition typically references at least one
column of the table generated in the FROMclause; this is not required, but otherwise the WHERE clause
will befairly useless.

Note

Thejoin condition of aninner join can bewritten either in the WHERE clause or inthe JO Nclause.
For example, these table expressions are equivalent:

FROM a, b WHERE a.id = b.id AND b.val > 5

and:

FROM a INNER JON b ON (a.id = b.id) WHERE b.val > 5

or perhaps even:

FROM a NATURAL JON b WHERE b.val > 5

Which one of these you use is mainly a matter of style. The JO N syntax in the FROMclause is
probably not as portable to other SQL database management systems, even though it isin the SQL
standard. For outer joins there is no choice: they must be done in the FROM clause. The ON or
USI NG clause of an outer join is not equivalent to a WHERE condition, because it results in the
addition of rows (for unmatched input rows) as well asthe removal of rowsin the final result.

Here are some examples of WHERE clauses:

SELECT ... FROMfdt WHERE cl > 5

128

Queries

7.2.3.

SELECT ... FROMfdt WHERE c1 IN (1, 2, 3)

SELECT ... FROM fdt WHERE c1 IN (SELECT c1 FROMt2)

SELECT ... FROM fdt WHERE c1 IN (SELECT c¢3 FROMt2 WHERE c2 = fdt.cl +
10)

SELECT ... FROM fdt WHERE c1 BETWEEN (SELECT c3 FROM t 2 WHERE c2 =

fdt.cl + 10) AND 100

SELECT ... FROM fdt WHERE EXI STS (SELECT c1 FROMt2 WHERE c2 > fdt.c1l)

f dt isthe table derived in the FROMclause. Rows that do not meet the search condition of the WHERE
clause are eliminated from f dt . Notice the use of scalar subqueries as value expressions. Just like any
other query, the subqueries can employ complex table expressions. Notice also how f dt is referenced
in the subqueries. Qualifying c1 asf dt. c1 isonly necessary if c1 is aso the name of a column in
the derived input table of the subquery. But qualifying the column name adds clarity even when it is not
needed. Thisexample shows how the column naming scope of an outer query extendsinto itsinner queries.

The GROUP BY and HAVI NG Clauses

After passing the WHERE filter, the derived input table might be subject to grouping, using the GROUP BY
clause, and elimination of group rows using the HAVI NG clause.

SELECT select |i st
FROM . ..
[WHERE . . .]
GROUP BY groupi ng_col um_r ef erence
[, grouping _colum_reference]...

The GROUP BY clauseis used to group together those rows in atable that have the same valuesin all the
columns listed. The order in which the columns are listed does not matter. The effect is to combine each
set of rows having common values into one group row that represents all rows in the group. Thisis done
to eliminate redundancy in the output and/or compute aggregates that apply to these groups. For instance:

=> SELECT * FROM test1;

x|y
T .
al| 3
c| 2
b|] 5
al| 1
(4 rows)

=> SELECT x FROM test1l GROUP BY x;
X

a

b

c

(3 rows)

129

Queries

In the second query, we could not have written SELECT * FROM t est 1 GROUP BY X, becausethere
isno single valuefor the columny that could be associated with each group. The grouped-by columns can
be referenced in the select list since they have a single value in each group.

In generdl, if atableis grouped, columns that are not listed in GROUP BY cannot be referenced except in
aggregate expressions. An example with aggregate expressionsis:

=> SELECT x, sun{y) FROMtest1l GROUP BY x;
X | sum

c |
(3 rows

o
~ N 0

Here sumis an aggregate function that computes a single value over the entire group. More information
about the available aggregate functions can be found in Section 9.21.

Tip

Grouping without aggregate expressions effectively calculates the set of distinct valuesin a col-
umn. This can aso be achieved using the DI STI NCT clause (see Section 7.3.3).

Here is another example: it calculates the total sales for each product (rather than the total sales of all
products):

SELECT product_id, p.name, (sun(s.units) * p.price) AS sales
FROM products p LEFT JO N sales s USI NG (product _id)
GROUP BY product _id, p.nane, p.price;

In this example, the columns pr oduct _i d, p. nane, and p. pri ce must bein the GROUP BY clause
since they are referenced in the query select list (but see below). The column s. uni t s does not have to
be in the GROUP BY list sinceit is only used in an aggregate expression (sunt . . .)), which represents
the sales of aproduct. For each product, the query returns a summary row about all sales of the product.

If the products table is set up so that, say, pr oduct _i d isthe primary key, then it would be enough to
group by pr oduct _i d in the above example, since name and price would be functionally dependent
on the product 1D, and so there would be no ambiguity about which name and price value to return for
each product ID group.

In strict SQL, GROUP BY can only group by columns of the source table but PostgreSQL extends this
to aso alow GROUP BY to group by columns in the select list. Grouping by value expressions instead
of simple column namesis also allowed.

If atable has been grouped using GROUP BY, but only certain groups are of interest, the HAVI NG clause
can be used, much like a WHERE clause, to eliminate groups from the result. The syntax is:

SELECT select_list FROM... [WHERE ...] GROUP BY ...
HAVI NG bool ean_expressi on

130

Queries

7.2.4.

Expressions in the HAVI NG clause can refer both to grouped expressions and to ungrouped expressions
(which necessarily involve an aggregate function).

Example:

=> SELECT x, sun{y) FROMtestl GROUP BY x HAVI NG sun{y) > 3;
X | sum

e
a | 4
b | 5
(2 rows)

=> SELECT x, sun{y) FROMtestl GROUP BY x HAVING x < 'c';
X | sum

e
a | 4
b | 5
(2 rows)

Again, amorerealistic example:

SELECT product _id, p.name, (sun{s.units) * (p.price - p.cost)) AS
profit
FROM products p LEFT JO N sal es s USI NG (product _id)
WHERE s. date > CURRENT _DATE - | NTERVAL '4 weeks'
GROUP BY product _id, p.nane, p.price, p.cost
HAVI NG sum(p. price * s.units) > 5000;

In the exampl e above, the WHERE clause is selecting rows by a column that is not grouped (the expression
isonly true for sales during the last four weeks), while the HAVI NG clause restricts the output to groups
with total gross sales over 5000. Note that the aggregate expressions do not necessarily need to be the
samein all parts of the query.

If aquery contains aggregate function calls, but no GROUP BY clause, grouping still occurs: the result is
asingle group row (or perhaps no rows at al, if the single row is then eliminated by HAVI NG). The same
istrueif it contains a HAVI NG clause, even without any aggregate function calls or GROUP BY clause.

GROUPI NG SETS, CUBE, and ROLLUP

More complex grouping operations than those described above are possible using the concept of grouping
sets. The data selected by the FROMand WHERE clauses is grouped separately by each specified group-
ing set, aggregates computed for each group just as for simple GROUP BY clauses, and then the results
returned. For example:

=> SELECT * FROM itens_sol d;
brand | size | sales

_______ Fmm e e e e e - - -
Foo | L | 10
Foo | M | 20
Bar | M | 15
Bar | L | 5
(4 rows)

131

Queries

=> SELECT brand, size, sun{sales) FROMitens_sold GROUP BY GROUPI NG
SETS ((brand), (size), ());
brand | size | sum

_______ .
Foo | | 30
Bar | | 20

| L | 15

| M | 35

| | 50
(5 rows)

Each sublist of GROUPI NG SETS may specify zero or more columns or expressions and isinterpreted the
same way as though it were directly in the GROUP BY clause. An empty grouping set meansthat all rows
are aggregated down to asingle group (which is output even if no input rows were present), as described
above for the case of aggregate functions with no GROUP BY clause.

References to the grouping columns or expressions are replaced by null valuesin result rows for grouping
setsin which those columns do not appear. To distinguish which grouping a particular output row resulted
from, see Table 9.61.

A shorthand notation is provided for specifying two common types of grouping set. A clause of the form
ROLLUP (el, e2, e3, ...)
representsthe given list of expressionsand all prefixes of the list including the empty list; thusit is equiv-

dent to

GROUPI NG SETS (

(el, e2, e3, ...),
.(.él, e2),
(el),

()
)

Thisis commonly used for analysis over hierarchical data; e.g., total salary by department, division, and
company-wide total.

A clause of the form

CUBE (el, e2, ...)

represents the given list and al of its possible subsets (i.e., the power set). Thus

CUBE (a, b, c)

is equivalent to

GROUPI NG SETS (
(a b, c),
(a b)

132

Queries

AN AN AN AN AN
O T
(9]

— O N N N

)

The individual elements of a CUBE or ROLLUP clause may be either individual expressions, or sublists
of elements in parentheses. In the latter case, the sublists are treated as single units for the purposes of
generating the individual grouping sets. For example:

CuBE ((a, b), (c, d))

is equivalent to

GROUPI NG SETS (
(a b, c, d),

(a b).
(c, d),
()
)
and

ROLLUP (a, (b, c), d)

isequivalent to

GROUPI NG SETS (
(a b, c, d)
(a b, c),

(a)

()

)

The CUBE and ROLLUP constructs can be used either directly in the GROUP BY clause, or nested inside
aGROUPI NG SETS clause. If one GROUPI NG SETS clause is nested inside another, the effect is the
same asif all the elements of the inner clause had been written directly in the outer clause.

If multiple grouping items are specified in asingle GROUP BY clause, then the final list of grouping sets
isthe cross product of the individual items. For example:

GROUP BY a, CUBE (b, c), GROUPING SETS ((d), (e))
is equivalent to
GROUP BY GROUPI NG SETS (

(a, b, ¢, d), (a, b, c, e),

(a, b, d), (a, b, e),
(a, c, d), (a, c, e),

133

Queries

(a, d), (a, e)
)

When specifying multiple grouping itemstogether, the final set of grouping sets might contain duplicates.
For example:

GROUP BY ROLLUP (a, b), ROLLUP (a, c)

is equivalent to

GROUP BY GROUPI NG SETS (
(a, b, c),
(a, b),
(a, b),
(a, c),
(a),
(a),
(a, c),
(a),
0)

)

If these duplicates are undesirable, they can be removed using the DI STI NCT clause directly on the
GROUP BY. Therefore:

GROUP BY DI STINCT ROLLUP (a, b), ROLLUP (a, c)

isequivalent to

GROUP BY GROUPI NG SETS (

(a, b, c),
(a, b),
(a, c),

(a),
()
)

Thisisnot the sameasusing SELECT DI STI NCT because the output rows may still contain duplicates.
If any of the ungrouped columns contains NULL, it will be indistinguishable from the NULL used when
that same column is grouped.

Note

The construct (a, b) isnormally recognized in expressions as a row constructor. Within the
GROUP BY clause, thisdoes not apply at thetop levels of expressions, and (a, b) isparsedasa
list of expressions as described above. If for some reason you need arow constructor in agrouping
expression, use RON a, b).

7.2.5. Window Function Processing

134

Queries

If the query contains any window functions (see Section 3.5, Section 9.22 and Section 4.2.8), these func-
tions are evaluated after any grouping, aggregation, and HAVI NG filtering is performed. That is, if the
guery uses any aggregates, GROUP BY, or HAVI NG, then the rows seen by the window functions are the
group rows instead of the original table rows from FROMWHERE.

When multiple window functions are used, all the window functions having syntactically equivalent
PARTI TI ON BY and ORDER BY clausesin their window definitions are guaranteed to be evaluated in
asingle pass over the data. Therefore they will see the same sort ordering, even if the ORDER BY does
not uniquely determine an ordering. However, no guarantees are made about the evaluation of functions
having different PARTI TI ON BY or ORDER BY specifications. (In such cases a sort step is typicaly
required between the passes of window function evaluations, and the sort is not guaranteed to preserve
ordering of rowsthat its ORDER BY sees as equivalent.)

Currently, window functions always require presorted data, and so the query output will be ordered ac-
cording to one or another of the window functions PARTI TI ON BY/ORDER BY clauses. It is not rec-
ommended to rely on this, however. Use an explicit top-level ORDER BY clause if you want to be sure
the results are sorted in a particular way.

7.3. Select Lists

7.3.1.

Asshown in the previous section, the table expression in the SEL ECT command constructs an intermediate
virtual table by possibly combining tables, views, eliminating rows, grouping, etc. This table is finally
passed on to processing by the select list. The select list determines which columns of the intermediate
table are actually output.

Select-List Iltems

Thesimplest kind of select listis* which emitsall columnsthat the table expression produces. Otherwise,
a select list is a comma-separated list of value expressions (as defined in Section 4.2). For instance, it
could be alist of column names:

SELECT a, b, ¢ FROM ...

The columns names a, b, and ¢ are either the actual names of the columns of tables referenced in the
FROMclause, or the aliases given to them as explained in Section 7.2.1.2. The name space available in
the select list is the same as in the WHERE clause, unless grouping is used, in which case it is the same
asinthe HAVI NGclause.

If more than one table has a column of the same name, the table name must also be given, asin:

SELECT tbl1l.a, thl2.a, tbhll.b FROM ...

When working with multiple tables, it can also be useful to ask for all the columns of a particular table:

SELECT thbl1.*, tbhl2.a FROM. ..
See Section 8.16.5 for more about thet abl e_nane. * notation.

If an arbitrary value expression is used in the select list, it conceptually adds a new virtual column to the
returned table. Thevalue expression is evaluated once for each result row, with the row'sval ues substituted
for any column references. But the expressions in the select list do not have to reference any columnsin
the table expression of the FROMclause; they can be constant arithmetic expressions, for instance.

135

Queries

7.3.2.

7.3.3.

Column Labels

Theentriesin the select list can be assigned names for subsequent processing, such asfor usein an ORDER
BY clause or for display by the client application. For example:

SELECT a AS value, b + ¢ AS sum FROM . ..

If no output column name is specified using AS, the system assigns a default column name. For simple
column references, this is the name of the referenced column. For function calls, this is the name of the
function. For complex expressions, the system will generate a generic name.

The AS key word is usually optional, but in some cases where the desired column name matches a Post-
greSQL key word, you must write AS or double-quote the column name in order to avoid ambiguity. (Ap-
pendix C shows which key words require AS to be used as a column label.) For example, FROMis one
such key word, so this does not work:

SELECT a from b + ¢ AS sum FROM . ..
but either of these do:
SELECT a AS from b + ¢ AS sum FROM . ..

SELECT a "front, b + ¢ AS sum FROM . ..

For greatest safety against possible future key word additions, it is recommended that you always either
write AS or double-quote the output column name.

Note

The naming of output columns here is different from that done in the FROM clause (see Sec-
tion 7.2.1.2). It is possible to rename the same column twice, but the name assigned in the select
list isthe one that will be passed on.

DI STI NCT

After the select list has been processed, the result table can optionally be subject to the elimination of
duplicate rows. The DI STI NCT key word iswritten directly after SELECT to specify this.

SELECT DI STI NCT sel ect _|i st

(Instead of DI STI NCT thekey word ALL can be used to specify the default behavior of retaining all rows.)

Obviously, two rows are considered distinct if they differ in at least one column value. Null values are
considered equal in this comparison.

Alternatively, an arbitrary expression can determine what rows are to be considered distinct:

SELECT DI STINCT ON (expression [, expression ...]) select_list

136

Queries

Hereexpr essi on isanarhitrary value expression that is evaluated for all rows. A set of rows for which
all the expressions are equal are considered duplicates, and only the first row of the set is kept in the
output. Note that the “first row” of a set is unpredictable unless the query is sorted on enough columns
to guarantee a unique ordering of the rows arriving at the DI STI NCT filter. (DI STI NCT ON processing
occurs after ORDER BY sorting.)

TheDI STI NCT ONclauseisnot part of the SQL standard and is sometimes considered bad style because
of the potentially indeterminate nature of its results. With judicious use of GROUP BY and subqueriesin
FROM this construct can be avoided, but it is often the most convenient alternative.

7.4. Combining Queries (UNI ON, | NTERSECT,
EXCEPT)

The results of two queries can be combined using the set operations union, intersection, and difference.
The syntax is

gueryl UNI ON [ALL] query?2
qgueryl | NTERSECT [ALL] query2
gueryl EXCEPT [ALL] query2

where quer y1 and quer y2 are queries that can use any of the features discussed up to this point.

UNI ON effectively appendstheresult of quer y 2 to theresult of quer y 1 (although thereis no guarantee
that this is the order in which the rows are actually returned). Furthermore, it eliminates duplicate rows
from itsresult, in the same way as DI STI NCT, unless UNI ON ALL isused.

| NTERSECT returnsall rowsthat are both in theresult of quer y1 andintheresult of quer y2. Duplicate
rows are eliminated unless| NTERSECT ALL is used.

EXCEPT returns all rows that are in the result of quer y1 but not in the result of quer y2. (Thisis
sometimes called the difference between two queries.) Again, duplicates are eliminated unless EXCEPT
ALL isused.

In order to calculate the union, intersection, or difference of two queries, the two queries must be “union
compatible”’, which means that they return the same number of columns and the corresponding columns
have compatible data types, as described in Section 10.5.

Set operations can be combined, for example

queryl UNI ON query2 EXCEPT query3

whichis equivalent to

(queryl UNI ON query2) EXCEPT query3
As shown here, you can use parentheses to control the order of evaluation. Without parentheses, UNI ON
and EXCEPT associate left-to-right, but | NTERSECT binds more tightly than those two operators. Thus

queryl UNI ON query?2 | NTERSECT query3

means

137

Queries

gueryl UNI ON (query2 | NTERSECT query3)

You can aso surround an individual quer y with parentheses. This is important if the quer y needs to
use any of the clauses discussed in following sections, such as LI M T. Without parentheses, you'll get
a syntax error, or else the clause will be understood as applying to the output of the set operation rather
than one of itsinputs. For example,

SELECT a FROM b UNI ON SELECT x FROMy LIMT 10

is accepted, but it means

(SELECT a FROM b UNI ON SELECT x FROMy) LIMT 10

not

SELECT a FROM b UNI ON (SELECT x FROMy LIM T 10)

7.5. Sorting Rows (ORDER BY)

After a query has produced an output table (after the select list has been processed) it can optionally be
sorted. If sorting is not chosen, the rows will be returned in an unspecified order. The actual order in that
case will depend on the scan and join plan types and the order on disk, but it must not be relied on. A
particular output ordering can only be guaranteed if the sort step is explicitly chosen.

The ORDER BY clause specifies the sort order:

SELECT select _|i st
FROM t abl e_expr essi on
ORDER BY sort_expressionl [ASC | DESC] [NULLS { FIRST | LAST }]
[, sort_expression2 [ASC | DESC] [NULLS { FIRST |
LAST }] ...]

The sort expression(s) can be any expression that would be valid in the query's select list. An exampleis:

SELECT a, b FROMtablel ORDER BY a + b, c;

When more than one expression is specified, the later values are used to sort rows that are equal according
to the earlier values. Each expression can be followed by an optional ASC or DESC keyword to set the
sort direction to ascending or descending. ASC order is the default. Ascending order puts smaller values
first, where“smaller” isdefined in terms of the < operator. Similarly, descending order is determined with
the > operator.

TheNULLS FI RST and NULLS LAST options can be used to determine whether nulls appear before or
after non-null values in the sort ordering. By default, null values sort asif larger than any non-null value;
thatis, NULLS FI RST isthe default for DESC order, and NULLS LAST otherwise.

1 Actualy, PostgreSQL uses the default B-tree operator class for the expression's data type to determine the sort ordering for ASC and DESC.
Conventionally, data types will be set up so that the < and > operators correspond to this sort ordering, but a user-defined data type's designer
could choose to do something different.

138

Queries

Note that the ordering options are considered independently for each sort column. For example ORDER
BY x, y DESCmeans ORDER BY x ASC, y DESC, which is not the same as ORDER BY x
DESC, y DESC.

A sort _expressi on can aso bethe column label or number of an output column, asin:

SELECT a + b AS sum ¢ FROM tabl el ORDER BY sum
SELECT a, max(b) FROM tabl el GROUP BY a ORDER BY 1;

both of which sort by the first output column. Note that an output column name hasto stand aone, that is,
it cannot be used in an expression — for example, thisis not correct:

SELECT a + b AS sum c¢ FROMtabl el ORDER BY sum + c; -- wong

This restriction is made to reduce ambiguity. There is still ambiguity if an ORDER BY itemisasimple
name that could match either an output column name or a column from the table expression. The output
column is used in such cases. Thiswould only cause confusion if you use AS to rename an output column
to match some other table column's name.

ORDER BY can be applied to the result of a UNI ON, | NTERSECT, or EXCEPT combination, but in this
caseit is only permitted to sort by output column names or numbers, not by expressions.

7.6. LI M Tand OFFSET

LI M T and OFFSET allow you to retrieve just a portion of the rows that are generated by the rest of the
query:

SELECT select |i st
FROM t abl e_expr essi on
[ORDER BY ...]
[LIMT { number | ALL }] [OFFSET number]

If alimit count is given, no more than that many rows will be returned (but possibly fewer, if the query
itself yields fewer rows). LI M T ALL is the same as omitting the LI M T clause, asisLI M T with a
NULL argument.

OFFSET saysto skip that many rows before beginning to return rows. OFFSET 0 isthe same as omitting
the OFFSET clause, asis OFFSET with aNULL argument.

If both OFFSET and L1 M T appear, then OFFSET rows are skipped before starting to count the LI M T
rows that are returned.

When using LI M T, it is important to use an ORDER BY clause that constrains the result rows into a
unique order. Otherwise you will get an unpredictable subset of the query's rows. Y ou might be asking for
the tenth through twentieth rows, but tenth through twentieth in what ordering? The ordering is unknown,
unless you specified ORDER BY.

The query optimizer takesL1 M T into account when generating query plans, so you are very likely to get
different plans (yielding different row orders) depending on what you givefor LI M T and OFFSET. Thus,
using different LI M T/OFFSET values to select different subsets of a query result will give inconsistent
results unless you enforce a predictable result ordering with ORDER BY. Thisisnot abug; itisaninherent

139

Queries

conseguence of the fact that SQL does not promise to deliver the results of aquery in any particular order
unless ORDER BY is used to constrain the order.

The rows skipped by an OFFSET clause still have to be computed inside the server; therefore a large
OFFSET might be inefficient.

7.7. VALUES Lists

VALUES provides a way to generate a “constant table” that can be used in a query without having to
actually create and populate atable on-disk. The syntax is

VALUES (expression [, ...]) [, ...]

Each parenthesized list of expressionsgeneratesarow inthetable. Thelistsmust all have the same humber
of elements (i.e., the number of columns in the table), and corresponding entries in each list must have
compatible data types. The actual data type assigned to each column of the result is determined using the
same rules asfor UNI ON (see Section 10.5).

Asan example:

VALUES (1, 'one'), (2, 'two'), (3, '"three');

will return atable of two columns and three rows. It's effectively equivalent to:

SELECT 1 AS columil, 'one' AS colum?2
UNI ON ALL

SELECT 2, 'two'

UNI ON ALL

SELECT 3, 'three';

By default, PostgreSQL assignsthe namescol unml, col um?2, etc. to the columns of a VALUES table.
The column names are not specified by the SQL standard and different database systems do it differently,
soit'susually better to override the default names with atable dliaslist, like this:

=> SELECT * FROM (VALUES (1, 'one'), (2, '"two'), (3, 'three')) AS't
(numletter);
num| letter

1]

2] two

3| three
(3 rows)

Syntactically, VALUES followed by expression listsis treated as equivalent to:

SELECT sel ect _|ist FROM tabl e _expression

and can appear anywhere a SELECT can. For example, you can use it as part of a UNI ON, or attach a
sort _specificati on(ORDER BY,LI M T, and/or OFFSET) toit. VALUES is most commonly used
as the data source in an | NSERT command, and next most commonly as a subquery.

140

Queries

For more information see VALUES.

7.8. W THQueries (Common Table Expres-
sions)

7.8.1.

7.8.2.

W TH provides a way to write auxiliary statements for use in a larger query. These statements, which
are often referred to as Common Table Expressions or CTEs, can be thought of as defining temporary
tablesthat exist just for one query. Each auxiliary statement in aW TH clause can bea SELECT, | NSERT,
UPDATE, or DELETE; and the W TH clause itself is attached to a primary statement that can also be a
SELECT, | NSERT, UPDATE, or DELETE.

SELECT in WTH

Thebasic value of SELECT in W THisto break down complicated queriesinto simpler parts. An example
is:

W TH r egi onal _sal es AS (
SELECT regi on, SUM anount) AS total _sales
FROM or ders
GROUP BY region
), top_regions AS (
SELECT region
FROM r egi onal _sal es
WHERE total sales > (SELECT SUMtotal sales)/ 10 FROM
regi onal _sal es)
)
SELECT r egi on,
product,
SUM quantity) AS product_units,
SUM amount) AS product _sal es
FROM or ders
WHERE region I N (SELECT regi on FROM t op_r egi ons)
GROUP BY region, product;

which displays per-product salestotalsin only thetop salesregions. TheW TH clause definestwo auxiliary
statementsnamed r egi onal _sal es andt op_r egi ons, wherethe output of r egi onal _sal es is
used int op_r egi ons and the output of t op_r egi ons isused in the primary SELECT query. This
example could have been written without W TH, but we'd have needed two level s of nested sub-SELECTS.
It'sabit easier to follow thisway.

Recursive Queries

The optional RECURSI VE modifier changes W TH from a mere syntactic convenience into afeature that
accomplishes things not otherwise possiblein standard SQL. Using RECURSI VE, aW THquery can refer
to itsown output. A very simple example is this query to sum the integers from 1 through 100:

W TH RECURSI VE t(n) AS (
VALUES (1)
UNI ON ALL
SELECT n+1 FROMt WHERE n < 100

141

Queries

)
SELECT sunm{n) FROMt;

The general form of a recursive W TH query is aways a non-recursive term, then UNI ON (or UNI ON
ALL), then arecursive term, where only the recursive term can contain a reference to the query's own
output. Such a query is executed as follows:

Recursive Query Evaluation

1. Evaluate the non-recursive term. For UNI ON (but not UNI ON ALL), discard duplicate rows. Include
all remaining rows in the result of the recursive query, and aso place them in a temporary working
table.

2. Solong asthe working tableis not empty, repeat these steps:

a. Evauate the recursive term, substituting the current contents of the working table for the recur-
sive self-reference. For UNI ON (but not UNI ON ALL), discard duplicate rows and rows that
duplicate any previousresult row. Include all remaining rowsin the result of therecursive query,
and also place them in atemporary inter mediate table.

b. Replacethe contents of the working table with the contents of the intermediate table, then empty
the intermediate table.

Note

Strictly speaking, thisprocessisiteration not recursion, but RECURSI VE istheterminology chosen
by the SQL standards committee.

In the example above, the working table has just asingle row in each step, and it takes on the values from
1 through 100 in successive steps. In the 100th step, there is no output because of the WHERE clause, and
so the query terminates.

Recursive queries are typically used to deal with hierarchical or tree-structured data. A useful exampleis
this query to find all the direct and indirect sub-parts of aproduct, given only atable that showsimmediate
inclusions:

W TH RECURSI VE i ncl uded_parts(sub_part, part, quantity) AS (
SELECT sub_part, part, quantity FROM parts WHERE part =
' our _product"'
UNI ON ALL
SELECT p.sub_part, p.part, p.quantity
FROM i ncl uded_parts pr, parts p
WHERE p. part = pr.sub_part
)
SELECT sub_part, SUMquantity) as total _quantity
FROM i ncl uded_parts
GROUP BY sub_part

7.8.2.1. Search Order

When computing atreetraversal using arecursivequery, you might want to order theresultsin either depth-
first or breadth-first order. This can be done by computing an ordering column aongside the other data

142

Queries

columns and using that to sort the results at the end. Note that this does not actually control in which order
the query evaluation visits the rows; that is as aways in SQL implementation-dependent. This approach
merely provides a convenient way to order the results afterwards.

To create adepth-first order, we compute for each result row an array of rows that we have visited so far.
For example, consider the following query that searchesatablet r ee using al i nk field:

W TH RECURSI VE search_tree(id, link, data) AS (
SELECT t.id, t.link, t.data
FROM tree t
UNI ON ALL
SELECT t.id, t.link, t.data
FROMtree t, search _tree st
WHERE t.id = st.link

)
SELECT * FROM search_tree;

To add depth-first ordering information, you can write this:

W TH RECURSI VE search_tree(id, link, data, path) AS (
SELECT t.id, t.link, t.data, ARRAY[t.id]
FROM tree t
UNI ON ALL
SELECT t.id, t.link, t.data, path || t.id
FROMtree t, search _tree st
WHERE t.id = st.link

)
SELECT * FROM search_tree ORDER BY pat h;

In the general case where more than one field needs to be used to identify arow, use an array of rows. For
example, if we needed to track fieldsf 1 and f 2:

W TH RECURSI VE search_tree(id, link, data, path) AS (
SELECT t.id, t.link, t.data, ARRAYRONt.f1l, t.f2)]
FROM tree t

UNI ON ALL
SELECT t.id, t.link, t.data, path || RONt.f1l, t.f2)
FROMtree t, search_tree st
WHERE t.id = st.link

)
SELECT * FROM search_tree ORDER BY pat h;

Tip

Omit the ROW) syntax in the common case where only onefield needsto betracked. Thisallows
asimple array rather than a composite-type array to be used, gaining efficiency.

To create a breadth-first order, you can add a column that tracks the depth of the search, for example:

143

Queries

W TH RECURSI VE search_tree(id, link, data, depth) AS (
SELECT t.id, t.link, t.data, O
FROM tree t
UNI ON ALL
SELECT t.id, t.link, t.data, depth + 1
FROM tree t, search_tree st
WHERE t.id = st.link

)
SELECT * FROM search_tree ORDER BY dept h;

To get astable sort, add data columns as secondary sorting columns.

Tip

The recursive query evaluation algorithm produces its output in breadth-first search order. How-
ever, thisis an implementation detail and it is perhaps unsound to rely on it. The order of the rows
within each level is certainly undefined, so some explicit ordering might be desired in any case.

There is built-in syntax to compute a depth- or breadth-first sort column. For example:

W TH RECURSI VE search_tree(id, link, data) AS (
SELECT t.id, t.link, t.data
FROM tree t
UNI ON ALL
SELECT t.id, t.link, t.data
FROMtree t, search_tree st
WHERE t.id = st.link
) SEARCH DEPTH FI RST BY id SET ordercol
SELECT * FROM search_tree ORDER BY ordercol;

W TH RECURSI VE search_tree(id, link, data) AS (

SELECT t.id, t.link, t.data

FROM tree t

UNI ON ALL

SELECT t.id, t.link, t.data

FROMtree t, search_tree st

WHERE t.id = st.link
) SEARCH BREADTH FI RST BY id SET ordercol
SELECT * FROM search_tree ORDER BY ordercol;

This syntax is internally expanded to something similar to the above hand-written forms. The SEARCH
clause specifies whether depth- or breadth first search is wanted, the list of columns to track for sorting,
and a column namethat will contain the result datathat can be used for sorting. That column will implicitly
be added to the output rows of the CTE.

7.8.2.2. Cycle Detection

When working with recursive queries it is important to be sure that the recursive part of the query will
eventually return no tuples, or else the query will loop indefinitely. Sometimes, using UNI ON instead of
UNI ON ALL can accomplish this by discarding rows that duplicate previous output rows. However, often
acycle does not involve output rows that are completely duplicate: it may be necessary to check just one

144

Queries

or afew fields to see if the same point has been reached before. The standard method for handling such
situations is to compute an array of the already-visited values. For example, consider again the following
query that searches atable gr aph using al i nk field:

W TH RECURSI VE search_graph(id, link, data, depth) AS (
SELECT g.id, g.link, g.data, O
FROM graph g
UNI ON ALL
SELECT g.id, g.link, g.data, sg.depth + 1
FROM graph g, search_graph sg
WHERE g.id = sg.link
)
SELECT * FROM sear ch_graph;

This query will loop if the | i nk relationships contain cycles. Because we require a “depth” output, just
changing UNI ON ALL to UNI ON'would not eliminate the looping. Instead we need to recognize whether
we have reached the same row again while following a particular path of links. We add two columns
i s_cycl e and pat h to the loop-prone query:

W TH RECURSI VE search_graph(id, link, data, depth, is_cycle, path) AS

(
SELECT g.id, g.link, g.data, O,

fal se,
ARRAY[g. i d]
FROM graph g

UNI ON ALL

SELECT g.id, g.link, g.data, sg.depth + 1,
g.id = ANY(path),
path || g.id
FROM graph g, search_graph sg
WHERE g.id = sg.link AND NOT is_cycle
)
SELECT * FROM search_graph;

Aside from preventing cycles, the array value is often useful in its own right as representing the “path”
taken to reach any particular row.

In the general case where more than one field needs to be checked to recognize a cycle, use an array of
rows. For example, if we needed to compare fieldsf 1 and f 2:

W TH RECURSI VE search_graph(id, link, data, depth, is_cycle, path) AS
(
SELECT g.id, g.link, g.data, O,
fal se,
ARRAY[RONg.f1, g.f2)]
FROM graph g
UNI ON ALL
SELECT g.id, g.link, g.data, sg.depth + 1,
RONg.f1, g.f2) = ANY(path),
path || RONg.f1l, g.f2)
FROM graph g, search_graph sg
WHERE g.id = sg.link AND NOT is_cycle

145

Queries

)
SELECT * FROM search_graph;

Tip

Omitthe RON() syntax in the common case where only onefield needsto be checked to recognize
acycle. Thisallowsasimplearray rather than acomposite-type array to be used, gaining efficiency.

Thereis built-in syntax to simplify cycle detection. The above query can also be written like this:

W TH RECURSI VE search_graph(id, link, data, depth) AS (
SELECT g.id, g.link, g.data, 1
FROM gr aph ¢
UNI ON ALL
SELECT g.id, g.link, g.data, sg.depth + 1
FROM graph g, search_graph sg
WHERE g.id = sg.link
) CYCLE id SET is_cycle USING path
SELECT * FROM search_graph;

and it will be internally rewritten to the above form. The CYCLE clause specifies first the list of columns
to track for cycle detection, then a column name that will show whether a cycle has been detected, and
finally the name of another column that will track the path. The cycle and path columns will implicitly
be added to the output rows of the CTE.

Tip

The cycle path column is computed in the same way as the depth-first ordering column show inthe
previous section. A query can have both a SEARCH and a CYCLE clause, but a depth-first search
specification and acycle detection specification would create redundant computations, so it'smore
efficient to just use the CYCLE clause and order by the path column. If breadth-first ordering is
wanted, then specifying both SEARCH and CYCLE can be useful.

A helpful trick for testing queries when you are not certain if they might loop isto placeaLl M T in the
parent query. For example, this query would loop forever without theLI M T:

W TH RECURSI VE t (n) AS (
SELECT 1
UNI ON ALL
SELECT n+1 FROM t

)
SELECT n FROMt LIM T 100;

This works because PostgreSQL 's implementation evaluates only as many rows of a W TH query as are
actually fetched by the parent query. Using this trick in production is not recommended, because other
systems might work differently. Also, it usually won't work if you make the outer query sort the recursive
guery's results or join them to some other table, because in such cases the outer query will usually try to
fetch al of the W TH query's output anyway .

146

Queries

7.8.3. Common Table Expression Materialization

A useful property of W THqueriesisthat they are normally evaluated only once per execution of the parent
query, even if they are referred to more than once by the parent query or sibling W TH queries. Thus,
expensive calculations that are needed in multiple places can be placed within a W TH query to avoid
redundant work. Ancther possible application is to prevent unwanted multiple evaluations of functions
with side-effects. However, the other side of this coin is that the optimizer is not able to push restrictions
from the parent query down into a multiply-referenced W TH query, since that might affect all uses of
the W TH query's output when it should affect only one. The multiply-referenced W TH query will be
evaluated as written, without suppression of rows that the parent query might discard afterwards. (But,
as mentioned above, evaluation might stop early if the reference(s) to the query demand only a limited
number of rows.)

However, if a W TH query is non-recursive and side-effect-free (that is, it is a SELECT containing no
volatile functions) then it can be folded into the parent query, allowing joint optimization of the two query
levels. By default, this happens if the parent query references the W TH query just once, but not if it
referencesthe W THquery morethan once. Y ou can overridethat decision by specifying MATERI ALI ZED
to force separate calculation of the W TH query, or by specifying NOT MATERI ALI ZED to force it to
be merged into the parent query. The latter choice risks duplicate computation of the W TH query, but it
can still give anet savings if each usage of the W TH query needs only a small part of the W TH query's
full output.

A simple example of theserulesis

WTH w AS (
SELECT * FROM bi g_t abl e

)
SELECT * FROM w WHERE key = 123;

ThisW TH query will be folded, producing the same execution plan as

SELECT * FROM bi g_tabl e WHERE key = 123;

In particular, if there's an index on key, it will probably be used to fetch just the rows having key =
123. On the other hand, in

WTH w AS (
SELECT * FROM bi g_table
)
SELECT * FROMw AS wl JON w AS w2 ON wl. key = w2.ref
WHERE w2. key = 123;

the W TH query will be materialized, producing atemporary copy of bi g_t abl e that isthenjoined with
itself — without benefit of any index. This query will be executed much more efficiently if written as

W TH w AS NOT MATERI ALI ZED (
SELECT * FROM bi g_table
)
SELECT * FROMw AS w1l JON w AS w2 ON wl. key = w2.ref
WHERE wW2. key = 123;

so that the parent query's restrictions can be applied directly to scans of bi g_t abl e.

147

Queries

7.8.4.

An example where NOT MATERI ALI ZED could be undesirable is

WTH w AS (
SELECT key, very_expensive_function(val) as f FROM sone_t abl e

)
SELECT * FROMw AS w1l JON w AS w2 ON wlL.f = w2.f;

Here, materialization of the W TH query ensuresthat ver y_expensi ve_f unct i on isevaluated only
once per table row, not twice.

The examples above only show W TH being used with SELECT, but it can be attached in the same way to
| NSERT, UPDATE, or DELETE. In each caseit effectively providestemporary table(s) that can bereferred
to in the main command.

Data-Modifying Statements in W TH

You can use data-modifying statements (I NSERT, UPDATE, or DELETE) in W TH. This alows you to
perform several different operationsin the same query. An exampleis:

W TH noved_rows AS (
DELETE FROM product s
WHERE
"date" >= '2010-10-01' AND
"date" < '2010-11-01'
RETURNI NG *
)
| NSERT | NTO products_I og
SELECT * FROM noved rows;

This query effectively movesrowsfrom pr oduct s to pr oduct s_| og. The DELETE in W TH deletes
the specified rows from pr oduct s, returning their contents by means of its RETURNI NG clause; and
then the primary query reads that output and insertsit into pr oduct s_| og.

A fine point of the above exampleisthat the W TH clauseisattached to thel NSERT, not the sub-SELECT
withinthel NSERT. Thisisnecessary because data-modifying statementsare only allowed in W TH claus-
esthat are attached to the top-level statement. However, norma W TH visibility rules apply, so it is pos-
sible to refer to the W TH statement's output from the sub-SELECT.

Data-modifying statements in W TH usually have RETURNI NG clauses (see Section 6.4), as shown in
the example above. It is the output of the RETURNI NG clause, not the target table of the data-modifying
statement, that formsthe temporary tablethat can bereferred to by therest of the query. If adata-modifying
statement in W THlacks a RETURNI NGclause, then it forms no temporary table and cannot be referred to
in the rest of the query. Such a statement will be executed nonetheless. A not-particularly-useful example
is:

WTH t AS (
DELETE FROM f 00
)

DELETE FROM bar ;

This example would remove all rows from tablesf oo and bar . The number of affected rows reported to
the client would only include rows removed from bar .

148

Queries

Recursive self-references in data-modifying statements are not allowed. In some cases it is possible to
work around this limitation by referring to the output of arecursive W TH, for example:

W TH RECURSI VE i ncl uded_parts(sub_part, part) AS (
SELECT sub_part, part FROM parts WHERE part = 'our_product'’
UNI ON ALL
SELECT p.sub_part, p.part
FROM i ncl uded_parts pr, parts p
WHERE p. part = pr.sub_part
)
DELETE FROM parts
VWHERE part | N (SELECT part FROM i ncl uded_parts);

This query would remove al direct and indirect subparts of a product.

Data-modifying statementsin W TH are executed exactly once, and always to completion, independently
of whether the primary query reads all (or indeed any) of their output. Notice that this is different from
the rule for SELECT in W TH: as stated in the previous section, execution of a SELECT is carried only
asfar asthe primary query demands its output.

The sub-statementsin W THare executed concurrently with each other and with the main query. Therefore,
when using data-modifying statementsin W TH, the order in which the specified updates actually happen
isunpredictable. All the statements are executed with the same snapshot (see Chapter 13), so they cannot
“se€” one another's effects on the target tables. This alleviates the effects of the unpredictability of the
actua order of row updates, and means that RETURNI NG data is the only way to communicate changes
between different W TH sub-statements and the main query. An example of thisisthat in

WTH t AS (
UPDATE products SET price = price * 1.05
RETURNI NG *

)
SELECT * FROM products;

the outer SELECT would return the original prices before the action of the UPDATE, whilein

WTH t AS (
UPDATE products SET price = price * 1.05
RETURNI NG *

)
SELECT * FROM t;

the outer SELECT would return the updated data.

Trying to update the same row twice in asingle statement is not supported. Only one of the modifications
takes place, but it is not easy (and sometimes not possible) to reliably predict which one. Thisalso applies
to deleting arow that was aready updated in the same statement: only the update is performed. Therefore
you should generally avoid trying to modify a single row twice in a single statement. In particular avoid
writing W TH sub-statements that could affect the same rows changed by the main statement or a sibling
sub-statement. The effects of such a statement will not be predictable.

At present, any table used asthetarget of adata-modifying statement in W THmust not have a conditional
rule, nor an ALSOrule, nor an | NSTEAD rule that expands to multiple statements.

149

Chapter 8. Data Types

PostgreSQL has arich set of native data types available to users. Users can add new types to PostgreSQL
using the CREATE TY PE command.

Table 8.1 shows all the built-in general-purpose data types. Most of the aternative names listed in the
“Aliases’ column are the names used internally by PostgreSQL for historical reasons. In addition, some

internally used or deprecated types are available, but are not listed here.

Table8.1. Data Types

Name Aliases Description
bi gi nt int8 signed eight-byte integer
bi gseri al serial8 autoi ncrementing eight-byte integer
bit [(n)] fixed-length bit string
bit varying [(n)] var bi t variable-length bit string
[(n)]
bool ean bool logical Boolean (true/false)
box rectangular box on aplane
byt ea binary data (“ byte array”)
character [(n)] char [(n)] |fixed-length character string
character varying [(n)] var char variable-length character string
[(n)]
cidr IPv4 or IPv6 network address
circle circleon aplane
dat e calendar date (year, month, day)
doubl e precision float8 double precision floating-point number
(8 bytes)
i net IPv4 or IPv6 host address
i nt eger int,int4 signed four-byte integer
interval [fields] [(p)] time span
j son textual JSON data
j sonb binary JSON data, decomposed
line infinite line on aplane
| seg line segment on a plane
macaddr MAC (Media Access Control) address
macaddr 8 MAC (Media Access Control) address
(EUI-64 format)
noney currency amount
nuneric [(p, S)] decimal [(p, |exact numeric of selectable precision
s) |
pat h geometric path on a plane
pg_lsn PostgreSQL Log Sequence Number

150

Data Types

Name Aliases Description

pg_snapshot user-level transaction 1D snapshot

poi nt geometric point on aplane

pol ygon closed geometric path on aplane

real float4 single precision floating-point number
(4 bytes)

smal | i nt int2 signed two-byte integer

smal | seri al serial 2 autoi ncrementing two-byte integer

seri al serial4 autoincrementing four-byte integer

t ext variable-length character string

time [(p)] [without time time of day (no time zone)

zone |

time [(p)] with tine zone|tinetz time of day, including time zone

timestamp [(p)] [wthout date and time (no time zone)

tinme zone]

timestamp [(p)] with tine|tinmestanptz date and time, including time zone

zone

t squery text search query

t svect or text search document

t xi d_snapshot user-level transaction 1D snapshot (dep-
recated; seepg_snapshot)

uui d universally unique identifier

xm XML data

Compatibility

Thefollowing types (or spellings thereof) are specified by SQL: bi gi nt,bit,bit varying,
bool ean,char,charact er varyi ng,character,varchar,dat e,doubl e preci -
sion,integer,interval,nuneric,decinal,real,smallint,time (withorwith-
out time zone), t i mest anp (with or without time zone), xn .

Each data type has an external representation determined by its input and output functions. Many of the
built-in types have obvious external formats. However, several types are either unique to PostgreSQL,
such as geometric paths, or have several possible formats, such as the date and time types. Some of the
input and output functionsare not invertible, i.e., the result of an output function might lose accuracy when
compared to the original input.

8.1. Numeric Types

Numeric types consist of two-, four-, and eight-byte integers, four- and eight-byte floating-point numbers,
and selectable-precision decimals. Table 8.2 lists the available types.

151

Data Types

8.1.1.

8.1.2.

Table 8.2. Numeric Types

Name Storage Size | Description Range
smal | i nt 2 bytes small-range integer -32768 to +32767
i nteger 4 bytes typical choice for integer -2147483648 to
+2147483647
bi gi nt 8 bytes large-range integer -9223372036854775808 to
+9223372036854775807
deci mal variable user-specified precision, ex- |up to 131072 digits before
act the decimal point; up to
16383 digits after the deci-
mal point
nuneric variable user-specified precision, ex- |up to 131072 digits before
act the decimal point; up to
16383 digits after the deci-
mal point
r eal 4 bytes variable-precision, inexact |6 decimal digits precision
doubl e precision 8 bytes variable-precision, inexact |15 decimal digits precision
snal | seri al 2 bytes small autoincrementing inte- | 1 to 32767
ger
seri al 4 bytes autoincrementing integer 1to 2147483647
bi gseri al 8 bytes large autoincrementing inte- | 1 to 9223372036854775807
ger

The syntax of constants for the numeric types is described in Section 4.1.2. The numeric types have a
full set of corresponding arithmetic operators and functions. Refer to Chapter 9 for more information. The
following sections describe the types in detail.

Integer Types

Thetypessnal | i nt,i nt eger,andbi gi nt storewhole numbers, that is, numberswithout fractional
components, of variousranges. Attemptsto store values outside of the allowed rangewill result in an error.

Thetypei nt eger isthe common choice, as it offers the best balance between range, storage size, and
performance. Thesnal | i nt typeisgenerally only used if disk spaceisat apremium. Thebi gi nt type
is designed to be used when the range of thei nt eger typeisinsufficient.

SQL only specifies the integer typesi nt eger (orint), smal |int, and bi gi nt. The type names
int2,int4,andi nt 8 are extensions, which are also used by some other SQL database systems.

Arbitrary Precision Numbers

Thetypenuner i ¢ can store numberswith avery large number of digits. It isespecially recommended for
storing monetary amounts and other quantities where exactnessis required. Calculations with nurnrer i ¢
valuesyield exact resultswhere possible, e.g., addition, subtraction, multiplication. However, calculations
onnurer i ¢ values are very ow compared to the integer types, or to the floating-point types described
in the next section.

We use the following terms below: The precision of anuner i ¢ isthetotal count of significant digitsin
thewhole number, that is, the number of digitsto both sides of the decimal point. The scale of anuneri ¢

152

Data Types

isthe count of decimal digitsinthefractional part, to theright of the decimal point. So the number 23.5141
has a precision of 6 and a scale of 4. Integers can be considered to have a scale of zero.

Both the maximum precision and the maximum scale of anuner i ¢ column can be configured. To declare
acolumn of type nurrer i ¢ use the syntax:

NUMERI C(pr eci si on, scal e)

The precision must be positive, the scale zero or positive. Alternatively:

NUMERI C(pr eci si on)

selects ascale of 0. Specifying:

NUMERI C

without any precision or scal e creates an “unconstrained numeric” column in which numeric values of any
length can be stored, up to the implementation limits. A column of this kind will not coerce input values
to any particular scale, whereas nuner i ¢ columns with adeclared scale will coerce input values to that
scale. (The SQL standard requires adefault scale of 0, i.e., coercion to integer precision. Wefind thisabit
useless. If you're concerned about portability, always specify the precision and scale explicitly.)

Note

The maximum precision that can be explicitly specified in a NUMERI C type declaration is 1000.
An unconstrained NUMERI C column is subject to the limits described in Table 8.2.

If the scale of avalue to be stored is greater than the declared scale of the column, the system will round
the value to the specified number of fractional digits. Then, if the number of digitsto theleft of the decimal
point exceeds the declared precision minus the declared scale, an error is raised.

Numeric values are physically stored without any extraleading or trailing zeroes. Thus, the declared pre-
cision and scale of acolumn are maximums, not fixed allocations. (Inthissensethenuner i ¢ typeismore
akintovar char (n) thantochar (n).) The actua storage requirement is two bytes for each group of
four decimal digits, plus three to eight bytes overhead.

In addition to ordinary numeric values, the nuner i ¢ type has several special values:

Infinity
-Infinity
NaN

" ou

These are adapted from the |EEE 754 standard, and represent “infinity”, “negative infinity”, and “not-a
number”, respectively. When writing these values as constants in an SQL command, you must put quotes
around them, for example UPDATE table SET x = '-Infinity'.Oninput, these strings are
recognized in a case-insensitive manner. The infinity values can aternatively be spelledi nf and - i nf .

The infinity values behave as per mathematical expectations. For example, | nf i ni ty plus any finite
valueequals! nfi ni ty,asdoesl nfinityplusl nfinity;butl nfinityminuslnfinityyields
NaN (not a number), because it has no well-defined interpretation. Note that an infinity can only be stored
in an unconstrained nuner i ¢ column, because it notionally exceeds any finite precision limit.

153

Data Types

8.1.3.

TheNaN (not anumber) valueisused to represent undefined cal cul ational results. Ingeneral, any operation
with a NaN input yields another NaN. The only exception is when the operation's other inputs are such
that the same output would be obtained if the NaN were to be replaced by any finite or infinite numeric
value; then, that output value is used for NaN too. (An example of this principleis that NaN raised to the
zero power yields one.)

Note

In most implementations of the “not-a-number” concept, NaNis not considered equal to any other
numeric value (including NaN). In order to allow nuner i ¢ valuesto be sorted and used in tree-
based indexes, PostgreSQL treats NaN values as equal, and greater than all non-NaN values.

Thetypesdeci nmal and nuneri ¢ are equivaent. Both types are part of the SQL standard.

When rounding values, the nuner i ¢ type rounds ties away from zero, while (on most machines) the
real anddoubl e preci si on typesround tiesto the nearest even number. For example:

SELECT x,

round(x: : numeric) AS numround,

round(x: : doubl e precision) AS dbl_round
FROM generate_series(-3.5, 3.5, 1) as x;

X | numround | dbl _round
______ e,
-3.5 | -4 | -4
-2.5 | -3 | -2
-1.5 | -2 | -2
-0.5 | -1 | -0

0.5 | 1] 0

1.5 2| 2

2.5 | 3| 2

3.5 | 4 | 4
(8 rows)

Floating-Point Types

The datatypesr eal and doubl e preci si on are inexact, variable-precision numeric types. On al
currently supported platforms, these types are implementations of IEEE Standard 754 for Binary Float-
ing-Point Arithmetic (single and double precision, respectively), to the extent that the underlying proces-
sor, operating system, and compiler support it.

Inexact means that some values cannot be converted exactly to the internal format and are stored as ap-
proximations, so that storing and retrieving a value might show slight discrepancies. Managing these er-
rors and how they propagate through calculations is the subject of an entire branch of mathematics and
computer science and will not be discussed here, except for the following points:

« If you require exact storage and calculations (such as for monetary amounts), use the nuner i c type
instead.

« If youwant to do complicated cal culationswith these typesfor anything important, especialy if yourely
on certain behavior in boundary cases (infinity, underflow), you should evaluate the implementation
carefully.

154

Data Types

» Comparing two floating-point values for equality might not always work as expected.

Onall currently supported platforms, ther eal typehasarange of around 1E-37 to 1E+37 with aprecision
of at least 6 decimal digits. The doubl e pr eci si on type has a range of around 1E-307 to 1E+308
with aprecision of at least 15 digits. Vaues that are too large or too small will cause an error. Rounding
might take place if the precision of an input number is too high. Numbers too close to zero that are not
representable as distinct from zero will cause an underflow error.

By default, floating point values are output in text form in their shortest precise decimal representation;
the decimal value produced is closer to the true stored binary value than to any other value representable
in the same binary precision. (However, the output value is currently never exactly midway between two
representable values, in order to avoid a widespread bug where input routines do not properly respect the
round-to-nearest-even rule.) Thisvalue will use at most 17 significant decimal digitsfor f | oat 8 values,
and at most 9 digitsfor f | oat 4 values.

Note

This shortest-precise output format is much faster to generate than the historical rounded format.

For compatibility with output generated by older versions of PostgreSQL ., and to allow the output precision
to be reduced, the extra float_digits parameter can be used to select rounded decimal output instead. Set-
ting avalue of O restoresthe previous default of rounding thevalueto 6 (for f | oat 4) or 15 (for f | oat 8)
significant decimal digits. Setting a negative value reduces the number of digits further; for example -2
would round output to 4 or 13 digits respectively.

Any value of extra float_digits greater than O selects the shortest-precise format.

Note

Applicationsthat wanted precise values have historically had to set extra float_digitsto 3to obtain
them. For maximum compatibility between versions, they should continue to do so.

In addition to ordinary numeric values, the floating-point types have several specia values:

Infinity
-Infinity
NaN

These represent the |IEEE 754 special values “infinity”, “negative infinity”, and “ not-a-number”, respec-
tively. When writing these values as constantsin an SQL command, you must put quotes around them, for
example UPDATE tabl e SET x = '-Infinity'.Oninput,thesestringsarerecognized in acase-
insensitive manner. Theinfinity values can alternatively be spelled i nf and-i nf.

Note

| EEE 754 specifiesthat NaN should not compare equal to any other floating-point value (including
NaN). In order to allow floating-point values to be sorted and used in tree-based indexes, Post-
greSQL treats NaN values as equal, and greater than all non-NaN values.

155

Data Types

8.1.4.

PostgreSQL also supports the SQL-standard notationsf | oat andf | oat (p) for specifying inexact nu-
meric types. Here, p specifies the minimum acceptable precision in binary digits. PostgreSQL accepts
float (1) tofl oat (24) asselectingther eal type whilef | oat (25) tof | oat (53) selectdou-
bl e preci si on.Vauesof p outside the allowed range draw an error. f | oat with no precision spec-
ified istaken to mean doubl e preci si on.

Serial Types

Note

This section describes a PostgreSQL -specific way to create an autoincrementing column. Another
way isto use the SQL -standard identity column feature, described at CREATE TABLE.

The datatypessnal | seri al , seri al and bi gseri al are not true types, but merely a notational
conveniencefor creating uniqueidentifier columns (similar tothe AUTO | NCREMENT property supported
by some other databases). In the current implementation, specifying:

CREATE TABLE t abl enane (
col name SERI AL

)
is equivalent to specifying:

CREATE SEQUENCE t abl ename_col name_seq AS i nteger;
CREATE TABLE t abl enane (
col name i nteger NOT NULL DEFAULT nextval ('tabl ename_col name_seq')
)
ALTER SEQUENCE t abl ename_col name_seq OANED BY t abl ename. col nane;

Thus, we have created an integer column and arranged for its default val ues to be assigned from a sequence
generator. A NOT NULL constraint is applied to ensure that anull value cannot be inserted. (In most cases
you would also want to attach a UNI QUE or PRI MARY KEY constraint to prevent duplicate values from
being inserted by accident, but this is not automatic.) Lastly, the sequence is marked as “owned by” the
column, so that it will be dropped if the column or table is dropped.

Note

Because smal | seri al , seri al and bi gseri al are implemented using sequences, there
may be "holes" or gaps in the sequence of values which appears in the column, even if no rows
are ever deleted. A value alocated from the sequence is till "used up" even if arow containing
that value is never successfully inserted into the table column. This may happen, for example, if
theinserting transaction rolls back. See next val () in Section 9.17 for details.

Toinsert the next value of the sequenceintotheser i al column, specify that theser i al column should
be assigned its default value. This can be done either by excluding the column from the list of columnsin
the | NSERT statement, or through the use of the DEFAULT key word.

Thetypenamesseri al andseri al 4 are equivalent: both createi nt eger columns. The type names
bi gseri al andseri al 8 work the sameway, except that they createabi gi nt column. bi gseri al

156

Data Types

should be used if you anticipate the use of more than 2L identifiers over the lifetime of the table, The
typenamessnal | seri al andseri al 2 alsowork the sameway, except that they createasmal | i nt
column.

Thesequencecreated foraseri al columnisautomatically dropped when the owning columnisdropped.
Y ou can drop the sequence without dropping the column, but thiswill force removal of the column default
expression.

8.2. Monetary Types

Thenoney type stores a currency amount with afixed fractional precision; see Table 8.3. The fractional
precision is determined by the database'slc_monetary setting. The range shown in the table assumesthere
are two fractiona digits. Input is accepted in a variety of formats, including integer and floating-point
literals, as well astypical currency formatting, such as' $1, 000. 00" . Output is generaly in the latter
form but depends on the locale.

Table 8.3. Monetary Types

Name Storage Size | Description Range
noney 8 bytes currency amount -92233720368547758.08 to
+92233720368547758.07

Since the output of this datatypeislocale-sensitive, it might not work to load noney datainto a database
that has a different setting of | c_nonet ary. To avoid problems, before restoring a dump into a new
database make surel ¢c_nonet ar y hasthe same or equivalent value as in the database that was dumped.

Vduesof thenuneri c,i nt,andbi gi nt datatypescan becasttononey. Conversion fromther eal
and doubl e preci si on datatypes can be done by casting to nuner i c first, for example:

SELECT ' 12.34'::float8::numeric::noney;

However, this is not recommended. Floating point numbers should not be used to handle money due to
the potential for rounding errors.

A noney value can be cast to nuner i ¢ without loss of precision. Conversion to other types could po-
tentially lose precision, and must also be done in two stages:

SELECT ' 52093. 89' : : noney: : nuneric::fl oat8;

Division of anoney value by an integer value is performed with truncation of the fractional part towards
zero. To get a rounded result, divide by a floating-point value, or cast the noney value to nuneri ¢
before dividing and back to money afterwards. (The latter is preferable to avoid risking precision 10ss.)
When anoney valueisdivided by another noney value, theresultisdoubl e preci si on (i.e,, apure
number, not money); the currency units cancel each other out in the division.

8.3. Character Types

Table 8.4. Character Types

Name Description

character varying(n),varchar(n) variable-length with limit

157

Data Types

Name Description
character(n),char(n) fixed-length, blank padded
t ext variable unlimited length

Table 8.4 shows the general -purpose character types available in PostgreSQL .

SQL definestwo primary character types: char act er varyi ng(n) andchar act er (n) ,wherenis
apositive integer. Both of these types can store strings up to n characters (not bytes) in length. An attempt
to store a longer string into a column of these types will result in an error, unless the excess characters
are all spaces, in which case the string will be truncated to the maximum length. (This somewhat bizarre
exception is required by the SQL standard.) If the string to be stored is shorter than the declared length,
values of type char act er will be space-padded; values of type char act er varyi ng will ssmply
store the shorter string.

If one explicitly castsavalueto char act er varyi ng(n) or charact er (n), then an over-length
valuewill betruncated to n characterswithout raising an error. (Thistoo isrequired by the SQL standard.)

Thenotationsvar char (n) andchar (n) arediasesfor character varying(n) andcharac-
t er (n),respectively. char act er without length specifierisequivalenttochar act er (1) .If char -
acter varyi ng is used without length specifier, the type accepts strings of any size. The latter is a
PostgreSQL extension.

In addition, PostgreSQL provides the t ext type, which stores strings of any length. Although the type
t ext isnotinthe SQL standard, severa other SQL database management systems have it as well.

Vauesof typechar act er arephysically padded with spacesto the specified width n, and are stored and
displayed that way. However, trailing spaces aretreated as semantically insignificant and disregarded when
comparing two values of type char act er . In collations where whitespace is significant, this behavior
can produce unexpected results; for example SELECT 'a '::CHAR(2) collate "C' < E a
\'n' :: CHAR(2) returnstrue, even though Clocale would consider a space to be greater than anewline.
Trailing spaces are removed when converting achar act er valueto one of the other string types. Note
that trailing spaces are semantically significant inchar act er varyi ng andt ext values, and when
using pattern matching, that is LI KE and regular expressions.

The characters that can be stored in any of these data types are determined by the database character set,
which is selected when the database is created. Regardless of the specific character set, the character with
code zero (sometimes called NUL) cannot be stored. For more information refer to Section 24.3.

The storage requirement for a short string (up to 126 bytes) is 1 byte plus the actual string, which includes
the space padding in the case of char act er . Longer strings have 4 bytes of overhead instead of 1. Long
strings are compressed by the system automatically, so the physical requirement on disk might be less.
Very long values are also stored in background tables so that they do not interfere with rapid access to
shorter column values. In any case, the longest possible character string that can be stored is about 1 GB.
(The maximum value that will be allowed for n in the datatype declaration isless than that. It wouldn't be
useful to change this because with multibyte character encodings the number of characters and bytes can
be quitedifferent. If you desireto store long stringswith no specific upper limit, uset ext orchar act er

var yi ng without alength specifier, rather than making up an arbitrary length limit.)

Tip

There is no performance difference among these three types, apart from increased storage space
when using the blank-padded type, and a few extra CPU cycles to check the length when storing
into a length-constrained column. While char act er (n) has performance advantages in some
other database systems, there is no such advantage in PostgreSQL; in fact char act er (n) is

158

Data Types

usually the slowest of the three because of its additional storage costs. In most situationst ext or
char act er varyi ng should be used instead.

Refer to Section 4.1.2.1 for information about the syntax of string literals, and to Chapter 9 for information
about available operators and functions.

Example 8.1. Using the Character Types

CREATE TABLE testl (a character(4));
| NSERT | NTO test1 VALUES ('ok');

SELECT a, char_length(a) FROMtestl; --
a | char_length

______ I,

ok | 2

CREATE TABLE test2 (b varchar(5));

| NSERT | NTO test2 VALUES ('ok');

| NSERT | NTO test2 VALUES (' good ")

I NSERT I NTO test2 VALUES ('too long');

ERROR: value too long for type character varying(5)

I NSERT I NTO test2 VALUES ('too long' ::varchar(5)); -- explicit
truncation

SELECT b, char_length(b) FROMtest2;

b | char_length
_______ I,
ok | 2
good | 5
too | | 5

Thechar _| engt h function is discussed in Section 9.4.

There are two other fixed-length character types in PostgreSQL, shown in Table 8.5. The nane type
exists only for the storage of identifiersin the internal system catalogs and is not intended for use by the
general user. Its length is currently defined as 64 bytes (63 usable characters plus terminator) but should
be referenced using the constant NAMEDATALEN in C source code. The length is set at compile time (and
istherefore adjustable for special uses); the default maximum length might changein afuturerelease. The
type" char" (note the quotes) is different from char (1) in that it only uses one byte of storage. It is
internally used in the system catal ogs as a simplistic enumeration type.

Table 8.5. Special Character Types

Name Storage Size Description
"char" 1 byte single-byte internal type
nane 64 bytes internal type for object names

8.4. Binary Data Types

159

Data Types

8.4.1.

8.4.2.

The byt ea datatype allows storage of binary strings; see Table 8.6.

Table 8.6. Binary Data Types

Name Storage Size Description

byt ea 1 or 4 bytes plus the actual binary string variable-length binary string

A binary string is a sequence of octets (or bytes). Binary strings are distinguished from character strings
in two ways. First, binary strings specifically alow storing octets of value zero and other “non-printable”
octets (usually, octets outside the decimal range 32 to 126). Character stringsdisallow zero octets, and also
disallow any other octet values and sequences of octet values that are invalid according to the database's
selected character set encoding. Second, operations on binary strings process the actual bytes, whereas
the processing of character strings depends on locale settings. In short, binary strings are appropriate for
storing data that the programmer thinks of as “raw bytes’, whereas character strings are appropriate for
storing text.

The byt ea type supports two formats for input and output: “hex” format and PostgreSQL's historical
“escape”’ format. Both of these are always accepted on input. The output format depends on the configu-
ration parameter bytea output; the default is hex. (Note that the hex format was introduced in PostgreSQL
9.0; earlier versions and some tools don't understand it.)

The SQL standard defines adifferent binary string type, called BLOB or Bl NARY LARGE OBJECT. The
input format is different from byt ea, but the provided functions and operators are mostly the same.

byt ea Hex Format

The “hex” format encodes binary data as 2 hexadecimal digits per byte, most significant nibble first. The
entire string is preceded by the sequence\ x (to distinguish it from the escape format). In some contexts,
theinitial backslash may need to be escaped by doubling it (see Section 4.1.2.1). For input, the hexadecimal
digits can be either upper or lower case, and whitespace is permitted between digit pairs (but not within
adigit pair nor in the starting \ x sequence). The hex format is compatible with a wide range of externa
applications and protocols, and it tendsto befaster to convert than the escape format, soitsuseis preferred.

Example:

SELECT ' \ xDEADBEEF' ;

byt ea Escape Format

The “escape” format is the traditional PostgreSQL format for the byt ea type. It takes the approach of
representing a binary string as a sequence of ASCII characters, while converting those bytes that cannot
be represented as an ASCII character into special escape sequences. If, from the point of view of the
application, representing bytes as characters makes sense, then this representation can be convenient. But
in practiceit isusually confusing because it fuzzes up the distinction between binary strings and character
strings, and also the particular escape mechanism that was chosen is somewhat unwieldy. Therefore, this
format should probably be avoided for most new applications.

When entering byt ea values in escape format, octets of certain values must be escaped, while all octet
values can be escaped. In general, to escape an octet, convert it into itsthree-digit octal value and precedeit
by a backslash. Backslash itself (octet decimal value 92) can alternatively be represented by double back-
slashes. Table 8.7 shows the characters that must be escaped, and gives the alternative escape sequences
where applicable.

160

Data Types

Table8.7. byt ea Literal Escaped Octets

Decimal Octet Description Escaped I nput Example Hex Representa-
Value Representation tion

0 zero octet "\ 000’ "\ 000" :: bytea \ x00

39 single quote "tttoor'\047 ' i bytea \ x27

92 backslash "\\" or'\134" |"\\'::bytea \ x5c¢

0to 31 and 127 to |“non-printable’ "\ xxx"' (octa "\001'::bytea \ x01

255 octets value)

The requirement to escape non-printable octets varies depending on | ocal e settings. In some instances you
can get away with leaving them unescaped.

Thereason that single quotes must be doubled, asshownin Table 8.7, isthat thisistruefor any string literal
in an SQL command. The generic string-literal parser consumes the outermost single quotes and reduces
any pair of single quotes to one data character. What the byt ea input function sees is just one single
guote, which it treats as a plain data character. However, the byt ea input function treats backslashes as
special, and the other behaviors shown in Table 8.7 are implemented by that function.

In some contexts, backslashes must be doubled compared to what is shown above, because the generic
string-literal parser will also reduce pairs of backslashes to one data character; see Section 4.1.2.1.

Byt ea octets are output in hex format by default. If you change bytea output to escape, “non-print-
able” octets are converted to their equivalent three-digit octal value and preceded by one backslash. Most
“printable” octets are output by their standard representation in the client character set, e.g.:

SET bytea output = 'escape';

SELECT ' abc \ 153\ 154\ 155 \ 052\ 251\ 124" : : byt ea;
byt ea

abc klm *\251T

The octet with decimal value 92 (backslash) is doubled in the output. Details arein Table 8.8.

Table 8.8. byt ea Output Escaped Octets

Decimal Octet Description Escaped Output |Example Output Result

Value Representation

92 backslash \\ '\134"':: bytea \\

0to31and 127 to |“non-printable” |\ xxx (octal val- |'\ 001':: bytea \ 001

255 octets ue)

32to0 126 “printable” octets |client character set|' \ 176" : : byt ea ~
representation

Depending on the front end to PostgreSQL you use, you might have additional work to do in terms of es-
caping and unescaping byt ea strings. For example, you might also have to escape line feeds and carriage
returnsif your interface automatically trandates these.

8.5. Date/Time Types

161

Data Types

PostgreSQL supportsthefull set of SQL date and time types, shown in Table 8.9. The operations available
on these data types are described in Section 9.9. Dates are counted according to the Gregorian calendar,
even in years before that calendar was introduced (see Section B.6 for more information).

Table 8.9. Date/Time Types

Name Storage Size | Description Low Value High Value Resolution
timestanp |8bytes bothdateand [4713BC 294276 AD 1 microsecond
[(p)] time (no time
[with- Zone)
out tine
zone |
ti mestanp |8bytes both dateand [4713BC 294276 AD 1 microsecond
[(p)] time, with time
with tinme zone
zone
date 4 bytes date (no time of (4713 BC 5874897 AD 1day

day)
time 8 bytes time of day (no |00:00:00 24:00:00 1 microsecond
[(p)] date)
[with-
out time
zone |
tinme 12 bytes time of day (no |00:00:00+1559 |24:00:00-1559 |1 microsecond
[(p)] date), with time
with tine zone
zone
i nterval 16 bytes timeinterval -178000000 178000000 1 microsecond
[fields] years years
[(p)]

Note

The SQL standard requires that writing justt i nest anp beequivaenttoti mestanp wit h-
out time zone, and PostgreSQL honorsthat behavior. t i nest anpt z is accepted asan ab-
breviationforti nestanp with tinme zone;thisisaPostgreSQL extension.

time,tinestanp, andi nterval accept an optiona precision value p which specifies the number
of fractional digits retained in the seconds field. By default, there is no explicit bound on precision. The
allowed range of p isfrom 0 to 6.

Thei nt er val type has an additional option, which is to restrict the set of stored fields by writing one
of these phrases:

YEAR
MONTH
DAY
HOUR

M NUTE
SECOND

162

Data Types

8.5.1.

YEAR TO MONTH
DAY TO HOUR

DAY TO M NUTE
DAY TO SECOND
HOUR TO M NUTE
HOUR TO SECOND
M NUTE TO SECOND

Note that if both fi el ds and p are specified, the f i el ds must include SECOND, since the precision
applies only to the seconds.

Thetypetime with tine zone isdefined by the SQL standard, but the definition exhibits proper-
ties which lead to questionable usefulness. In most cases, a combination of dat e, ti ne, ti nest anp
without tine zone,andtinestanp with tinme zone should provide a complete range of
date/time functionality required by any application.

Date/Time Input

Date and time input is accepted in almost any reasonable format, including 1SO 8601, SQL-compatible,
traditional POSTGRES, and others. For some formats, ordering of day, month, and year in date input is
ambiguous and there is support for specifying the expected ordering of these fields. Set the DateStyle
parameter to MDY to select month-day-year interpretation, DMY to select day-month-year interpretation, or
YND to select year-month-day interpretation.

PostgreSQL is more flexible in handling date/time input than the SQL standard requires. See Appendix B
for the exact parsing rules of date/time input and for the recognized text fields including months, days of
the week, and time zones.

Remember that any date or time literal input needs to be enclosed in single quotes, like text strings. Refer
to Section 4.1.2.7 for more information. SQL requires the following syntax

type [(p)] "value

where p is an optional precision specification giving the number of fractional digitsin the seconds field.
Precision can be specified for ti e, ti mest anp, and i nt er val types, and can range from O to 6.
If no precision is specified in a constant specification, it defaults to the precision of the literal value (but
not more than 6 digits).

8.5.1.1. Dates

Table 8.10 shows some possible inputs for the dat e type.

Table 8.10. Date I nput

Example Description

1999-01-08 SO 8601; January 8 in any mode (recommended format)

January 8, 1999 unambiguousin any dat est yl e input mode

1/8/1999 January 8 in MDY mode; August 1 in DMY mode

1/18/1999 January 18 in MDY mode; rejected in other modes

01/02/03 January 2, 2003 in MDY mode; February 1, 2003 in DMY mode; Feb-
ruary 3, 2001 in YMD mode

1999-Jan-08 January 8 in any mode

163

Data Types

Example Description
Jan-08-1999 January 8 in any mode
08-Jan-1999 January 8 in any mode
99-Jan-08 January 8 in YMD mode, else error
08-Jan-99 January 8, except error in YMD mode
Jan-08-99 January 8, except error in YMD mode
19990108 1SO 8601; January 8, 1999 in any mode
990108 1SO 8601; January 8, 1999 in any mode
1999.008 year and day of year
J2451187 Julian date
January 8, 99 BC year 9 BC

8.5.1.2. Times

The time-of-day typesaretine [(p)] without tinme zoneandtine [(p)] wth
tinme zone.tinme doneisequivalenttoti me wi thout tine zone.

Validinput for these types consists of atime of day followed by an optional time zone. (See Table 8.11 and
Table8.12.) If atimezoneisspecifiedintheinputfort i me wi t hout ti nme zone,itisslentlyignored.
You can aso specify a date but it will be ignored, except when you use a time zone name that involves
a daylight-savings rule, such as Arrer i ca/ New_Yor K. In this case specifying the date is required in
order to determine whether standard or daylight-savings time applies. The appropriate time zone offset is

recordedinthetine with ti me zone vaue

Table8.11. Time Input

Example Description

04: 05: 06. 789 1SO 8601

04: 05: 06 ISO 8601

04: 05 SO 8601

040506 1SO 8601

04: 05 AM same as 04:05; AM does not affect val-
ue

04: 05 PM same as 16:05; input hour must be <= 12

04: 05: 06. 789-8

1SO 8601, with time zone as UTC offset

04: 05: 06- 08: 00

1SO 8601, with time zone as UTC offset

04: 05- 08: 00 1S0 8601, with time zone as UTC offset
040506- 08 1SO 8601, with time zone as UTC offset
040506+0730 1SO 8601, with fractional-hour time

zone as UTC offset

040506+07: 30: 00

UTC offset specified to seconds (not al-
lowed in 1SO 8601)

04: 05: 06 PST

time zone specified by abbreviation

2003- 04-12 04: 05: 06 Anerical/ New_York

time zone specified by full name

164

Data Types

Table8.12. Time Zone I nput

Example Description

PST Abbreviation (for Pacific Standard Time)

Arer i ca/ New_Yor k Full time zone name

PST8PDT POSI X -style time zone specification

-8:00: 00 UTC offset for PST

-8:00 UTC offset for PST (1SO 8601 extended format)
- 800 UTC offset for PST (1SO 8601 basic format)

-8 UTC offset for PST (1SO 8601 basic format)
zul u Military abbreviation for UTC

z Short form of zul u (also in 1SO 8601)

Refer to Section 8.5.3 for more information on how to specify time zones.

8.5.1.3. Time Stamps

Valid input for the time stamp types consists of the concatenation of a date and a time, followed by an
optional time zone, followed by an optional AD or BC. (Alternatively, AD/BC can appear before the time
zone, but thisis not the preferred ordering.) Thus:

1999-01- 08 04: 05: 06

and:

1999- 01-08 04:05:06 -8:00

are valid values, which follow the | SO 8601 standard. In addition, the common format:

January 8 04:05:06 1999 PST
is supported.

The SQL standard differentiatest i mest anp wi t hout time zoneandtinestanp with tine
zone literalsby the presence of a“+" or “-” symbol and time zone offset after the time. Hence, according
to the standard,

TI MESTAMP ' 2004-10-19 10: 23: 54'

isati nestanp wi thout tine zone,while

TI MESTAMP ' 2004- 10- 19 10: 23: 54+02'

isatimestanp with tine zone. PostgreSQL never examines the content of aliteral string before
determining itstype, and therefore will treat both of theaboveast i mest anp wi t hout ti ne zone.
Toensurethat aliteral istreated ast i mestanp with tinme zone, giveit the correct explicit type:

165

Data Types

TI MESTAMP WTH TI ME ZONE ' 2004-10-19 10: 23: 54+02'

In alitera that has been determined to bet i nest anp wi thout tine zone, PostgreSQL will
silently ignore any time zone indication. That is, the resulting value is derived from the date/time fields
in the input value, and is not adjusted for time zone.

Fortimestanp with tine zone, theinternally stored valueis alwaysin UTC (Universal Coor-
dinated Time, traditionally known as Greenwich Mean Time, GMT). An input value that has an explicit
time zone specified is converted to UTC using the appropriate offset for that time zone. If no time zone
is stated in the input string, then it is assumed to be in the time zone indicated by the system's TimeZone
parameter, and is converted to UTC using the offset for thet i nezone zone.

Whenati nestanp with ti me zone vaueisoutput, itisalwaysconverted from UTC to the current
ti mezone zone, and displayed as local time in that zone. To see the time in another time zone, either
changet i nezone or usethe AT Tl ME ZONE construct (see Section 9.9.4).

Conversions betweent i nestanp without tine zoneandtimestanp with tinme zone
normally assume that theti nestanp without tinme zone vaue should be taken or given as
t i mezone local time. A different time zone can be specified for the conversion using AT Tl ME ZONE.

8.5.1.4. Special Values

PostgreSQL supports several special date/time input values for convenience, as shown in Table 8.13. The
vauesinfinity and-infinity are specialy represented inside the system and will be displayed
unchanged; but the others are simply notational shorthands that will be converted to ordinary date/time
values when read. (In particular, now and related strings are converted to a specific time value as soon
asthey areread.) All of these values need to be enclosed in single quotes when used as constants in SQL
commands.

Table 8.13. Special Date/Time Inputs

Input String Valid Types Description

epoch dat e, ti nest anp 1970-01-01 00:00:00+00 (Unix
system time zero)

infinity date,ti mest anp later than all other time stamps

-infinity date,ti mest anp earlier than all other time stamps

now date,tinme,ti nestanp current transaction's start time

t oday dat e, ti nestanp midnight (00: 00) today

t onor r ow date,ti mest anp midnight (00: 00) tomorrow

yest er day date,ti mest anp midnight (00: 00) yesterday

all balls time 00:00:00.00 UTC

The following SQL -compatible functions can aso be used to obtain the current time value for the corre-
sponding data type: CURRENT _DATE, CURRENT_TI ME, CURRENT_TI MESTAMP, LOCALTI ME, LO-
CALTI MESTAMP. (See Section 9.9.5.) Note that these are SQL functions and are not recognized in data
input strings.

Caution

While theinput stringsnow, t oday, t onor r ow, and yest er day arefineto usein interactive
SQL commands, they can have surprising behavior when the command is saved to be executed

166

Data Types

later, for example in prepared statements, views, and function definitions. The string can be con-
verted to a specific time value that continues to be used long after it becomes stale. Use one of
the SQL functions instead in such contexts. For example, CURRENT_DATE + 1 is safer than
"tonorrow :: date.

8.5.2. Date/Time Output

The output format of the date/time types can be set to one of the four styles ISO 8601, SQL (Ingres),
traditional POSTGRES (Unix date format), or German. The default isthe 1SO format. (The SQL standard
requires the use of the ISO 8601 format. The name of the “SQL" output format is a historical accident.)
Table 8.14 shows examples of each output style. The output of the dat e and t i ne types is generally
only the date or time part in accordance with the given examples. However, the POSTGRES style outputs
date-only valuesin I SO format.

Table 8.14. Date/Time Output Styles

Style Specification Description Example

| SO SO 8601, SQL standard |[1997-12-17 07: 37: 16- 08

SQL traditiona style 12/17/1997 07:37:16.00 PST

Post gres original style Wed Dec 17 07:37:16 1997 PST

Ger man regional style 17.12.1997 07:37:16.00 PST
Note

I SO 8601 specifiesthe use of uppercase letter T to separate the date and time. PostgreSQL accepts
that format on input, but on output it uses a space rather than T, as shown above. This is for
readability and for consistency with RFC 3339' aswell as some other database systems.

In the SQL and POSTGRES styles, day appears before month if DMY field ordering has been specified,
otherwise month appears before day. (See Section 8.5.1 for how this setting also affects interpretation of
input values.) Table 8.15 shows examples.

Table 8.15. Date Order Conventions

dat est yl e Setting Input Ordering Example Output

SQL, Dw day/nont h/year 17/ 12/ 1997 15:37:16.00 CET
SQ., MY nont h/day/year 12/ 17/ 1997 07:37:16.00 PST
Post gres, DWY day/mont h/year Wed 17 Dec 07:37:16 1997 PST

In the ISO style, the time zone is always shown as a signed numeric offset from UTC, with positive sign
used for zones east of Greenwich. The offset will be shown as hh (hours only) if it is an integral number
of hours, else as hh:nrmif it is an integral number of minutes, else as hh:mmss. (The third case is not
possiblewith any modern time zone standard, but it can appear when working with timestampsthat predate
the adoption of standardized time zones.) In the other date styles, the time zone is shown as an al phabetic
abbreviation if one isin common use in the current zone. Otherwise it appears as a signed numeric offset
in 1SO 8601 basic format (hh or hhnm).

1 https://tools.ietf.org/html/rfc3339

167

https://tools.ietf.org/html/rfc3339
https://tools.ietf.org/html/rfc3339

Data Types

8.5.3.

The date/time style can be selected by the user using the SET dat est yl e command, the DateStyle
parameter in the post gr esql . conf configuration file, or the PGDATESTYLE environment variable
on the server or client.

The formatting function t o_char (see Section 9.8) is also available as a more flexible way to format
date/time outpuit.

Time Zones

Time zones, and time-zone conventions, are influenced by political decisions, not just earth geometry.
Time zones around the world became somewhat standardized during the 1900s, but continue to be prone
to arbitrary changes, particularly with respect to daylight-savings rules. PostgreSQL uses the widely-used
IANA (Olson) time zone database for information about historical time zonerules. For timesin the future,
the assumption isthat the latest known rulesfor agiven time zone will continue to be observed indefinitely
far into the future.

PostgreSQL endeavors to be compatible with the SQL standard definitions for typical usage. However,
the SQL standard has an odd mix of date and time types and capabilities. Two obvious problems are:

 Although the dat e type cannot have an associated time zone, thet i ne type can. Time zones in the
real world have little meaning unless associated with a date as well as atime, since the offset can vary
through the year with daylight-saving time boundaries.

» The default time zone is specified as a constant numeric offset from UTC. It is therefore impossible to
adapt to daylight-saving time when doing date/time arithmetic across DST boundaries.

To address these difficulties, we recommend using date/time types that contain both date and time when
using time zones. We do not recommend using thetypeti me wi t h ti me zone (thoughitissupported
by PostgreSQL for legacy applications and for compliance with the SQL standard). PostgreSQL assumes
your local time zone for any type containing only date or time.

All timezone-aware dates and times are stored internally in UTC. They are converted to local timein the
zone specified by the TimeZone configuration parameter before being displayed to the client.

PostgreSQL allows you to specify time zones in three different forms:

« A full time zone name, for example Aner i ca/ New_Yor k. The recognized time zone names are listed
inthepg_ti mezone_names view (see Section 52.94). PostgreSQL usesthewidely-used IANA time
zone data for this purpose, so the same time zone names are also recognized by other software.

» A time zone abbreviation, for example PST. Such a specification merely defines a particular offset
from UTC, in contrast to full time zone names which can imply a set of daylight savings transition
rulesaswell. The recognized abbreviationsarelistedinthepg_t i mezone_abbr evs view (see Sec-
tion 52.93). You cannot set the configuration parameters TimeZone or log_timezone to a time zone
abbreviation, but you can use abbreviations in date/time input values and with the AT TI ME ZONE
operator.

* In addition to the timezone names and abbreviations, PostgreSQL will accept POSIX-style time zone
specifications, as described in Section B.5. Thisoption isnot normally preferable to using anamed time
zone, but it may be necessary if no suitable IANA time zone entry is available.

In short, this is the difference between abbreviations and full names: abbreviations represent a specific
offset from UTC, whereas many of the full names imply alocal daylight-savings time rule, and so have
two possible UTC offsets. As an example, 2014- 06-04 12: 00 Ameri ca/ New_Yor k represents
noon local time in New York, which for this particular date was Eastern Daylight Time (UTC-4). So

168

Data Types

8.5.4.

2014-06- 04 12: 00 EDT specifiesthat sametimeinstant. But 2014- 06- 04 12: 00 EST specifies
noon Eastern Standard Time (UTC-5), regardless of whether daylight savings was nominally in effect on
that date.

To complicate matters, some jurisdictions have used the same timezone abbreviation to mean different
UTC offsets at different times; for example, in Moscow MSK has meant UTC+3 in some years and UTC
+4 in others. PostgreSQL interprets such abbreviations according to whatever they meant (or had most
recently meant) on the specified date; but, aswith the EST example above, thisis not necessarily the same
aslocal civil time on that date.

In al cases, timezone names and abbreviations are recognized case-insensitively. (Thisis a change from
PostgreSQL versions prior to 8.2, which were case-sensitive in some contexts but not others.)

Neither timezone names nor abbreviations are hard-wired into the server; they are obtained from configu-
rationfilesstoredunder . . . / share/ti mezone/ and.../share/ti nezoneset s/ of theinstal-
lation directory (see Section B.4).

The TimeZone configuration parameter can be set inthefilepost gr esql . conf, or in any of the other
standard ways described in Chapter 20. There are also some special waysto set it:

» The SQL command SET Tl ME ZONE setsthetime zonefor the session. Thisisan alternative spelling
of SET TI MEZONE TOwith amore SQL -spec-compatible syntax.

» The PGTZ environment variableis used by libpg clientsto send aSET Tl ME ZONE command to the
server upon connection.

Interval Input

i nt erval valuescan bewritten using the following verbose syntax:

[@ quantity unit [quantity unit...] [direction]

where quant i t y isanumber (possibly signed); uni t ism crosecond, m | | i second, second,
m nut e, hour, day, week, nont h, year, decade, century, m | | enni um or abbreviations or
plurals of these units; di r ect i on canbeago or empty. Theat sign (@ isoptional noise. The amounts of
the different units are implicitly added with appropriate sign accounting. ago negates all the fields. This
syntax is also used for interval output, if IntervalStyleisset to post gr es_ver bose.

Quantities of days, hours, minutes, and seconds can be specified without explicit unit markings. For ex-
ample," 1 12:59: 10" isreadthesameas'1l day 12 hours 59 nin 10 sec'.Also a
combination of years and months can be specified with a dash; for example' 200- 10" isread the same
as' 200 years 10 nont hs'. (These shorter forms are in fact the only ones allowed by the SQL
standard, and are used for output when | nt er val Styl e issettosql _st andar d.)

Interval values can also be written as SO 8601 time intervals, using either the “format with designators’
of the standard's section 4.4.3.2 or the “ alternative format” of section 4.4.3.3. The format with designators
looks like this:

P quantity unit [quantity unit ...] [T [quantity unit ...]]

The string must start with a P, and may include a T that introduces the time-of-day units. The available
unit abbreviations are given in Table 8.16. Units may be omitted, and may be specified in any order, but
units smaller than a day must appear after T. In particular, the meaning of Mdepends on whether it is
before or after T.

169

Data Types

Table 8.16. 1 SO 8601 Interval Unit Abbreviations

Abbreviation M eaning

Years

Months (in the date part)
Weeks

Days

Hours

Minutes (in the time part)
Seconds

nlz[z[ols[=z]<

In the alternative format:

P [years-nonths-days] [T hours:m nutes:seconds]

the string must begin with P, and a T separates the date and time parts of theinterval. The values are given
as numbers similar to 1SO 8601 dates.

When writing an interval constant with af i el ds specification, or when assigning a string to an interval
column that was defined with af i el ds specification, the interpretation of unmarked quantities depends
onthefi el ds. For example | NTERVAL '1' YEARisread as1 year, whereas | NTERVAL ' 1
means 1 second. Also, field values “to the right” of the least significant field allowed by the fi el ds
specification are silently discarded. For example, writing | NTERVAL ' 1 day 2:03: 04" HOUR TO
M NUTE results in dropping the seconds field, but not the day field.

According tothe SQL standard all fields of an interval value must have the same sign, so aleading negative
sign applies to al fields; for example the negative sign in the interval literal ' - 1 2: 03: 04" applies
to both the days and hour/minute/second parts. PostgreSQL allows the fields to have different signs, and
traditionally treats each field in the textual representation asindependently signed, so that the hour/minute/
second part is considered positive in thisexample. If | nt er val Styl e issettosql _st andar d then
aleading sign is considered to apply to al fields (but only if no additional signs appear). Otherwise the
traditional PostgreSQL interpretation is used. To avoid ambiguity, it's recommended to attach an explicit
signto each field if any field is negative.

Field values can have fractional parts: for example, ' 1. 5 weeks' or' 01: 02: 03. 45' . However,
because interval internally stores only three integer units (months, days, microseconds), fractional units
must be spilled to smaller units. Fractional parts of units greater than months are truncated to be an integer
number of months, e.g.' 1.5 years' becomes' 1 year 6 nons'. Fractiona parts of weeks and
days are computed to be an integer number of days and microseconds, assuming 30 days per month and
24 hours per day, e.g.,' 1. 75 nont hs' becomesl nmon 22 days 12: 00: 00. Only seconds will
ever be shown as fractional on output.

Table 8.17 shows some examples of valid i nt er val input.

Table8.17. Interval Input

Example Description

1-2 SQL standard format: 1 year 2 months

3 4:05:06 SQL standard format: 3 days 4 hours 5 minutes 6
seconds

170

Data Types

8.5.5.

Example Description

1 year 2 nmonths 3 days 4 hours 5 Traditional Postgresformat: 1 year 2 months 3

m nutes 6 seconds days 4 hours 5 minutes 6 seconds

P1Y2M3DT4HS5MES SO 8601 “format with designators’: same mean-
ing as above

PO001- 02- 03T04: 05: 06 ISO 8601 “alternative format”: same meaning as
above

Internally i nt er val values are stored as months, days, and microseconds. This is done because the
number of daysin amonth varies, and aday can have 23 or 25 hoursif adaylight savings time adjustment
is involved. The months and days fields are integers while the microseconds field can store fractional
seconds. Because intervals are usually created from constant strings or t i mest anp subtraction, this
storage method works well in most cases, but can cause unexpected results:

SELECT EXTRACT(hours from'80 mnutes'::interval);
date_part

SELECT EXTRACT(days from'80 hours'::interval);
date_part

Functionsj usti fy_days andj usti fy_hour s areavailablefor adjusting days and hours that over-
flow their normal ranges.

Interval Output

The output format of the interval type can be set to one of the four stylessql _st andar d, post gr es,
post gres_verbose,ori so_8601, using thecommand SET i nt er val styl e. Thedefault isthe
post gr es format. Table 8.18 shows examples of each output style.

Thesql _st andar d style produces output that conformsto the SQL standard's specification for interval
literal strings, if the interval value meets the standard's restrictions (either year-month only or day-time
only, with no mixing of positive and negative components). Otherwise the output looks like a standard
year-month literal string followed by a day-time literal string, with explicit signs added to disambiguate
mixed-sign intervals.

The output of the post gr es style matches the output of PostgreSQL releases prior to 8.4 when the
DateStyle parameter was set to | SO

The output of the post gr es_ver bose style matches the output of PostgreSQL releases prior to 8.4
when the Dat eSt y| e parameter was set to non-I SO output.

The output of thei so_8601 style matches the “format with designators’ described in section 4.4.3.2 of
the 1SO 8601 standard.

Table 8.18. Interval Output Style Examples

Style Specification Year-Month Interval |Day-TimelInterval Mixed Interval
sql _standard 1-2 3 4:05:06 -1-2 +3-4:05:06

171

Data Types

Style Specification Year-Month Interval |Day-Time Interval Mixed Interval

post gres 1 year 2 mons 3 days 04:05:06 -1 year -2 mons +3 days
-04.05:06

post gres_verbose |@ 1year 2mons @ 3 days4 hours5 mins | @ 1 year 2 mons -3 days

6 secs 4 hours 5 mins 6 secs

ago

i so_8601 P1Y2M P3DT4H5M6S P-1Y-2M3D
T-4H-5M-6S

8.6. Boolean Type

PostgreSQL provides the standard SQL type bool ean; see Table 8.19. The bool ean type can have
severa states: “true”, “false”, and athird state, “ unknown”, which is represented by the SQL null value.

Table 8.19. Boolean Data Type

Name Storage Size Description
bool ean 1 byte state of true or false

Boolean constants can be represented in SQL queries by the SQL key words TRUE, FALSE, and NULL.
The datatype input function for type bool ean accepts these string representations for the “true” state:

true
yes
on

1

and these representations for the “false” state:

fal se
no

of f

0

Unique prefixes of these strings are also accepted, for examplet or n. Leading or trailing whitespace is
ignored, and case does not matter.

The datatype output function for type bool ean aways emitseithert or f , as shown in Example 8.2.

Example 8.2. Using the bool ean Type

CREATE TABLE testl (a bool ean, b text);

| NSERT | NTO test1l VALUES (TRUE, 'sic est');
| NSERT | NTO test1 VALUES (FALSE, 'non est');
SELECT * FROM test1;

a | b

t | sic est
f | non est

SELECT * FROM test1l WHERE a;

172

Data Types

a | b
t | sic est

Thekey words TRUE and FAL SE arethe preferred (SQL -compliant) method for writing Boolean constants
in SQL queries. But you can also use the string representations by following the generic string-literal
constant syntax described in Section 4.1.2.7, for example' yes' : : bool ean.

Note that the parser automatically understands that TRUE and FALSE are of type bool ean, but thisis
not so for NULL because that can have any type. So in some contexts you might have to cast NULL to
bool ean explicitly, for example NULL: : bool ean. Conversely, the cast can be omitted from a string-
literal Boolean value in contexts where the parser can deduce that the literal must be of type bool ean.

8.7. Enumerated Types

8.7.1.

8.7.2.

Enumerated (enum) types are data types that comprise a static, ordered set of values. They are equivalent
to the enumtypes supported in a number of programming languages. An example of an enum type might
be the days of the week, or a set of status values for a piece of data.

Declaration of Enumerated Types

Enum types are created using the CREATE TY PE command, for example:

CREATE TYPE mobod AS ENUM ('sad', 'ok', 'happy');

Once created, the enum type can be used in table and function definitions much like any other type:

CREATE TYPE npod AS ENUM ('sad', 'ok', 'happy');
CREATE TABLE person (
name text,
current _nmood nood
);
| NSERT | NTO person VALUES (' Moe', 'happy');
SELECT * FROM person WHERE current_nood = ' happy';
name | current_nood

______ e,
Moe | happy

(1 row

Ordering

The ordering of the values in an enum type is the order in which the values were listed when the type
was created. All standard comparison operators and related aggregate functions are supported for enums.
For example:

| NSERT | NTO person VALUES ('Larry', 'sad');

| NSERT | NTO person VALUES (' Curly', 'ok');

SELECT * FROM person WHERE current _nood > 'sad';
nane | current_nood

173

Data Types

8.7.3.

8.7.4.

Curly | ok
(2 rows)

SELECT * FROM person WHERE current _nood > 'sad' ORDER BY current_npod;
nane | current_nood

SELECT nane

FROM per son

WHERE current _mpood = (SELECT M N(current_nood) FROM person);
name

Type Safety

Each enumerated data type is separate and cannot be compared with other enumerated types. See this
example:

CREATE TYPE happi ness AS ENUM (' happy', 'very happy', 'ecstatic');
CREATE TABLE hol i days (

num weeks i nteger,

happi ness happi ness
)
I NSERT | NTO hol i days(nhum weeks, happi ness) VALUES (4, 'happy');
I NSERT | NTO hol i days(num weeks, happi ness) VALUES (6, 'very happy');
| NSERT | NTO hol i days(nhum weeks, happi ness) VALUES (8, 'ecstatic');
I NSERT | NTO hol i days(nhum weeks, happi ness) VALUES (2, 'sad');
ERROR: invalid input value for enum happi ness: "sad"
SELECT person. nane, hol i days. num weeks FROM person, holidays

WHERE per son. current _nood = hol i days. happi ness;

ERROR: operator does not exist: npod = happi ness

If you really need to do something like that, you can either write a custom operator or add explicit casts
to your query:

SELECT person. nane, holidays. num weeks FROM person, holidays
WHERE person. current _nood: :text = holidays. happi ness: :text;
name | num weeks

Implementation Details

Enum labels are case sensitive, so ' happy' isnot the same as' HAPPY' . White space in the labels is
significant too.

174

Data Types

Although enum typesare primarily intended for static sets of values, thereis support for adding new values
to an existing enum type, and for renaming values (see ALTER TY PE). Existing values cannot be removed
from an enum type, nor can the sort ordering of such values be changed, short of dropping and re-creating
the enum type.

An enum value occupies four bytes on disk. The length of an enum value's textual label islimited by the
NANMEDATALEN setting compiled into PostgreSQL ; in standard builds this means at most 63 bytes.

The trangdlations from internal enum values to textual labels are kept in the system catalog pg_enum
Querying this catalog directly can be useful.

8.8. Geometric Types

8.8.1.

8.8.2.

Geometric data types represent two-dimensional spatial objects. Table 8.20 shows the geometric types
available in PostgreSQL.

Table 8.20. Geometric Types

Name Storage Size Description Representation

poi nt 16 bytes Point on a plane x,y)

line 32 bytes Infinite line {A,B,C}

| seg 32 bytes Finite line segment ((x1,yD),(x2,y2))

box 32 bytes Rectangular box ((x1,y1),(x2,y2))

pat h 16+16n bytes Closed path (similar to polygon) ((x1yD),...)

pat h 16+16n bytes Open path [(x1yl),..]

pol ygon 40+16n bytes Polygon (similar to closed path) ((x1yD),...)

circle 24 bytes Circle <(x,y),r> (center
point and radius)

A rich set of functions and operatorsis available to perform various geometric operations such as scaling,
tranglation, rotation, and determining intersections. They are explained in Section 9.11.

Points

Points are the fundamental two-dimensional building block for geometric types. Values of type poi nt
are specified using either of the following syntaxes:

(x,vy)
X,y

where x and y are the respective coordinates, as floating-point numbers.

Points are output using the first syntax.

Lines

Lines are represented by the linear equation Ax + By + C =0, where A and B are not both zero. Values of
typel i ne areinput and output in the following form:

175

Data Types

8.8.3.

8.8.4.

8.8.5.

{ A B C}

Alternatively, any of the following forms can be used for input:

x1, yl) , (x2,
x1, yl) , (x2,
x1, yl) , (x2,
x1, yl , X2 ,

—~~r—
—~ A~~~
<K<K <K<
NNDNDN
— — —
— —

where (x1, y1) and (x2, y2) aretwo different points on theline.

Line Segments

Line segments are represented by pairs of points that are the endpoints of the segment. Values of type
| seg are specified using any of the following syntaxes:

[(x1, y1l) , (x2,y2)]
((x1, y1) , (x2,vy2))
(x1, y1) , (x2, y2)
x1, yl , X2 , y2

where (x1, y1) and (x2, y2) arethe end points of the line segment.

Line segments are output using the first syntax.

Boxes

Boxes are represented by pairs of points that are opposite corners of the box. Values of type box are
specified using any of the following syntaxes:

((x1, yl), (x2,vy2))
(x1, yl) , (x2,vy2)
x1, yl X2, y2

where (x1, y1) and (x2, y2) areany two opposite corners of the box.
Boxes are output using the second syntax.

Any two opposite corners can be supplied on input, but the values will be reordered as needed to store the
upper right and lower left corners, in that order.

Paths

Paths are represented by lists of connected points. Paths can be open, where the first and last pointsin the
list are considered not connected, or closed, where the first and last points are considered connected.

Values of type pat h are specified using any of the following syntaxes:

[(x2, y1), ..., (xn, yn)]
((x¥1,vy1), ... , (xn, yn))
(x1, y1), ... , (xn, yn)
(x1, y1 Xn , yn)

176

Data Types

8.8.6.

8.8.7.

x1, yl s Xn , yn

where the points are the end points of the line segments comprising the path. Square brackets ([]) indicate
an open path, while parentheses (()) indicate aclosed path. When the outermost parentheses are omitted,
asin the third through fifth syntaxes, a closed path is assumed.

Paths are output using the first or second syntax, as appropriate.

Polygons

Polygons are represented by lists of points (the vertexes of the polygon). Polygons are very similar to
closed paths, but are stored differently and have their own set of support routines.

Values of type pol ygon are specified using any of the following syntaxes:

((x¥1,vy1), ... , (xn, yn))
(x1, y1), ... , (xn, yn)
(x1, y1 s e Xn , yn)
x1, yl y e Xn , yn

where the points are the end points of the line segments comprising the boundary of the polygon.

Polygons are output using the first syntax.

Circles

Circles are represented by a center point and radius. Values of type ci r cl e are specified using any of
the following syntaxes:

—~ A

—~ A~~~

~— — —

X X X X
KKK
_~ = = =

where (X, y) isthe center point and r isthe radius of the circle.

Circles are output using the first syntax.

8.9. Network Address Types

PostgreSQL offers data typesto store IPv4, IPv6, and MAC addresses, as shown in Table 8.21. It is better
to use these types instead of plain text types to store network addresses, because these types offer input
error checking and specialized operators and functions (see Section 9.12).

Table 8.21. Network Address Types

Name Storage Size Description

cidr 7 or 19 bytes IPv4 and IPv6 networks

i net 7 or 19 bytes IPv4 and IPv6 hosts and networks
macaddr 6 bytes MAC addresses

macaddr 8 8 bytes MAC addresses (EUI-64 format)

177

Data Types

8.9.1.

8.9.2.

When sortingi net orci dr datatypes, |Pv4 addresseswill always sort before | Pv6 addresses, including
I Pv4 addresses encapsul ated or mapped to |Pv6 addresses, such as ::10.2.3.4 or ::ffff:10.4.3.2.

| net

Thei net typeholdsan IPv4 or IPv6 host address, and optionally its subnet, al in one field. The subnet
is represented by the number of network address bits present in the host address (the “netmask”). If the
netmask is 32 and the addressis |1 Pv4, then the value does not indicate a subnet, only asingle host. In 1Pv6,
the address length is 128 bits, so 128 bits specify a unique host address. Note that if you want to accept
only networks, you should usethe ci dr typerather thani net .

The input format for thistype isaddr ess/ y where addr ess isan IPv4 or IPv6 address and y is the
number of bitsin the netmask. If the/ y portion is omitted, the netmask is taken to be 32 for IPv4 or 128
for IPv6, so the value representsjust asingle host. On display, the/ y portion is suppressed if the netmask
specifies asingle host.

ci dr

Theci dr typeholdsan IPv4 or IPv6 network specification. Input and output formatsfollow ClasslessIn-
ternet Domain Routing conventions. Theformat for specifying networksisaddr ess/ y whereaddr ess
is the network'’s lowest address represented as an |Pv4 or 1Pv6 address, and y is the number of bitsin the
netmask. If y is omitted, it is calculated using assumptions from the older classful network numbering
system, except it will be at least large enough to include all of the octets written in the input. It isan error
to specify anetwork address that has bits set to the right of the specified netmask.

Table 8.22 shows some examples.

Table8.22. ci dr TypeInput Examples

ci dr Input ci dr Output abbrev(cidr)
192.168.100.128/25 192.168.100.128/25 192.168.100.128/25
192.168/24 192.168.0.0/24 192.168.0/24
192.168/25 192.168.0.0/25 192.168.0.0/25
192.168.1 192.168.1.0/24 192.168.1/24
192.168 192.168.0.0/24 192.168.0/24

128.1 128.1.0.0/16 128.1/16

128 128.0.0.0/16 128.0/16

128.1.2 128.1.2.0/24 128.1.2/24

10.1.2 10.1.2.0/24 10.1.2/24

10.1 10.1.0.0/16 10.1/16

10 10.0.0.0/8 10/8

10.1.2.3/32 10.1.2.3/32 10.1.2.3/32
2001:4f8:3:ba::/64 2001:4f8:3:ba::/64 2001:4f8:3:ba/64
2001:4f8:3:ba:2€0:81f- 2001.:4f8:3:ba:2€0:81f- 2001.:4f8:3:ba: 2e0:81f-
f.fe22:d1f1/128 f:fe22:d1f1/128 f:fe22:d1f1/128
::ffff:1.2.3.0/120 ::ffff:1.2.3.0/120 ::ffff:1.2.3/120
.offff:1.2.3.0/128 .:ffff:1.2.3.0/128 .offff:1.2.3.0/128

178

Data Types

8.9.3.

8.9.4.

8.9.5.

| net vs. ci dr

The essential difference between i net and ci dr datatypesisthat i net accepts values with nonzero
bits to the right of the netmask, whereas ci dr does not. For example, 192. 168. 0. 1/ 24 isvalid for
i net but not for ci dr.

Tip
If you do not like the output format for i net or ci dr values, try the functions host , t ext ,
and abbr ev.
macaddr

The macaddr type stores MAC addresses, known for example from Ethernet card hardware addresses
(although MAC addresses are used for other purposes aswell). Input is accepted in the following formats:

' 08: 00: 2b: 01: 02: 03
' 08- 00- 2b- 01- 02- 03
' 08002b: 010203

' 08002b- 010203

' 0800. 2b01. 0203

' 0800- 2b01- 0203

' 08002b010203'

These examples all specify the same address. Upper and lower case is accepted for the digits a through
f . Output is always in the first of the forms shown.

IEEE Std 802-2001 specifies the second shown form (with hyphens) as the canonical form for MAC
addresses, and specifiesthefirst form (with colons) asthe bit-reversed notation, so that 08-00-2b-01-02-03
= 01:00:4D:08:04:0C. This convention is widely ignored nowadays, and it is relevant only for obsolete
network protocols (such as Token Ring). PostgreSQL makesno provisionsfor bit reversal, and all accepted
formats use the canonical LSB order.

The remaining five input formats are not part of any standard.

macaddr 8

The nacaddr 8 type stores MAC addresses in EUI-64 format, known for example from Ethernet card
hardware addresses (although MAC addresses are used for other purposes as well). This type can accept
both 6 and 8 byte length MAC addresses and storesthemin 8 bytelength format. MAC addressesgivenin 6
byte format will be stored in 8 byte length format with the 4th and 5th bytes set to FF and FE, respectively.
Note that I1Pv6 uses a modified EUI-64 format where the 7th bit should be set to one after the conversion
from EUI-48. Thefunction macaddr 8_set 7bi t isprovided to make this change. Generally speaking,
any input which is comprised of pairs of hex digits (on byte boundaries), optionally separated consistently
by oneof ':',"'-" or'."',isaccepted. The number of hex digits must be either 16 (8 bytes) or 12 (6
bytes). Leading and trailing whitespace is ignored. The following are examples of input formats that are
accepted:

' 08: 00: 2b: 01: 02: 03: 04: 05'
' 08- 00- 2b- 01- 02- 03- 04- 05'
' 08002b: 0102030405'
' 08002b- 0102030405"

179

Data Types

8.10

' 0800. 2b01. 0203. 0405’
' 0800- 2b01- 0203- 0405’
' 08002b01: 02030405'

' 08002b0102030405'

These examples all specify the same address. Upper and lower case is accepted for the digits a through
f . Output is always in the first of the forms shown.

Thelast six input formats shown above are not part of any standard.

To convert atraditional 48 bit MAC address in EUI-48 format to modified EUI-64 format to be included
as the host portion of an IPv6 address, use macaddr 8_set 7bi t as shown:

SELECT nacaddr 8_set 7bi t (' 08: 00: 2b: 01: 02: 03") ;

macaddr 8_set 7bi t

Oa: 00: 2b: ff:fe: 01:02: 03
(1 row

Bit String Types

Bit strings are strings of 1'sand 0's. They can be used to store or visualize bit masks. There are two SQL
bit types: bi t (n) andbit varyi ng(n),wheren isapositiveinteger.

bi t type data must match the length n exactly; it is an error to attempt to store shorter or longer bit
strings. bit varyi ng datais of variable length up to the maximum length n; longer strings will be
rejected. Writing bi t without alengthisequivalenttobi t (1) , whilebi t varyi ng without alength
specification means unlimited length.

Note

If one explicitly castsabit-string valueto bi t (n) , it will betruncated or zero-padded on theright
to be exactly n bits, without raising an error. Similarly, if one explicitly casts a bit-string value to
bit wvaryi ng(n),itwill betruncated ontheright if it ismore than n bits.

Refer to Section 4.1.2.5 for information about the syntax of bit string constants. Bit-logical operators and
string manipulation functions are available; see Section 9.6.

Example 8.3. Using the Bit String Types

CREATE TABLE test (a BIT(3), b BIT VARYING5));
| NSERT | NTO test VALUES (B 101', B 00');
| NSERT | NTO test VALUES (B 10', B 101');

ERROR: bit string length 2 does not match type bit(3)

I NSERT | NTO test VALUES (B 10'::bit(3), B 101');
SELECT * FROM test;

180

Data Types

a | b
_____ Fe e - - -
101 | 00
100 | 101

A hit string value requires 1 byte for each group of 8 bits, plus 5 or 8 bytes overhead depending on the
length of the string (but long values may be compressed or moved out-of-line, as explained in Section 8.3
for character strings).

8.11. Text Search Types

PostgreSQL provides two data types that are designed to support full text search, which is the activity of
searching through a collection of natural-language documents to locate those that best match aquery. The
t svect or type represents adocument in aform optimized for text search; thet squer y type similarly
represents a text query. Chapter 12 provides a detailed explanation of this facility, and Section 9.13 sum-
marizes the related functions and operators.

8.11.1.t svect or

A tsvect or vaueisasorted list of distinct lexemes, which are words that have been normalized to
merge different variants of the same word (see Chapter 12 for details). Sorting and duplicate-elimination
are done automatically during input, as shown in this example:

SELECT 'a fat cat sat on a mat and ate a fat rat'::tsvector;
t svect or

To represent lexemes containing whitespace or punctuation, surround them with quotes:

SELECT $$the | exene ' ' contains spaces$$::tsvector;
t svect or

‘contains' 'lexene' 'spaces' 'the'

(We use dollar-quoted string literals in this example and the next one to avoid the confusion of having to
double quote marks within the literals.) Embedded quotes and backslashes must be doubled:

SELECT $$the lexene 'Joe''s' contains a quote$$::tsvector;
t svect or

a' 'contains' 'lexeme' 'quote' 'the'

Optionally, integer positions can be attached to lexemes:

SELECT 'a:1 fat:2 cat:3 sat:4 on:5 a:6 mat:7 and: 8 ate: 9 a: 10 fat: 11
rat:12'::tsvector;
t svect or

181

Data Types

'a':1,6,10 'and':8 'ate':9 'cat':3 '"fat':2,11 'mat':7 'on':5 'rat':12
'sat': 4

A position normally indicates the source word's location in the document. Positional information can be
used for proximity ranking. Position values can range from 1 to 16383; larger numbers are silently set to
16383. Duplicate positions for the same lexeme are discarded.

Lexemes that have positions can further be labeled with a weight, which can be A, B, C, or D. Dis the
default and hence is not shown on outpult:

SELECT " a: 1A fat:2B,4C cat: 5D ::tsvector;
t svect or

Weights are typically used to reflect document structure, for example by marking title words differently
from body words. Text search ranking functions can assign different priorities to the different weight
markers.

It isimportant to understand that thet svect or typeitself does not perform any word normalization; it
assumes the wordsiit is given are normalized appropriately for the application. For example,

SELECT ' The Fat Rats'::tsvector;
t svect or

"Fat' 'Rats' ' The'

For most English-text-searching applications the above words would be considered non-normalized, but
t svect or doesn't care. Raw document text should usually be passed throught o_t svect or to nor-
malize the words appropriately for searching:

SELECT to_tsvector('english', 'The Fat Rats');
to_tsvector

Again, see Chapter 12 for more detail.

8.11.2. t squery

A t squer y value stores lexemes that are to be searched for, and can combine them using the Boolean
operators & (AND), | (OR),and! (NOT), aswell asthe phrase search operator <- > (FOLLOWED BY).
Thereisalso avariant <N> of the FOLLOWED BY operator, where Nis an integer constant that specifies
the distance between the two lexemes being searched for. <- > isequivalent to <1>.

Parentheses can be used to enforce grouping of these operators. In the absence of parentheses, ! (NOT)
binds most tightly, <- > (FOLLOWED BY) next most tightly, then & (AND), with | (OR) binding the
least tightly.

Here are some examples:

SELECT 'fat & rat'::tsquery;

182

Data Types

tsquery

SELECT 'fat & (rat | cat)'::tsquery;
tsquery

SELECT 'fat & rat & ! cat'::tsquery;
t squery

Optionally, lexemesin at squery can be labeled with one or more weight letters, which restricts them
to match only t svect or lexemes with one of those weights:

SELECT 'fat:ab & cat'::tsquery;
tsquery

"fat': AB & 'cat’

Also, lexemesin at squery can be labeled with * to specify prefix matching:

SELECT ' super:*'::tsquery;
t squery

This query will match any wordinat svect or that begins with “super”.

Quoting rules for lexemes are the same as described previously for lexemesint svect or ; and, as with
t svect or, any required normalization of words must be done before converting to thet squer y type.
Thet o_t squery function is convenient for performing such normalization:

SELECT to_tsquery('Fat:ab & Cats');
to_tsquery

"fat': AB & 'cat'
Notethatt o_t squer y will process prefixes in the same way as other words, which means this compar-
ison returns true:

SELECT to_tsvector('postgraduate') @@to_tsquery('postgres:*');
?col um?

because post gr es gets stemmed to post gr :

SELECT to_tsvector('postgraduate’), to_tsquery('postgres:*');

183

Data Types

to_tsvector | to_tsquery
'postgradu’':1 | 'postgr':*

which will match the stemmed form of post gr aduat e.

UUID Type

The data type uui d stores Universally Unique Identifiers (UUID) as defined by RFC 4122%, 1SOIIEC
9834-8:2005, and related standards. (Some systems refer to this data type as a globally unique identifier,
or GUID, instead.) This identifier is a 128-bit quantity that is generated by an algorithm chosen to make
it very unlikely that the same identifier will be generated by anyone else in the known universe using the
same algorithm. Therefore, for distributed systems, these identifiers provide a better uniqueness guarantee
than sequence generators, which are only unique within a single database.

8.12

A UUID iswritten asaseguence of lower-case hexadecimal digits, in several groups separated by hyphens,
specifically agroup of 8 digits followed by three groups of 4 digits followed by agroup of 12 digits, for a
total of 32 digits representing the 128 bits. An example of aUUID in this standard formiis:

aleebc99- 9c0b- 4ef 8- bb6d- 6bb9bd380all

PostgreSQL also accepts the following alternative forms for input: use of upper-case digits, the standard
format surrounded by braces, omitting some or all hyphens, adding ahyphen after any group of four digits.
Examples are:

AOEEBC99- 9C0B- 4EF8- BB6D- 6BB9BD380A11
{a0eebc99- 9cOb- 4ef 8- bb6d- 6bb9bd380all}
a0eebc999cOb4ef 8bb6d6bb9bd380all

alee- bc99- 9cOb- 4ef 8- bb6d- 6bb9- bd38- 0all
{a0eebc99- 9cOb4ef 8- bh6d6bb9- bd380all}

Output is always in the standard form.

See Section 9.14 for how to generate a UUID in PostgreSQL.

8.13. XML Type

Thexm datatype can be used to store XML data. Its advantage over storing XML datainat ext field
isthat it checkstheinput values for well-formedness, and there are support functionsto perform type-safe
operations on it; see Section 9.15. Use of this data type requires the installation to have been built with
configure --with-1ibxm .

Thexm type can store well-formed “documents’, as defined by the XML standard, as well as“ content”
fragments, which are defined by reference to the more permissive “document node’3 of the XQuery and
XPath datamodel. Roughly, this meansthat content fragments can have more than onetop-level element or
character node. The expression xmi val ue |'S DOCUMENT can be used to evaluate whether a particular
xm valueisafull document or only a content fragment.

Limits and compatibility notes for the xm datatype can be found in Section D.3.

2 https://tools.ietf.org/html/rfc4122
s https://www.w3.0rg/TR/2010/REC-xpath-datamodel -20101214/#DocumentNode

184

https://tools.ietf.org/html/rfc4122
https://www.w3.org/TR/2010/REC-xpath-datamodel-20101214/#DocumentNode
https://tools.ietf.org/html/rfc4122
https://www.w3.org/TR/2010/REC-xpath-datamodel-20101214/#DocumentNode

Data Types

8.13.1. Creating XML Values

To produce avalue of type xml from character data, use the function xi par se:

XMLPARSE ({ DOCUMENT | CONTENT } val ue)
Examples:
XMLPARSE (DOCUMENT ' <?xm version="1. 0" ?><book><tit| e>Manual </

titl e><chapter>...</chapter></book>")
XMLPARSE (CONTENT ' abc<f oo>bar </ f oo><bar >f oo</ bar >')

While this is the only way to convert character strings into XML values according to the SQL standard,
the PostgreSQL -specific syntaxes:

xm ' <f oo>bar </ f 00>'

' <f oo>bar </ foo>":: xm

can also be used.

Thexm type does not validate input values against a document type declaration (DTD), even when the
input value specifiesa DTD. There is also currently no built-in support for validating against other XML
schema languages such as XML Schema.

Theinverse operation, producing a character string value from xmi , usesthe functionxmnl seri al i ze:

XMLSERI ALI ZE ({ DOCUMENT | CONTENT } val ue AS type)

t ype can be char act er, character varying, ortext (or an alias for one of those). Again,
according to the SQL standard, thisisthe only way to convert between type xm and character types, but
PostgreSQL also allows you to simply cast the value.

When a character string value is cast to or from type xml without going through XM_LPARSE or XM
LSERI ALI ZE, respectively, the choice of DOCUMENT versus CONTENT is determined by the“XML op-
tion” session configuration parameter, which can be set using the standard command:

SET XML OPTION { DOCUMENT | CONTENT };

or the more PostgreSQL -like syntax

SET xm option TO { DOCUMENT | CONTENT };

The default is CONTENT, so all forms of XML data are allowed.

8.13.2. Encoding Handling

Care must be taken when dealing with multiple character encodings on the client, server, and in the XML
data passed through them. When using the text mode to pass queries to the server and query resultsto the
client (which is the normal mode), PostgreSQL converts all character data passed between the client and
the server and vice versa to the character encoding of the respective end; see Section 24.3. This includes

185

Data Types

string representations of XML values, such as in the above examples. This would ordinarily mean that
encoding declarations contained in XML data can become invalid as the character data is converted to
other encodings while traveling between client and server, because the embedded encoding declaration is
not changed. To cope with this behavior, encoding declarations contained in character strings presented
for input tothexm type areignored, and content is assumed to bein the current server encoding. Conse-
quently, for correct processing, character strings of XML data must be sent from the client in the current
client encoding. It is the responsibility of the client to either convert documents to the current client en-
coding before sending them to the server, or to adjust the client encoding appropriately. On output, values
of type xm will not have an encoding declaration, and clients should assume all data is in the current
client encoding.

When using binary mode to pass query parameters to the server and query results back to the client, no
encoding conversion is performed, so the situation is different. In this case, an encoding declaration in the
XML datawill be observed, and if it is absent, the datawill be assumed to bein UTF-8 (asrequired by the
XML standard; note that PostgreSQL does not support UTF-16). On output, data will have an encoding
declaration specifying the client encoding, unless the client encoding is UTF-8, in which case it will be
omitted.

Needless to say, processing XML data with PostgreSQL will be less error-prone and more efficient if the
XML data encoding, client encoding, and server encoding are the same. Since XML data is internally
processed in UTF-8, computations will be most efficient if the server encoding isaso UTF-8.

Caution

Some XML -related functions may not work at all on non-ASCII data when the server encoding is
not UTF-8. Thisisknown to be anissuefor xmi t abl e() and xpat h() in particular.

8.13.3. Accessing XML Values

Thexm datatypeisunusua in that it does not provide any comparison operators. Thisis because there
is no well-defined and universally useful comparison algorithm for XML data. One conseguence of this
isthat you cannot retrieve rows by comparing an xm column against a search value. XML values should
therefore typically be accompanied by a separate key field such asan ID. An aternative solution for com-
paring XML valuesisto convert them to character strings first, but note that character string comparison
has little to do with a useful XML comparison method.

Since there are no comparison operatorsfor thexm datatype, it isnot possible to create an index directly
on acolumn of thistype. If speedy searchesin XML dataare desired, possible workaroundsinclude casting
the expression to a character string type and indexing that, or indexing an XPath expression. Of course,
the actual query would have to be adjusted to search by the indexed expression.

The text-search functionality in PostgreSQL can al so be used to speed up full-document searches of XML
data. The necessary preprocessing support is, however, not yet available in the PostgreSQL distribution.

JSON Types

JSON datatypes are for storing JSON (JavaScript Object Notation) data, as specified in RFC 7159*. Such
data can also be stored ast ext , but the JSON data types have the advantage of enforcing that each stored
valueisvalid according to the JSON rules. There are also assorted JSON-specific functions and operators
available for data stored in these data types; see Section 9.16.

8.14

4 https://tool s.ietf.org/html/rfc7159

186

https://tools.ietf.org/html/rfc7159
https://tools.ietf.org/html/rfc7159

Data Types

PostgreSQL offers two types for storing JSON data: j son and j sonb. To implement efficient query
mechanisms for these data types, PostgreSQL also provides the j sonpat h data type described in Sec-
tion 8.14.7.

The j son and j sonb data types accept almost identical sets of values as input. The major practical
differenceisoneof efficiency. Thej son datatype storesan exact copy of theinput text, which processing
functions must reparse on each execution; whilej sonb datais stored in a decomposed binary format that
makes it slightly slower to input due to added conversion overhead, but significantly faster to process,
since no reparsing is needed. j sonb also supports indexing, which can be a significant advantage.

Because the j son type stores an exact copy of the input text, it will preserve semantically-insignificant
white space between tokens, as well as the order of keys within JSON objects. Also, if a JSON object
within the value contains the same key more than once, al the key/value pairs are kept. (The processing
functions consider the last value as the operative one.) By contrast, j sonb does not preserve white space,
does not preserve the order of object keys, and does not keep duplicate object keys. If duplicate keys are
specified in the input, only the last value is kept.

In general, most applications should prefer to store JSON dataasj sonb, unlessthere are quite specialized
needs, such aslegacy assumptions about ordering of object keys.

RFC 7159 specifies that JISON strings should be encoded in UTF8. It is therefore not possible for the
JSON typesto conform rigidly to the JISON specification unless the database encoding is UTF8. Attempts
to directly include characters that cannot be represented in the database encoding will fail; conversely,
characters that can be represented in the database encoding but not in UTF8 will be allowed.

RFC 7159 permits JSON strings to contain Unicode escape sequences denoted by \ uXXXX. In the input
function for the j son type, Unicode escapes are alowed regardless of the database encoding, and are
checked only for syntactic correctness (that is, that four hex digitsfollow \ u). However, theinput function
forj sonb isstricter: it disallows Unicode escapesfor charactersthat cannot be represented in the database
encoding. The j sonb type aso rejects \ uO000 (because that cannot be represented in PostgreSQL's
t ext type), and it insists that any use of Unicode surrogate pairs to designate characters outside the
Unicode Basic Multilingual Plane be correct. VValid Unicode escapes are converted to the equivalent single
character for storage; this includes folding surrogate pairs into a single character.

Note

Many of the JSON processing functions described in Section 9.16 will convert Unicode escapes
to regular characters, and will therefore throw the same types of errorsjust described even if their
input is of type j son not j sonb. The fact that the j son input function does not make these
checks may be considered a historical artifact, although it does allow for simple storage (without
processing) of JSON Unicode escapesin adatabase encoding that does not support the represented
characters.

When converting textual JSON input into j sonb, the primitive types described by RFC 7159 are effec-
tively mapped onto native PostgreSQL types, as shown in Table 8.23. Therefore, there are some minor
additional constraints on what constitutes valid j sonb data that do not apply to the j son type, nor to
JSON in the abstract, corresponding to limits on what can be represented by the underlying data type.
Notably, j sonb will reject numbers that are outside the range of the PostgreSQL nuner i ¢ data type,
whilej son will not. Such implementation-defined restrictions are permitted by RFC 7159. However, in
practice such problems are far more likely to occur in other implementations, asit is common to represent
JSON's nunber primitive type as |EEE 754 double precision floating point (which RFC 7159 explicitly
anticipates and allows for). When using JSON as an interchange format with such systems, the danger of
losing numeric precision compared to data originally stored by PostgreSQL should be considered.

187

Data Types

Conversely, as noted in the table there are some minor restrictions on the input format of JSON primitive

types that do not apply to the corresponding PostgreSQL types.

Table 8.23. JSON Primitive Types and Corresponding PostgreSQL Types

JSON primitivetype |PostgreSQL type Notes

string t ext \ u0000 is disallowed, as are Unicode escapes
representing characters not available in the data-
base encoding

nunber nuneric NaNandi nfi nity valuesare disallowed

bool ean bool ean Only lowercaset r ue and f al se spellings are
accepted

nul | (none) SQL NULL isadifferent concept

8.14.1. JSON Input and Output Syntax

The input/output syntax for the JSON datatypesis as specified in RFC 7159.

Thefollowing are al validj son (or j sonb) expressions:

-- Sinple scalar/prinmtive val ue

-- Primtive values can be nunbers, quoted strings, true, false,
nul |

SELECT '5'::json;

or

-- Array of zero or nore el enents (el enents need not be of sanme type)

SELECT '[1, 2, "foo", null]'::json;

-- (bject containing pairs of keys and val ues

-- Note that object keys nust always be quoted strings

SELECT '{"bar": "baz", "balance": 7.77, "active": false}'::json;

-- Arrays and objects can be nested arbitrarily

SELECT '{"foo0": [true, "bar"], "tags": {"a": 1, "b": null}}'::json;

As previously stated, when a JSON value is input and then printed without any additional processing,
j son outputs the same text that was input, while j sonb does not preserve semantically-insignificant

details such as whitespace. For example, note the differences here:

SELECT ' {"bar": "baz", "balance": 7.77, "active":false}'::json;
json
{"bar": "baz", "balance": 7.77, "active":false}
(1 row
SELECT ' {"bar": "baz", "balance": 7.77, "active":false}'::jsonb;
j sonb
{"bar": "baz", "active": false, "balance": 7.77}

188

Data Types

One semantically-insignificant detail worth noting isthat inj sonb, numberswill be printed according to
the behavior of theunderlying nuner i ¢ type. In practice this means that numbers entered with E notation
will be printed without it, for example:

SELECT '{"reading": 1.230e-5}'::json, '{"reading": 1.230e-5}'::jsonb;
j son | j sonb

{"reading": 1.230e-5} | {"reading": 0.00001230}
(1 row

However, j sonb will preservetrailing fractional zeroes, as seen in this example, even though those are
semantically insignificant for purposes such as equality checks.

For thelist of built-in functions and operators available for constructing and processing JSON values, see
Section 9.16.

8.14.2. Designing JSON Documents

Representing data as JSON can be considerably more flexible than the traditional relational data model,
which iscompelling in environments where requirements arefluid. It is quite possible for both approaches
to co-exist and complement each other within the same application. However, even for applications where
maximal flexibility isdesired, it is still recommended that JSON documents have a somewhat fixed struc-
ture. The structure is typically unenforced (though enforcing some business rules declaratively is possi-
ble), but having a predictable structure makes it easier to write queries that usefully summarize a set of
“documents’ (datums) in atable.

JSON data is subject to the same concurrency-control considerations as any other data type when stored
in atable. Although storing large documents is practicable, keep in mind that any update acquires a row-
level lock on the whole row. Consider limiting JSON documents to a manageabl e size in order to decrease
lock contention among updating transactions. Ideally, JSON documents should each represent an atomic
datum that business rules dictate cannot reasonably be further subdivided into smaller datums that could
be modified independently.

8.14.3.] sonb Containment and Existence

Testing containment is an important capability of j sonb. There is no parallel set of facilities for the
j son type. Containment tests whether one j sonb document has contained within it another one. These
examples return true except as noted:

-- Sinmple scalar/primtive values contain only the identical val ue:
SELECT ""foo"'::jsonb @ '"foo"'::jsonb;

-- The array on the right side is contained within the one on the
left:
SELECT '[1, 2, 3]'::jsonb @ '[1, 3]'::jsonb;

-- Order of array elements is not significant, so this is also true:
SELECT '[1, 2, 3]'::jsonb @ '[3, 1]'::jsonb;

-- Duplicate array elenents don't matter either:
SELECT '[1, 2, 3]'::jsonb @ '[1, 2, 2]'::jsonb;

189

Data Types

-- The object with a single pair on the right side is contained
-- within the object on the left side:

SELECT ' {"product”: "PostgreSQ.", "version": 9.4, "jsonb":
true}'::jsonb @ '{"version": 9.4}'::jsonb;

-- The array on the right side is not considered contained within the
-- array on the left, even though a simlar array is nested within it:
SELECT '[1, 2, [1, 3]]'::jsonb @ '[1, 3]'::jsonb; -- yields false

-- But with a layer of nesting, it is contained:
SELECT '[1, 2, [1, 3]]'::jsonb @ '[[1, 3]]'::]jsonb;

-- Simlarly, containment is not reported here:
SELECT '{"foo": {"bar": "baz"}}'::jsonb @ '{"bar": "baz"}'::jsonb;
-- yields fal se

-- Atop-level key and an enpty object is contained:
SELECT '{"foo": {"bar": "baz"}}'::jsonb @ '{"foo": {}}'::jsonb;

The general principleisthat the contained object must match the containing object asto structure and data
contents, possibly after discarding some non-matching array elements or object key/value pairs from the
containing object. But remember that the order of array elementsis not significant when doing a contain-
ment match, and duplicate array elements are effectively considered only once.

As a specia exception to the general principle that the structures must match, an array may contain a
primitive value:

-- This array contains the primtive string val ue:

SELECT '["foo0", "bar"]'::jsonb @ '"bar"'::jsonb;

-- This exception is not reciprocal -- non-containment is reported
here:

SELECT '"bar"'::jsonb @ '["bar"]'::jsonb; -- yields false

j sonb also has an existence operator, which is a variation on the theme of containment: it tests whether
astring (given asat ext value) appears as an object key or array element at the top level of thej sonb
value. These examples return true except as noted:

-- String exists as array el ement:
SELECT '["foo0", "bar", "baz"]'::jsonb ? 'bar’;

-- String exists as object key:
SELECT '{"foo": "bar"}'::jsonb ? 'foo';

-- (bject values are not considered:

SELECT '{"foo": "bar"}'::jsonb ? "bar'; -- yields false

-- As with contai nment, existence nmust match at the top |evel:
SELECT '{"foo": {"bar": "baz"}}'::jsonb ? "bar'; -- yields fal se
-- Astring is considered to exist if it matches a primtive JSON
string:

SELECT " "foo0"'::jsonb ? 'foo';

190

Data Types

JSON objects are better suited than arrays for testing containment or existence when there are many keys
or elements involved, because unlike arrays they are internally optimized for searching, and do not need
to be searched linearly.

Tip

Because JSON containment is nested, an appropriate query can skip explicit selection of sub-
objects. Asan example, supposethat wehaveadoc column containing objectsat thetop level, with
most objects containing t ags fields that contain arrays of sub-objects. This query finds entries
in which sub-objects containing both "t er ' : "pari s" and"terni': " f ood" appear, while
ignoring any such keys outside thet ags array:

SELECT doc->'site_nane' FROM websites

VWHERE doc @ '{"tags":[{"ternt:"paris"}, {"ternm:"food"}]}";
One could accomplish the same thing with, say,
SELECT doc->'site_nane' FROM websites

WHERE doc->'tags' @ '[{"ternt:"paris"}, {"ternt:"food"}]";
but that approach is less flexible, and often less efficient as well.

On the other hand, the JSON existence operator is not nested: it will only look for the specified
key or array element at top level of the JSON value.

The various containment and existence operators, along with all other JSON operators and functions are
documented in Section 9.16.

8.14.4.] sonb Indexing

GIN indexes can be used to efficiently search for keys or key/value pairs occurring within alarge number
of j sonb documents (datums). Two GIN “operator classes’ are provided, offering different performance
and flexibility trade-offs.

The default GIN operator class for j sonb supports queries with top-level key-exists operators ?, ?&
and ?| operators and path/value-exists operator @ . (For details of the semantics that these operators
implement, see Table 9.45.) An example of creating an index with this operator classis:

CREATE | NDEX idxgin ON api USING G N (jdoc);

The non-default GIN operator class j sonb_pat h_ops supports indexing the @ operator only. An
example of creating an index with this operator classis:

CREATE | NDEX i dxgi np ON api USING G N (jdoc jsonb_path_ops);

Consider the example of atablethat stores JSON documentsretrieved from athird-party web service, with
a documented schema definition. A typical document is:

191

Data Types

{
"guid": "9c36adcl- 7f b5- 4d5b- 83b4- 90356a46061a",
"nanme": "Angel a Barton",
"is_active": true,
"conpany"”: "Magnafone",
"address": "178 Howard Pl ace, Gulf, Washington, 702",
“regi stered": "2009-11-07T08:53:22 +08: 00",
“latitude": 19.793713,
"l ongi tude": 86.513373,
"tags": |
"enint',
"al i qui p",
" qui "
]
}

We store these documents in a table named api , in aj sonb column named j doc. If aGIN index is
created on this column, queries like the following can make use of the index:

-- Find docunents in which the key "conpany" has val ue "Magnaf one"
SELECT jdoc->'guid', jdoc->' nane' FROM api WHERE jdoc @ '{"conpany":
"Magnaf one"} ' ;

However, the index could not be used for queries like the following, because though the operator ? is
indexable, it is not applied directly to the indexed column j doc:

-- Find docunents in which the key "tags" contains key or array
el erent "qui"

SELECT jdoc->'guid', jdoc->'nane' FROM api WHERE jdoc -> 'tags' ?
‘qui';

Still, with appropriate use of expression indexes, the above query can use an index. If querying for partic-
ular itemswithinthe " t ags" key is common, defining an index like this may be worthwhile:

CREATE | NDEX i dxgi ntags ON api USING AN ((jdoc -> "tags'));

Now, the WHERE clausej doc -> 'tags' ? 'qui' will berecognized as an application of the
indexable operator ? to the indexed expression j doc -> 'tags' . (Moreinformation on expression

indexes can be found in Section 11.7.)

Also, GIN index supports @@and @ operators, which perform j sonpat h matching.

SELECT jdoc->'guid', jdoc-> nane' FROM api WHERE jdoc @@'$.tags[*] ==

qui "' ;

SELECT jdoc->'guid', jdoc->' nanme' FROM api WHERE jdoc @ '$.tags[*] ?
(@=="qui")";
GIN index extracts statements of following form out of j sonpat h: accessors_chai n = const.

Accessorschain may consist of . key, [*],and[i ndex] accessors.j sonb_ops additionally supports
. * and. ** accessors.

192

Data Types

Another approach to querying isto exploit containment, for example:

-- Find docunents in which the key "tags" contains array el ement
SELECT jdoc->'guid', jdoc-> nane' FROM api WHERE jdoc @ '{"tags":
["qui "]}

A simple GIN index on thej doc column can support this query. But note that such an index will store
copies of every key and valueinthej doc column, whereas the expression index of the previous example
stores only datafound under thet ags key. Whilethe simple-index approach isfar more flexible (since it
supports queries about any key), targeted expression indexes are likely to be smaller and faster to search
than asimple index.

qui

Although the j sonb_pat h_ops operator class supports only queries with the @, @@and @ oper-
ators, it has notable performance advantages over the default operator class j sonb_ops. A j son-
b_pat h_ops index is usually much smaller than aj sonb_ops index over the same data, and the
specificity of searchesis better, particularly when queries contain keys that appear frequently in the data.
Therefore search operations typically perform better than with the default operator class.

Thetechnical difference betweenaj sonb_ops andaj sonb_pat h_ops GIN index isthat the former
creates independent index items for each key and value in the data, while the latter creates index items
only for each value in the data. 5 Basicaly, each j sonb_pat h_ops index item is a hash of the value
and the key(s) leading to it; for exampletoindex {"fo00": {"bar": "baz"}}, asingleindex item
would be created incorporating all three of f 00, bar , and baz into the hash value. Thus a containment
query looking for this structure would result in an extremely specific index search; but there is no way
at all to find out whether f 00 appears as a key. On the other hand, aj sonb_ops index would create
three index items representing f 00, bar , and baz separately; then to do the containment query, it would
look for rows containing al three of these items. While GIN indexes can perform such an AND search
fairly efficiently, it will still be less specific and slower than the equivalent j sonb_pat h_ops search,
especidly if there are a very large number of rows containing any single one of the three index items.

A disadvantage of thej sonb_pat h_ops approach isthat it produces no index entries for JSON struc-
turesnot containing any values, suchas{ " a": {}}.If asearchfor documentscontaining such astructure
is requested, it will require a full-index scan, which is quite slow. j sonb_pat h_ops is therefore ill-
suited for applications that often perform such searches.

j sonb also supports bt r ee and hash indexes. These are usually useful only if it's important to check
equality of complete JSON documents. Thebt r ee orderingfor j sonb datumsisseldom of great interest,
but for completenessit is:

Qbj ect > Array > Bool ean > Nunmber > String > Null
hject with n pairs > object with n - 1 pairs

Array with n elenents > array with n - 1 elenents

Objects with equal numbers of pairs are compared in the order:

key-1, value-1, key-2 ...

Note that object keys are compared in their storage order; in particular, since shorter keys are stored before
longer keys, this can lead to results that might be unintuitive, such as:

5 For this purpose, the term “value” includes array elements, though JSON terminology sometimes considers array elements distinct from values

within objects.

193

Data Types

{ "aa": 1, "c": 1} > {"b": 1, "d": 1}

Similarly, arrays with equal numbers of elements are compared in the order:

elenent-1, elenent-2 ...

Primitive JSON values are compared using the same comparison rules as for the underlying PostgreSQL
data type. Strings are compared using the default database collation.

8.14.5.] sonb Subscripting

Thej sonb datatype supports array-style subscripting expressions to extract and modify elements. Nest-
ed values can be indicated by chaining subscripting expressions, following the same rules as the pat h
argument inthej sonb_set function. If aj sonb valueisan array, numeric subscripts start at zero, and
negative integers count backwards from the last element of the array. Slice expressions are not supported.
The result of a subscripting expression is always of the jsonb data type.

UPDATE statements may use subscripting in the SET clause to modify j sonb values. Subscript paths
must be traversable for all affected valuesinsofar asthey exist. For instance, thepathval ['a'] [' b']

['c'] canbetraversed dl theway toc if everyval ,val ['a'],andval ['a'][' b'] isan object.
Ifanyval ['a'] orval ["a'][' b'] isnotdefined, it will be created as an empty object and filled as
necessary. However, if any val itself or oneof theintermediary valuesis defined asanon-object such asa
string, number, or j sonb nul | , traversal cannot proceed so an error israised and the transaction aborted.

An example of subscripting syntax:

-- Extract object value by key
SELECT ('{"a": 1}'::jsonb)['a'];

-- Extract nested object value by key path
SELECT ('{"a": {"b": {"c": 1}}}'::jsonb)["a']J['b']['c'];

-- Extract array el enent by index
SELECT ('[1, "2", null]'::jsonb)[1];

-- Updat e object value by key. Note the quotes around '1': the

assi gned
-- value nust be of the jsonb type as well
UPDATE tabl e_nane SET jsonb field['key'] ="'1";
-- This will raise an error if any record' s jsonb_field['a]J['b"] is
somet hi ng
-- other than an object. For exanple, the value {"a": 1} has a nuneric
val ue
-- of the key "a'.
UPDATE tabl e_nane SET jsonb field["a]['b"']['c'] ="'1";
-- Filter records using a WHERE cl ause with subscripting. Since the
result of
-- subscripting is jsonb, the value we conpare it against nmust al so be
j sonb.

194

Data Types

-- The doubl e quotes make "value" also a valid jsonb string.
SELECT * FROM tabl e_nane WHERE jsonb_field['key'] = '"value"';

j sonb assignment via subscripting handles a few edge cases differently from j sonb_set . When a
sourcej sonb valueis NULL, assignment via subscripting will proceed asif it was an empty JSON value
of the type (object or array) implied by the subscript key:

-- Where jsonb field was NULL, it is now {"a": 1}
UPDATE tabl e nane SET jsonb field['a'] = "'1";

-- Wiere jsonb field was NULL, it is now [1]
UPDATE tabl e nane SET jsonb field[0] ="'1";

If an index is specified for an array containing too few elements, NULL elements will be appended until
theindex is reachable and the value can be set.

-- Were jsonb_field was [], it is now [null, null, 2];
-- where jsonb field was [0], it is now [0, null, 2]
UPDATE tabl e _nane SET jsonb field[2] ="'2";

A j sonb valuewill accept assignments to nonexistent subscript paths aslong as the last existing element
to be traversed is an object or array, asimplied by the corresponding subscript (the element indicated by
the last subscript in the path is not traversed and may be anything). Nested array and object structures
will be created, and in the former case nul | -padded, as specified by the subscript path until the assigned
value can be placed.

-- Were jsonb_field was {}, it isnow{'a: [{"b: 1}]}

UPDATE tabl e_nane SET jsonb_field['a][O]['b'] ="1";
-- Were jsonb_field was [], it is now [null, {"a': 1}]
UPDATE t abl e_nane SET jsonb_field[1]['a'] ="'1";

8.14.6. Transforms

Additional extensions are availablethat implement transformsfor thej sonb typefor different procedural
languages.

The extensionsfor PL/Perl arecalledj sonb_pl per| andj sonb_pl per | u. If youusethem,j sonb
values are mapped to Perl arrays, hashes, and scalars, as appropriate.

The extensions for PL/Python are called j sonb_pl pyt honu, j sonb_pl pyt hon2u, and j son-
b_pl pyt hon3u (see Section 46.1 for the PL/Python naming convention). If you use them, j sonb val-
ues are mapped to Python dictionaries, lists, and scalars, as appropriate.

Of theseextensions, j sonb_pl per | isconsidered “trusted”, that is, it can beinstalled by non-superusers
who have CREATE privilege on the current database. The rest require superuser privilege to install.

8.14.7. [sonpath Type

Thej sonpat h type implements support for the SQL/JSON path language in PostgreSQL to efficiently
guery JSON data. It provides a binary representation of the parsed SQL/JSON path expression that spec-

195

Data Types

ifiesthe itemsto be retrieved by the path engine from the JSON data for further processing with the SQL/
JSON query functions.

The semantics of SQL/JSON path predicates and operators generally follow SQL. At the sametime, to pro-
vide anatural way of working with JSON data, SQL/JSON path syntax uses some JavaScript conventions:

» Dot (.) isused for member access.

» Square brackets ([]) are used for array access.

» SQL/JSON arrays are O-relative, unlike regular SQL arraysthat start from 1.

An SQL/JSON path expression is typically written in an SQL query as an SQL character string literal,
so it must be enclosed in single quotes, and any single quotes desired within the value must be doubled
(see Section 4.1.2.1). Some forms of path expressions reguire string literals within them. These embedded
string literalsfollow JavaScript/ECM A Script conventions. they must be surrounded by doubl e quotes, and
backslash escapes may be used within them to represent otherwise-hard-to-type characters. In particular,
the way to write a double quote within an embedded string literal is\ ", and to write a backslash itself,
you must write\ \ . Other specia backslash sequences include those recognized in JSON strings: \ b, \ f ,
\n,\r,\t,\v for various ASCII control characters, and \ uNNNN for a Unicode character identified
by its 4-hex-digit code point. The backslash syntax also includes two cases not allowed by JSON: \ xNN

for a character code written with only two hex digits, and\ u{ N. . . } for a character code written with
1to 6 hex digits.

A path expression consists of a sequence of path elements, which can be any of the following:

* Path literals of JSON primitive types. Unicode text, numeric, true, false, or null.

» Path variableslisted in Table 8.24.

» Accessor operators listed in Table 8.25.

* j sonpat h operators and methods listed in Section 9.16.2.2.

* Parentheses, which can be used to provide filter expressions or define the order of path evaluation.

For detailson using j sonpat h expressions with SQL/JSON query functions, see Section 9.16.2.

Table8.24.j sonpat h Variables

Variable Description

$ A variable representing the JSON value being queried (the context
item).

$var nane A named variable. Its value can be set by the parameter var s of
several JSON processing functions; see Table 9.47 for details.

@ A variable representing the result of path evaluation in filter expres-
sions.

Table 8.25.] sonpat h Accessors

Accessor Operator Description

. key Member accessor that returns an object member with the specified
key. If the key name matches some named variable starting with $

. "$var nane" or does not meet the JavaScript rules for an identifier, it must be en-
closed in double quotes to make it a string literal.

196

Data Types

Accessor Operator Description

V¥ Wildcard member accessor that returns the values of all members|lo-
cated at the top level of the current object.

LEX Recursive wildcard member accessor that processes all levels of the
JSON hierarchy of the current object and returns all the member val-
ues, regardless of their nesting level. Thisis a PostgreSQL extension
of the SQL/JSON standard.

*{l evel } Like. **, but selects only the specified levels of the JSON hierar-
chy. Nesting levels are specified as integers. Level zero corresponds

*{start_level to to the current object. To access the lowest nesting level, you can

end_| evel } usethel ast keyword. Thisisa PostgreSQL extension of the SQL/
JSON standard.

[subscript, ...] Array element accessor. subscri pt can begivenintwo forms:

i ndex orstart _index to end_i ndex. Thefirst form re-
turnsasingle array element by itsindex. The second form returns an
array dice by the range of indexes, including the elements that cor-
respond to the provided st art _i ndex and end_i ndex.

The specified i ndex can be an integer, as well as an expression re-
turning a single numeric value, which is automatically cast to inte-
ger. Index zero corresponds to the first array element. You can al-
so usethel ast keyword to denote the last array element, which is
useful for handling arrays of unknown length.

[*] Wildcard array element accessor that returns al array elements.

8.15. Arrays

PostgreSQL allows columns of atable to be defined as variable-length multidimensional arrays. Arrays of
any built-in or user-defined base type, enum type, composite type, range type, or domain can be created.

8.15.1. Declaration of Array Types

Toillustrate the use of array types, we create this table:

CREATE TABLE sal _enp (

nane text,
pay_by_quarter integer[],
schedul e text[][]

)

Asshown, an array datatypeisnamed by appending square brackets ([]) to the datatype name of the array
elements. The above command will create atable named sal _enp with acolumn of typet ext (namne),
aone-dimensional array of typei nt eger (pay_by_quart er), which representsthe employee'ssaary
by quarter, and atwo-dimensional array of t ext (schedul e), which represents the employee's weekly
schedule.

The syntax for CREATE TABLE alowsthe exact size of arraysto be specified, for example:

CREATE TABLE tictactoe (

197

Data Types

squar es i nteger[3][3]

)

However, the current implementation ignores any supplied array size limits, i.e., the behavior is the same
as for arrays of unspecified length.

The current implementation does not enforce the declared number of dimensions either. Arrays of a par-
ticular element type are all considered to be of the same type, regardless of size or number of dimensions.
So, declaring the array size or number of dimensions in CREATE TABLE is simply documentation; it
does not affect run-time behavior.

An alternative syntax, which conformsto the SQL standard by using the keyword ARRAY, can be used for
one-dimensional arrays. pay_by_quart er could have been defined as:

pay_by quarter integer ARRAY[4],

Or, if no array size isto be specified:

pay_by quarter integer ARRAY,

As before, however, PostgreSQL does not enforce the size restriction in any case.

8.15.2. Array Value Input

To write an array value as aliteral constant, enclose the element values within curly braces and separate
them by commas. (If you know C, thisis not unlike the C syntax for initializing structures.) Y ou can put
double quotes around any element value, and must do so if it contains commas or curly braces. (More
details appear below.) Thus, the general format of an array constant is the following:

'{ vall delimval2 delim... }'
wheredel i misthedelimiter character for thetype, asrecordedinitspg_t ype entry. Among the standard
data types provided in the PostgreSQL distribution, all use acomma.(,), except for type box which uses

asemicolon (;). Each val is either a constant of the array element type, or a subarray. An example of
an array constant is:

"{{1,2,3},{4,5,6},{7,8,9}}'

This constant is atwo-dimensional, 3-by-3 array consisting of three subarrays of integers.

To set an element of an array constant to NULL, write NULL for the element value. (Any upper- or low-
er-case variant of NULL will do.) If you want an actual string value “NULL”, you must put double quotes
around it.

(These kinds of array constants are actually only a special case of the generic type constants discussed in
Section4.1.2.7. Theconstant isinitially treated asastring and passed to the array input conversion routine.
An explicit type specification might be necessary.)

Now we can show some | NSERT statements:

198

Data Types

| NSERT | NTO sal _enp

VALUES ('Bill",
' {10000, 10000, 10000, 10000}',
"{{"neeting", "lunch"}, {"training", "presentation"}}');

| NSERT | NTO sal _enp
VALUES (' Carol ",
' {20000, 25000, 25000, 25000}',
"{{"breakfast”, "consulting"}, {"neeting”, "lunch"}}");

The result of the previous two inserts looks like this:

SELECT * FROM sal _enp;
name | pay_ by quarter | schedul e

Bill | {10000, 10000, 10000, 10000} | {{rmeeting, | unch},
{training, presentation}}

Carol | {20000, 25000, 25000, 25000} | {{breakfast, consulting},
{neeting, |l unch}}
(2 rows)

Multidimensional arrays must have matching extents for each dimension. A mismatch causes an error,
for example:

I NSERT | NTO sal _enp

VALUES ('Bill",
'{10000, 10000, 10000, 10000}',
"{{"neeting", "lunch"}, {"nmeeting"}}");

ERROR: nul tidi nensional arrays nust have array expressions with
mat chi ng di nensi ons

The ARRAY constructor syntax can also be used:

I NSERT | NTO sal _enp

VALUES ('Bill",
ARRAY[10000, 10000, 10000, 10000],
ARRAY[[' neeting', 'lunch'], ["training', 'presentation']]);

I NSERT | NTO sal _enp
VALUES (' Carol ',
ARRAY[20000, 25000, 25000, 25000],
ARRAY[[' breakfast', 'consulting'], ['neeting', 'lunch']]);

Notice that the array elements are ordinary SQL constants or expressions; for instance, string literals are
single quoted, instead of double quoted asthey would bein an array literal. The ARRAY constructor syntax
is discussed in more detail in Section 4.2.12.

8.15.3. Accessing Arrays

Now, we can run some queries on the table. First, we show how to access a single element of an array.
This query retrieves the names of the employees whose pay changed in the second quarter:

199

Data Types

SELECT nane FROM sal _enp WHERE pay_by _quarter[1l] <> pay_by quarter[2];

The array subscript numbers are written within square brackets. By default PostgreSQL uses a one-based
numbering convention for arrays, that is, an array of n elements starts with ar r ay[1] and ends with
array[n].

This query retrieves the third quarter pay of all employees:

SELECT pay_by _quarter[3] FROM sal _enp;

pay_by_quarter

10000
25000
(2 rows)

Wecan also accessarbitrary rectangular slicesof anarray, or subarrays. An array sliceisdenoted by writing
| ower - bound: upper - bound for one or more array dimensions. For example, this query retrievesthe
first item on Bill's schedule for the first two days of the week:

SELECT schedul e[1: 2] [1: 1] FROM sal _enp WHERE name = 'Bill";

schedul e

{{meeting} . {training}}
(1 row

If any dimension iswritten asadlice, i.e., contains a colon, then al dimensions are treated as slices. Any
dimension that has only asingle number (no colon) istreated as being from 1 to the number specified. For
example, [2] istreated as[1: 2] , asin thisexample:

SELECT schedul e[1: 2] [2] FROM sal _enmp WHERE nane = '"Bill";

schedul e

{{meeting, lunch}, {training, presentation}}

(1 row

To avoid confusion with the non-slice case, it's best to use dice syntax for all dimensions, e.g., [1: 2]
[1:1],not[2][1:1].

It is possible to omit the | ower - bound and/or upper - bound of adlice specifier; the missing bound
isreplaced by the lower or upper limit of the array's subscripts. For example:

SELECT schedul e[:2][2:] FROM sal _enmp WHERE nane = 'Bill";

200

Data Types

schedul e

{1 unch}, {present ati on}}
(1 row

SELECT schedul e[:][1:1] FROM sal _enmp WHERE nane = 'Bill";

schedul e

{{meeting}. {training}}
(1 row

An array subscript expression will return null if either the array itself or any of the subscript expressions
are null. Also, null is returned if a subscript is outside the array bounds (this case does not raise an er-
ror). For example, if schedul e currently hasthe dimensions| 1: 3] [1: 2] then referencing sched-
ul e[3] [3] yields NULL. Similarly, an array reference with the wrong number of subscripts yields a
null rather than an error.

Anarray slice expression likewiseyields null if the array itself or any of the subscript expressionsare null.
However, in other cases such as selecting an array slicethat iscompl etely outside the current array bounds,
adlice expression yields an empty (zero-dimensional) array instead of null. (This does not match non-slice
behavior and is done for historical reasons.) If the requested slice partially overlapsthe array bounds, then
it issilently reduced to just the overlapping region instead of returning null.

The current dimensions of any array value can be retrieved with thear r ay_di s function:

SELECT array_di ns(schedul e) FROM sal _enp WHERE nanme = 'Carol';

array_di s

(12012
(1 row

array_di ns producesat ext result, which is convenient for people to read but perhaps inconvenient
for programs. Dimensions can also be retrieved with ar ray_upper andar ray_I| ower, which return
the upper and lower bound of a specified array dimension, respectively:

SELECT array_upper (schedule, 1) FROM sal _enp WHERE nanme = 'Carol';

array_upper

(1 row)

array_| engt h will return the length of a specified array dimension:

SELECT array_| engt h(schedul e, 1) FROM sal _enp WHERE nanme = 'Carol"';

array_l ength

201

Data Types

car di nal i ty returns the total number of elementsin an array across all dimensions. It is effectively
the number of rows acall tounnest would yield:

SELECT cardinality(schedul e) FROM sal _enp WHERE nane = 'Carol';

cardinality

(1 row
8.15.4. Modifying Arrays

An array value can be replaced completely:

UPDATE sal _enp SET pay_by_quarter = '{25000, 25000, 27000, 27000}
VWHERE nane = 'Carol';

or using the ARRAY expression syntax:

UPDATE sal _enp SET pay_by quarter = ARRAY[25000, 25000, 27000, 27000]
VWHERE nanme = 'Carol';

An array can also be updated at a single element:

UPDATE sal _enp SET pay_by quarter[4] = 15000
VWHERE nanme = 'Bill";

or updated in adlice:

UPDATE sal _enp SET pay_by_quarter[1:2] = '{27000, 27000}"
VWHERE nane = 'Carol';

The dlice syntaxes with omitted | ower - bound and/or upper - bound can be used too, but only when
updating an array value that is not NULL or zero-dimensional (otherwise, there is no existing subscript
[imit to substitute).

A stored array value can be enlarged by assigning to elements not already present. Any positions between
those previously present and the newly assigned elements will be filled with nulls. For example, if array
nmyar r ay currently has4 elements, it will have six elements after an updatethat assignstonyar r ay[6] ;
nmyar r ay[5] will contain null. Currently, enlargement in this fashion is only allowed for one-dimen-
sional arrays, not multidimensional arrays.

Subscripted assignment allows creation of arrays that do not use one-based subscripts. For example one
might assigntonyar r ay[- 2: 7] to create an array with subscript values from -2to 7.

New array values can also be constructed using the concatenation operator, | | :
SELECT ARRAY[1,2] || ARRAY[3,4];

?col um?

202

Data Types

{1, 2,3, 4}
(1 row

SELECT ARRAY[5,6] || ARRAY[[1,2],[3,4]];
?col um?

{{5.6},{1,2},{3,4}}
(1 row

The concatenation operator alows a single element to be pushed onto the beginning or end of a one-
dimensional array. It also acceptstwo N-dimensional arrays, or an N-dimensional and an N+1-dimensional

array.

When asingle element is pushed onto either the beginning or end of a one-dimensional array, theresultis
an array with the same lower bound subscript as the array operand. For example:

SELECT array dins(1 || '[0:1]={2,3}'::int[]);
array_dins

SELECT array_di ns(ARRAY[1,2] || 3);
array_dins

When two arrayswith an equal number of dimensions are concatenated, the result retains the lower bound
subscript of the left-hand operand's outer dimension. The result is an array comprising every element of
the left-hand operand followed by every element of the right-hand operand. For example:

SELECT array_di ns(ARRAY[1, 2] || ARRAY[3,4,5]);
array_di ns

SELECT array_di ns(ARRAY[[1,2],[3,4]] || ARRAY[[5,6],[7,8],[9,0]1);
array_di ns

[us|[L2
(1 row

When an N-dimensional array is pushed onto the beginning or end of an N+1-dimensional array, the result
is analogous to the element-array case above. Each N-dimensional sub-array is essentially an element of
the Nt+1-dimensional array's outer dimension. For example:

SELECT array_di ns(ARRAY[1,2] || ARRAY[[3,4],[5,6]1]);
array_dins

[1:3][1:2]

203

Data Types

(1 row

An array can aso be constructed by using the functions ar r ay_pr epend, array_append, or ar -
ray_cat. The first two only support one-dimensional arrays, but ar r ay_cat supports multidimen-
sional arrays. Some examples:

SELECT array_prepend(1, ARRAY[2,3]);
array_prepend

SELECT array_append(ARRAY[1, 2], 3);
array_append

SELECT array_cat (ARRAY[1, 2], ARRAY[3,4]);
array_cat

{1,234
(1 row

SELECT array_cat (ARRAY[[1,2],[3,4]], ARRAY[5,6]);
array_cat

{{1,2},{3,4},{5, 6}}
(1 row

SELECT array_cat (ARRAY[5, 6], ARRAY[[1,2],[3,4]]);
array_cat

{{5,6},{1,2},{3,4}}

In simpl e cases, the concatenation operator discussed aboveis preferred over direct use of these functions.
However, because the concatenation operator is overloaded to serve all three cases, there are situations
where use of one of the functionsis helpful to avoid ambiguity. For example consider:

SELECT ARRAY[1, 2] || "{3, 4}'; -- the untyped literal is taken as an
array
?col um?

{1, 2, 3,4}

SELECT ARRAY[1, 2] || '7"; -- sois this one
ERROR: malfornmed array literal: "7"

SELECT ARRAY[1, 2] || NULL; -- so is an undecor at ed
NULL
?col um?

204

Data Types

(1 row

SELECT array_append(ARRAY[1, 2], NULL); -- this mght have been
nmeant
array_append

{1, 2, NULL}

In the examples above, the parser sees an integer array on one side of the concatenation operator, and a
constant of undetermined type on the other. The heuristic it usesto resolve the constant'stypeisto assume
it'sof the sametype asthe operator's other input — in this case, integer array. So the concatenati on operator
is presumed to represent ar r ay_cat , not ar r ay_append. When that's the wrong choice, it could be
fixed by casting the constant to the array's element type; but explicit use of ar r ay_append might be
apreferable solution.

8.15.5. Searching in Arrays

To search for avalue in an array, each value must be checked. This can be done manualy, if you know
the size of the array. For example:

SELECT * FROM sal _enmp WHERE pay_by quarter[1] = 10000 OR
pay_ by quarter[2] = 10000 OR
pay_ by quarter[3] = 10000 OR
pay by quarter[4] = 10000;

However, this quickly becomes tedious for large arrays, and is not helpful if the size of the array is un-
known. An aternative method is described in Section 9.24. The above query could be replaced by:

SELECT * FROM sal _enp WHERE 10000 = ANY (pay_by quarter);

In addition, you can find rows where the array has all values equal to 10000 with:

SELECT * FROM sal _enmp WHERE 10000 = ALL (pay_by_quarter);

Alternatively, thegener at e_subscri pt s function can be used. For example:

SELECT * FROM
(SELECT pay_by_quarter,
generate_subscri pts(pay_by _quarter, 1) AS s
FROM sal _enp) AS foo
WHERE pay_by quarter[s] = 10000;

Thisfunction is described in Table 9.64.

You can a'so search an array using the && operator, which checks whether the left operand overlaps with
the right operand. For instance:

SELECT * FROM sal _enmp WHERE pay_ by quarter && ARRAY[10000];

Thisand other array operators are further described in Section 9.19. It can be accel erated by an appropriate
index, as described in Section 11.2.

205

Data Types

You can also search for specific valuesin an array using thearray_posi ti on andarray_posi -
t i ons functions. The former returns the subscript of the first occurrence of avaluein an array; the latter
returns an array with the subscripts of all occurrences of the value in the array. For example:

SELECT

array_position(ARRAY['sun','non','tue',"'wed' ,'thu','fri','sat'],
‘mon’) ;

array_position

(1 row

SELECT array_positions(ARRAY[1, 4, 3, 1, 3, 4, 2, 1], 1);
array_positions

Tip

Arrays are not sets; searching for specific array elements can be a sign of database misdesign.
Consider using a separate table with arow for each item that would be an array element. Thiswill
be easier to search, and islikely to scale better for alarge number of elements.

8.15.6. Array Input and Output Syntax

The externa text representation of an array value consists of items that are interpreted according to the
I/O conversion rules for the array's element type, plus decoration that indicates the array structure. The
decoration consists of curly braces ({ and }) around the array value plus delimiter characters between
adjacent items. The delimiter character isusually acomma(,) but can be something else: it is determined
by the t ypdel i msetting for the array's element type. Among the standard data types provided in the
PostgreSQL distribution, all use acomma, except for type box, which usesasemicolon (;). In amultidi-
mensional array, each dimension (row, plane, cube, etc.) getsits own level of curly braces, and delimiters
must be written between adjacent curly-braced entities of the same level.

The array output routine will put double quotes around element values if they are empty strings, contain
curly braces, delimiter characters, double quotes, backslashes, or white space, or match the word NULL.
Double quotes and backslashes embedded in element values will be backslash-escaped. For numeric data
types it is safe to assume that double quotes will never appear, but for textual data types one should be
prepared to cope with either the presence or absence of quotes.

By default, the lower bound index value of an array's dimensions is set to one. To represent arrays with
other lower bounds, the array subscript ranges can be specified explicitly before writing the array contents.
This decoration consists of square brackets ([]) around each array dimension's lower and upper bounds,
with acolon (:) delimiter character in between. The array dimension decoration is followed by an equal
sign (=). For example:

SELECT f1[1][-2][3] AS el, f1[1][-1][5] AS e2
FROM (SELECT '[1:1][-2:-1][3:5]={{{1,2,3},{4,5,6}}} ::int[] AS f1) AS
SS;

206

Data Types

el | e2

e
1] 6

(1 row

The array output routine will include explicit dimensions in its result only when there are one or more
lower bounds different from one.

If the value written for an element is NULL (in any case variant), the element is taken to be NULL. The
presence of any quotes or backslashes disables this and allows the literal string value “NULL” to be en-
tered. Also, for backward compatibility with pre-8.2 versions of PostgreSQL, the array _nulls configura-
tion parameter can be turned of f to suppress recognition of NULL asa NULL.

As shown previously, when writing an array value you can use double quotes around any individual ar-
ray element. You must do so if the element value would otherwise confuse the array-value parser. For
exampl e, elements containing curly braces, commas (or the data type's delimiter character), double quotes,
backslashes, or leading or trailing whitespace must be double-quoted. Empty strings and strings matching
the word NULL must be quoted, too. To put a double quote or backslash in a quoted array element value,
precede it with a backslash. Alternatively, you can avoid quotes and use backslash-escaping to protect all
data characters that would otherwise be taken as array syntax.

Y ou can add whitespace before a left brace or after aright brace. Y ou can also add whitespace before or
after any individual item string. In all of these cases the whitespace will be ignored. However, whitespace
within double-quoted elements, or surrounded on both sides by non-whitespace characters of an element,
is not ignored.

Tip

The ARRAY constructor syntax (see Section 4.2.12) is often easier to work with than the array-lit-
eral syntax when writing array values in SQL commands. In ARRAY, individual element values
are written the same way they would be written when not members of an array.

8.16. Composite Types

A composite type represents the structure of arow or record; it is essentialy just alist of field names and
their data types. PostgreSQL allows composite types to be used in many of the same ways that smple
types can be used. For example, a column of atable can be declared to be of a composite type.

8.16.1. Declaration of Composite Types

Here are two simple examples of defining composite types:

CREATE TYPE conpl ex AS (
r doubl e preci sion,
[doubl e precision

)

CREATE TYPE inventory_item AS (
name t ext,
supplier_id i nteger,

207

Data Types

price nuneric

)

The syntax is comparable to CREATE TABLE, except that only field names and types can be specified;
no constraints (such as NOT NULL) can presently be included. Note that the AS keyword is essential;
without it, the system will think a different kind of CREATE TYPE command is meant, and you will get
odd syntax errors.

Having defined the types, we can use them to create tables:
CREATE TABLE on_hand (

item inventory_item
count i nt eger

);
I NSERT | NTO on_hand VALUES (ROW' fuzzy dice', 42, 1.99), 1000);

or functions:

CREATE FUNCTI ON price_extension(inventory item integer) RETURNS
nuneric
AS ' SELECT $1.price * $2' LANGUAGE SQ.;

SELECT price_extension(item 10) FROM on_hand;

Whenever you create a table, a composite type is aso automatically created, with the same name as the
table, to represent the table's row type. For example, had we said:

CREATE TABLE inventory_item (

nane t ext,
supplier_id i nt eger REFERENCES suppl i ers,
price nuneric CHECK (price > 0)

)

then the samei nvent ory_i t emcomposite type shown above would come into being as a byproduct,
and could be used just as above. Note however an important restriction of the current implementation:
since no constraints are associated with a composite type, the constraints shown in the table definition do
not apply to values of the composite type outside the table. (To work around this, create adomain over the
composite type, and apply the desired constraints as CHECK constraints of the domain.)

8.16.2. Constructing Composite Values

To write a composite value as aliteral constant, enclose the field values within parentheses and separate
them by commas. Y ou can put double quotes around any field value, and must do so if it contains com-
mas or parentheses. (More details appear below.) Thus, the general format of a composite constant isthe
following:

"(vall, val2 , ...)’

Anexampleis:

208

Data Types

' ("fuzzy dice",42,1.99)"

which would be avalid value of thei nvent ory_i t emtype defined above. To make afield be NULL,
write no charactersat all initspositionin thelist. For example, this constant specifiesa NULL third field:

"("fuzzy dice",42,)'

If you want an empty string rather than NULL, write double quotes:

] (llll,42,)l
Here thefirst field isanon-NULL empty string, the third isNULL.

(These constants are actually only a special case of the generic type constants discussed in Section 4.1.2.7.
The constant isinitialy treated as a string and passed to the composite-type input conversion routine. An
explicit type specification might be necessary to tell which type to convert the constant to.)

The ROWexpression syntax can also be used to construct composite values. In most cases thisis consid-
erably simpler to use than the string-literal syntax since you don't have to worry about multiple layers of
quoting. We aready used this method above:

RON ' fuzzy dice', 42, 1.99)
ROWN "', 42, NULL)

The ROW keyword is actually optional aslong asyou have more than onefield in the expression, so these
can be simplified to:

('fuzzy dice', 42, 1.99)
("', 42, NULL)

The ROWexpression syntax is discussed in more detail in Section 4.2.13.

8.16.3. Accessing Composite Types

To access afield of a composite column, one writes a dot and the field name, much like selecting a field
from atable name. In fact, it's so much like selecting from a table name that you often have to use paren-
theses to keep from confusing the parser. For example, you might try to select some subfields from our
on_hand example table with something like:

SELECT item nanme FROM on_hand WHERE item price > 9.99;
This will not work since the name i t emis taken to be a table name, not a column name of on_hand,

per SQL syntax rules. You must writeit like this:

SELECT (item.nane FROM on_hand WHERE (item).price > 9.99;

or if you need to use the table name aswell (for instance in a multitable query), like this:

SELECT (on_hand.item . name FROM on_hand WHERE (on_hand.item.price >
9.99;

209

Data Types

Now the parenthesized object is correctly interpreted as a reference to the i t emcolumn, and then the
subfield can be selected fromiit.

Similar syntactic issues apply whenever you select afield from a composite value. For instance, to select
just one field from the result of afunction that returns a composite value, you'd need to write something
like:

SELECT (nmy_func(...)).field FROM ...

Without the extra parentheses, this will generate a syntax error.

The special field name* means“all fields’, as further explained in Section 8.16.5.

8.16.4. Modifying Composite Types

Here are some examples of the proper syntax for inserting and updating composite columns. First, inserting
or updating awhole column:

| NSERT | NTO nytab (conplex_col) VALUES((1.1,2.2));

UPDATE nytab SET conplex col = RON1.1,2.2) WHERE .. .;
The first example omits ROW the second uses it; we could have done it either way.

We can update an individual subfield of acomposite column:

UPDATE nytab SET conplex_col.r = (conplex_col).r + 1 WHERE .. .;

Notice here that we don't need to (and indeed cannot) put parentheses around the column name appearing
just after SET, but we do need parentheses when referencing the same column in the expression to the
right of the equal sign.

And we can specify subfields as targets for | NSERT, too:

| NSERT | NTO nytab (conpl ex_col.r, conmplex_col.i) VALUES(1l.1, 2.2);

Had we not supplied values for all the subfields of the column, the remaining subfields would have been
filled with null values.

8.16.5. Using Composite Types in Queries

There are various special syntax rules and behaviors associated with composite types in queries. These
rules provide useful shortcuts, but can be confusing if you don't know the logic behind them.

In PostgreSQL , areference to atable name (or alias) in aquery is effectively areference to the composite
value of the table's current row. For example, if we had atablei nvent ory_i t emas shown above, we
could write:

SELECT ¢ FROM inventory_itemc;

This query produces a single composite-valued column, so we might get output like:

210

Data Types

("fuzzy dice",42,1.99)
(1 row

Note however that simple names are matched to column names before table names, so this example works
only because there is no column named ¢ in the query's tables.

The ordinary qualified-column-name syntax t abl e_nane. col urm_nane can be understood as ap-
plying field selection to the composite value of the tabl€e's current row. (For efficiency reasons, it's not
actually implemented that way.)

When we write

SELECT c.* FROM inventory itemc;

then, according to the SQL standard, we should get the contents of the table expanded into separate
columns:;

nane | supplier_id | price
____________ .
fuzzy dice | 42 | 1.99
(1 row

asif the query were

SELECT c.nane, c.supplier_id, c.price FROMinventory_item c;

PostgreSQL will apply this expansion behavior to any composite-valued expression, although as shown
above, you need to write parentheses around the value that . * is applied to whenever it's not a simple
table name. For example, if nyf unc() isafunction returning a composite type with columns a, b, and
¢, then these two queries have the same result:

SELECT (nyfunc(x)).* FROM sone_t abl e;
SELECT (nmyfunc(x)).a, (myfunc(x)).b, (nyfunc(x)).c FROM sone_tabl e;

Tip

PostgreSQL handles column expansion by actually transforming the first form into the second. So,
in this example, myf unc() would get invoked three times per row with either syntax. If it's an
expensive function you may wish to avoid that, which you can do with aquery like:

SELECT m * FROM sone_tabl e, LATERAL myfunc(x) AS m

Placing the function in a LATERAL FROMitem keeps it from being invoked more than once per
row. m * isstill expandedintom a, m b, m c, but now those variables are just referencesto
the output of the FROMitem. (The LATERAL keyword is optional here, but we show it to clarify
that the function is getting x from sone_t abl e.)

211

Data Types

Theconposi t e_val ue. * syntax results in column expansion of this kind when it appears at the top
level of a SELECT output list, a RETURNI NG list in | NSERT/UPDATE/DELETE, a VALUES clause, or
arow constructor. In al other contexts (including when nested inside one of those constructs), attaching
. * to acomposite value does not change the value, since it means “all columns” and so the same compos-
ite value is produced again. For example, if sonef unc() accepts a composite-valued argument, these
gueries are the same:

SELECT sonefunc(c.*) FROM inventory item c;
SELECT somefunc(c) FROM inventory_item c;

Inboth cases, thecurrentrow of i nvent ory_i t emispassed to thefunction asasingle composite-valued
argument. Even though . * does nothing in such cases, using it is good style, since it makes clear that a
composite value is intended. In particular, the parser will consider ¢ inc. * to refer to a table name or
alias, not to a column name, so that there is no ambiguity; whereas without . *, it is not clear whether
¢ means atable name or a column name, and in fact the column-name interpretation will be preferred if
thereisacolumn named c.

Another example demonstrating these conceptsisthat all these queries mean the same thing:

SELECT * FROM inventory item c ORDER BY c;
SELECT * FROM inventory itemc ORDER BY c.*;
SELECT * FROM inventory_ item c ORDER BY RONcC. *);

All of these ORDER BY clauses specify the row's composite value, resulting in sorting the rows according
to the rules described in Section 9.24.6. However, if i nvent ory_i t emcontained a column named c,
the first case would be different from the others, as it would mean to sort by that column only. Given the
column names previously shown, these queries are also equivalent to those above:

SELECT * FROM inventory_ item c ORDER BY RONc. nanme, c.supplier_id,
c.price);

SELECT * FROM inventory item c ORDER BY (c.nanme, c.supplier_id,
c.price);

(The last case uses arow constructor with the key word ROWomitted.)

Another special syntactical behavior associated with composite values is that we can use functional no-
tation for extracting a field of a composite value. The simple way to explain this is that the notations
field(table) andtabl e. fi el d areinterchangeable. For example, these queries are equivalent;

SELECT c.nane FROM inventory_item c WHERE c. price > 1000;
SELECT nane(c) FROM inventory itemc WHERE price(c) > 1000;

Moreover, if we have a function that accepts a single argument of a composite type, we can call it with
either notation. These queries are al equivalent:

SELECT somefunc(c) FROM inventory_item c;
SELECT sonefunc(c.*) FROMinventory_itemc;
SELECT c. sonmefunc FROM i nventory item c;

This equivalence between functiona notation and field notation makes it possible to use functions on
composite types to implement “computed fields’. An application using the last query above wouldn't
need to be directly aware that somef unc isn't areal column of the table.

212

Data Types

Tip

Because of thisbehavior, it'sunwiseto give afunction that takes a single composite-type argument
the same name as any of the fields of that composite type. If there is ambiguity, the field-name
interpretation will be chosen if field-name syntax is used, while the function will be chosen if
function-call syntax is used. However, PostgreSQL versions before 11 always chose the field-
name interpretation, unless the syntax of the call required it to be afunction call. One way to force
the function interpretation in older versions is to schema-qualify the function name, that is, write
schema. f unc(conposit eval ue) .

8.16.6. Composite Type Input and Output Syntax

The external text representation of a composite value consists of items that are interpreted according to
the 1/0O conversion rules for the individual field types, plus decoration that indicates the composite struc-
ture. The decoration consists of parentheses ((and)) around the whole value, plus commas (,) between
adjacent items. Whitespace outside the parentheses is ignored, but within the parentheses it is considered
part of the field value, and might or might not be significant depending on the input conversion rules for
the field data type. For example, in:

] (42)]
the whitespace will beignored if the field type isinteger, but not if it is text.

As shown previously, when writing a composite value you can write double quotes around any individual
field value. You must do so if the field value would otherwise confuse the composite-value parser. In
particular, fields containing parentheses, commas, double quotes, or backslashes must be double-quoted.
To put a double quote or backslash in a quoted composite field value, precede it with a backslash. (Also,
apair of double quotes within a double-quoted field value is taken to represent a double quote character,
analogoudly to the rulesfor single quotesin SQL literal strings.) Alternatively, you can avoid quoting and
use backslash-escaping to protect all data characters that would otherwise be taken as composite syntax.

A completely empty field value (no characters at all between the commas or parentheses) represents a
NULL. To write avauethat is an empty string rather than NULL, write" " .

The composite output routine will put double quotes around field valuesif they are empty strings or con-
tain parentheses, commas, double quotes, backslashes, or white space. (Doing so for white space is not
essential, but aids legibility.) Double quotes and backsl ashes embedded in field values will be doubled.

Note

Remember that what you writein an SQL command will first beinterpreted asastring literal, and
then as a composite. This doubles the number of backslashes you need (assuming escape string
syntax is used). For example, to insert at ext field containing a double quote and a backslash in
acomposite value, you'd need to write:

I NSERT ... VALUES (' ("\"\\")");

The string-literal processor removes one level of backslashes, so that what arrives at the compos-
ite-value parser lookslike ("\ "\\ ") . Inturn, the string fed to thet ext datatype'sinput routine
becomes " \ . (If we were working with a data type whose input routine also treated backslashes

213

Data Types

specially, byt ea for example, we might need as many as eight backslashes in the command to
get one backslash into the stored composite field.) Dollar quoting (see Section 4.1.2.4) can be used
to avoid the need to double backslashes.

Tip

The ROWconstructor syntax is usually easier to work with than the composite-literal syntax when
writing composite values in SQL commands. In ROW individual field values are written the same
way they would be written when not members of a composite.

8.17. Range Types

Rangetypes are datatypesrepresenting arange of values of some element type (called the range's subtype).
For instance, ranges of t i mest anp might be used to represent the ranges of time that a meeting room
isreserved. In this case the datatypeist sr ange (short for “timestamp range”’), and t i nest anp isthe
subtype. The subtype must have atotal order so that it is well-defined whether element values are within,
before, or after arange of values.

Range types are useful because they represent many element values in a single range value, and because
concepts such as overlapping ranges can be expressed clearly. The use of time and date ranges for sched-
uling purposes is the clearest example; but price ranges, measurement ranges from an instrument, and so
forth can also be useful.

Every range type has a corresponding multirange type. A multirangeis an ordered list of non-contiguous,
non-empty, non-null ranges. M ost range operators al so work on multiranges, and they have afew functions
of their own.

8.17.1. Built-in Range and Multirange Types

PostgreSQL comes with the following built-in range types:

e int4range — Rangeofi nt eger,i nt4nul ti r ange — corresponding Multirange
e i nt8range — Rangeof bi gi nt,i nt 8nul ti r ange — corresponding Multirange
e nunr ange — Range of nuneri ¢, nummul ti r ange — corresponding Multirange

e tsrange —Rangeofti mestanp without tinme zone,tsnultirange — corresponding
Multirange

e tstzrange —Rangeoftimestanp with time zone,tstznul tirange — corresponding
Multirange

» dat er ange — Range of dat e, dat emul ti r ange — corresponding Multirange

In addition, you can define your own range types; see CREATE TY PE for more information.

8.17.2. Examples

214

Data Types

CREATE TABLE reservation (roomint, during tsrange);
I NSERT | NTO reservati on VALUES
(1108, '[2010-01-01 14:30, 2010-01-01 15:30)');

-- Cont ai nment
SELECT i nt 4range(10, 20) @ 3;

-- Overl aps
SELECT nunrange(11.1, 22.2) && nunrange(20.0, 30.0);

-- Extract the upper bound
SELECT upper (i nt 8range(15, 25));

-- Compute the intersection
SELECT i nt4range(10, 20) * intd4range(15, 25);

-- |Is the range enpty?
SELECT i senpty(nunrange(1, 5));

See Table 9.53 and Table 9.55 for complete lists of operators and functions on range types.

8.17.3. Inclusive and Exclusive Bounds

Every non-empty range has two bounds, the lower bound and the upper bound. All points between these
values are included in the range. An inclusive bound means that the boundary point itself isincluded in
the range as well, while an exclusive bound means that the boundary point is not included in the range.

In thetext form of arange, aninclusive lower bound isrepresented by “[" while an exclusive lower bound
isrepresented by “(. Likewise, an inclusive upper bound isrepresented by “] ", while an exclusive upper
bound is represented by “) ”. (See Section 8.17.5 for more details.)

Thefunctions| ower _i nc andupper _i nc test theinclusivity of the lower and upper bounds of arange
value, respectively.

8.17.4. Infinite (Unbounded) Ranges

Thelower bound of arange can be omitted, meaning that all valueslessthan the upper bound areincluded
intherange, e.g., (, 3] . Likewise, if the upper bound of the range is omitted, then all values greater than
the lower bound are included in the range. If both lower and upper bounds are omitted, all values of the
element type are considered to be in the range. Specifying a missing bound as inclusive is automatically
convertedto exclusive, eg., [,] isconvertedto(,) . You canthink of these missing values as +/-infinity,
but they are specia range type values and are considered to be beyond any range element type's +/-infinity
values.

Element types that have the notion of “infinity” can use them as explicit bound values. For example, with
timestamp ranges, [t oday, i nfi ni ty) excludes the special ti mest anp valuei nfi nity, while
[today, i nfinity] includeit, asdoes[t oday,) and[t oday,] .

Thefunctions| ower _i nf and upper _i nf test for infinite lower and upper bounds of arange, respec-
tively.

8.17.5. Range Input/Output

Theinput for arange value must follow one of the following patterns:

215

Data Types

(1 ower - bound, upper - bound)
(1 ower - bound, upper - bound]
[ower - bound, upper - bound)
[| ower - bound, upper - bound]

enpty

The parentheses or brackets indicate whether the lower and upper bounds are exclusive or inclusive, as
described previously. Notice that the final pattern is enpt y, which represents an empty range (a range
that contains no points).

The | ower - bound may be either a string that is valid input for the subtype, or empty to indicate no
lower bound. Likewise, upper - bound may be either astring that isvalid input for the subtype, or empty
to indicate no upper bound.

Each bound value can be quoted using " (double quote) characters. This is necessary if the bound value
contains parentheses, brackets, commas, double quotes, or backslashes, since these characters would oth-
erwise be taken as part of the range syntax. To put a double quote or backslash in a quoted bound value,
precede it with a backslash. (Also, a pair of double quotes within a double-quoted bound value is taken
to represent a double quote character, analogously to the rules for single quotes in SQL literal strings.)
Alternatively, you can avoid quoting and use backslash-escaping to protect al data characters that would
otherwise be taken as range syntax. Also, to write a bound value that is an empty string, write" ", since
writing nothing means an infinite bound.

Whitespace is alowed before and after the range value, but any whitespace between the parentheses or
brackets is taken as part of the lower or upper bound value. (Depending on the element type, it might or
might not be significant.)

Note

These rules are very similar to those for writing field values in composite-type literals. See Sec-
tion 8.16.6 for additional commentary.

Examples:

-- includes 3, does not include 7, and does include all points in
bet ween
SELECT '[3,7)'::intdrange;

-- does not include either 3 or 7, but includes all points in between
SELECT ' (3,7)'::intdrange;

-- includes only the single point 4

SELECT '[4,4]'::intdrange;
-- includes no points (and will be nornalized to 'enpty')
SELECT '[4,4)'::intdrange;

Theinput for amultirangeis curly brackets ({ and }) containing zero or more valid ranges, separated by
commas. Whitespace is permitted around the brackets and commas. Thisisintended to be reminiscent of
array syntax, although multiranges are much simpler: they have just one dimension and there is no need
to quote their contents. (The bounds of their ranges may be quoted as above however.)

216

Data Types

Examples:

SELECT '{}'::intdnultirange;
SELECT '{[3,7)}'::int4multirange;
SELECT '{[3,7), [8,9)} ::intdmultirange;

8.17.6. Constructing Ranges and Multiranges

Each range type has a constructor function with the same name as the range type. Using the constructor
function is frequently more convenient than writing a range literal constant, since it avoids the need for
extra quoting of the bound values. The constructor function accepts two or three arguments. The two-
argument form constructs arange in standard form (lower bound inclusive, upper bound exclusive), while
the three-argument form constructs a range with bounds of the form specified by the third argument. The
third argument must be one of the strings“() ", “(]1”,“[) ", or “[] ”. For example:

-- The full formis: |ower bound, upper bound, and text argunent
i ndi cating

-- inclusivity/exclusivity of bounds.

SELECT nunrange(1.0, 14.0, '(]');

-- If the third argunent is omtted, '[)' is assuned.
SELECT nunr ange(1.0, 14.0);

-- Although '(]" is specified here, on display the value will be
converted to

-- canonical form since int8range is a discrete range type (see
bel ow) .

SELECT int8range(1, 14, '(]');

-- Using NULL for either bound causes the range to be unbounded on
t hat side.
SELECT nunr ange(NULL, 2.2);

Each range type also has a multirange constructor with the same name as the multirange type. The con-
structor function takes zero or more arguments which are all ranges of the appropriate type. For example:

SELECT nummul tirange();
SELECT numul tirange(nunrange(1.0, 14.0));
SELECT nummul tirange(nunrange(1.0, 14.0), nunrange(20.0, 25.0));

8.17.7. Discrete Range Types

A discrete range is one whose element type has a well-defined “step”, such asi nt eger or dat e. In
these types two elements can be said to be adjacent, when there are no valid values between them. This
contrasts with continuous ranges, where it's always (or amost always) possible to identify other element
values between two given values. For example, arangeover thenurmer i ¢ typeiscontinuous, asisarange
overt i nmest anp. (Eventhought i mest anp haslimited precision, and so could theoretically be treated
as discrete, it's better to consider it continuous since the step size is normally not of interest.)

Another way to think about a discrete range type is that there is a clear idea of a “next” or “previous’
value for each element value. Knowing that, it is possible to convert between inclusive and exclusive

217

Data Types

representations of a range's bounds, by choosing the next or previous element value instead of the one
originally given. For example, in aninteger rangetype[4, 8] and (3, 9) denote the same set of values,
but this would not be so for arange over numeric.

A discrete range type should have a canonicalization function that is aware of the desired step size for the
element type. The canonicalization function is charged with converting equivalent values of therange type
to have identical representations, in particular consistently inclusive or exclusive bounds. If a canonical-
ization function is not specified, then ranges with different formatting will always be treated as unequal,
even though they might represent the same set of valuesin redlity.

The built-in range typesi nt 4r ange, i nt 8r ange, and dat er ange al use a canonical form that in-
cludes the lower bound and excludes the upper bound; that is, [) . User-defined range types can use other
conventions, however.

8.17.8. Defining New Range Types

Users can define their own range types. The most common reason to do thisisto use ranges over subtypes
not provided among the built-in range types. For example, to define anew range type of subtypef | oat 8:

CREATE TYPE fl oatrange AS RANGE (
subtype = fl oat8,
subtype_diff = fl oat8m

);

SELECT '[1.234, 5.678]'::floatrange;

Becausef | oat 8 has no meaningful “step”, we do not define acanonicalization function in this example.
When you define your own range you automatically get a corresponding multirange type.

Defining your own range type also alows you to specify a different subtype B-tree operator class or
collation to use, so as to change the sort ordering that determines which values fall into a given range.

If the subtype is considered to have discrete rather than continuous values, the CREATE TYPE command
should specify a canoni cal function. The canonicalization function takes an input range value, and
must return an equivalent range value that may have different bounds and formatting. The canonical output
for two ranges that represent the same set of values, for example the integer ranges[1, 7] and[1,
8) , must beidentical. It doesn't matter which representation you choose to be the canonical one, so long
as two equivalent values with different formattings are always mapped to the same value with the same
formatting. In addition to adjusting the inclusive/exclusive bounds format, a canonicalization function
might round off boundary values, in case the desired step size is larger than what the subtype is capable
of storing. For instance, arangetype over t i mest anp could be defined to have a step size of an hour,
in which case the canonicalization function would need to round off bounds that weren't a multiple of an
hour, or perhaps throw an error instead.

In addition, any range type that is meant to be used with GiST or SP-GiST indexes should define a subtype
difference, or subt ype_di f f, function. (The index will still work without subt ype_di ff, butitis
likely to be considerably less efficient than if a difference function is provided.) The subtype difference
function takes two input values of the subtype, and returns their difference (i.e., X minus Y) represented
asafl oat 8 value. In our example above, the function f | oat 8mi that underlies the regular f | oat 8
minus operator can be used; but for any other subtype, some type conversion would be necessary. Some
creative thought about how to represent differences as numbers might be needed, too. To the greatest
extent possible, thesubt ype_di f f function should agree with the sort ordering implied by the selected

218

Data Types

operator classand collation; that is, its result should be positive whenever itsfirst argument is greater than
its second according to the sort ordering.

A less-oversimplified example of asubt ype_di f f functionis:

CREATE FUNCTION time_subtype diff(x tine, y tine) RETURNS float8 AS
' SELECT EXTRACT(EPOCH FROM (x - y))' LANGUAGE sql STRICT | MMUTABLE;

CREATE TYPE tinmerange AS RANGE (
subtype = tine,
subtype diff = tine_subtype diff
)

SELECT '[11:10, 23:00]'::tinerange;

See CREATE TYPE for more information about creating range types.

8.17.9. Indexing

GiST and SP-GiST indexes can be created for table columns of range types. GiST indexes can be also
created for table columns of multirange types. For instance, to create a GiST index:

CREATE | NDEX reservation_idx ON reservation USING G ST (during);

A GIST or SP-GiST index on ranges can accelerate queries involving these range operators: =, &&, <@
@, <<,>>,-| -, &<, and &>. A GiST index on multiranges can accelerate queries involving the same
set of multirange operators. A GiST index on ranges and GiST index on multiranges can also accelerate
gueriesinvolving these cross-type range to multirange and multirange to range operators correspondingly:
&&, <@ @, <<,>>,-| -, &<, and &>. See Table 9.53 for more information.

In addition, B-tree and hash indexes can be created for table columns of range types. For theseindex types,
basicaly the only useful range operation is equality. There is a B-tree sort ordering defined for range
values, with corresponding < and > operators, but the ordering is rather arbitrary and not usually useful
in the real world. Range types B-tree and hash support is primarily meant to allow sorting and hashing
internally in queries, rather than creation of actual indexes.

8.17.10. Constraints on Ranges

While UNI QUE isanatural constraint for scalar values, it is usually unsuitable for range types. Instead, an
exclusion constraint is often more appropriate (see CREATE TABLE ... CONSTRAINT ... EXCLUDE).
Exclusion constraints allow the specification of constraints such as “non-overlapping” on a range type.
For example:

CREATE TABLE reservation (
during tsrange,
EXCLUDE USI NG G ST (during WTH &&)

)

That constraint will prevent any overlapping values from existing in the table at the same time:

219

Data Types

8.18

| NSERT | NTO reservati on VALUES
('[2010-01-01 11:30, 2010-01-01 15:00)');
I NSERT 0 1

| NSERT | NTO reservati on VALUES
('[2010-01-01 14:45, 2010-01-01 15:45)');

ERROR: conflicting key val ue viol ates excl usi on constraint
"reservation_during_excl"

DETAIL: Key (during)=(["2010-01-01 14:45:00","2010-01-01 15:45:00"))
conflicts

with existing key (during)=(["2010-01-01 11:30: 00", "2010-01-01
15: 00: 00")).

Youcanusethebt r ee_gi st extension to define exclusion constraints on plain scalar data types, which
can then be combined with range exclusions for maximum flexibility. For example, after bt r ee_gi st
isinstaled, the following constraint will reject overlapping ranges only if the meeting room numbers are

equal:

CREATE EXTENSI ON bt ree_gi st;
CREATE TABLE room reservation (
room t ext,
during tsrange,
EXCLUDE USING d ST (room WTH =, during WTH &&)

)

I NSERT | NTO room reservati on VALUES
("123A", '[2010-01-01 14:00, 2010-01-01 15:00)');
I NSERT 0 1

I NSERT | NTO room reservati on VALUES
("123A", '[2010-01-01 14:30, 2010-01-01 15:30)');

ERROR: conflicting key val ue viol ates excl usi on constraint
"roomreservation_roomduring_excl"

DETAIL: Key (room during)=(123A, ["2010-01-01 14:30: 00", "2010-01-01
15:30: 00")) conflicts

with existing key (room during)=(123A, ["2010-01-01
14:00: 00", "2010-01-01 15:00:00")).

I NSERT | NTO room reservati on VALUES
('123B', '[2010-01-01 14:30, 2010-01-01 15:30)');
I NSERT 0 1

Domain Types

A domain is a user-defined data type that is based on another underlying type. Optionaly, it can have
constraints that restrict its valid values to a subset of what the underlying type would allow. Otherwise
it behaves like the underlying type — for example, any operator or function that can be applied to the
underlying type will work on the domain type. The underlying type can be any built-in or user-defined
base type, enum type, array type, composite type, range type, or another domain.

For example, we could create a domain over integers that accepts only positive integers:

220

Data Types

8.19

CREATE DOMWAI N posint AS integer CHECK (VALUE > 0);
CREATE TABLE mytable (id posint);

| NSERT | NTO nyt abl e VALUES(1); -- works

| NSERT | NTO nytable VALUES(-1); -- fails

When an operator or function of the underlying type is applied to adomain value, the domain is automati-
cally down-cast to the underlying type. Thus, for example, theresult of myt abl e. i d - 1 isconsidered
to be of type i nt eger not posi nt . We could write (nytable.id - 1)::posint to castthe
result back to posi nt , causing the domain's constraints to be rechecked. In this case, that would result
in an error if the expression had been applied to an i d value of 1. Assigning a value of the underlying
typeto afield or variable of the domain type is allowed without writing an explicit cast, but the domain's
constraints will be checked.

For additional information see CREATE DOMAIN.

Object Identifier Types

Object identifiers (OIDs) are used internally by PostgreSQL as primary keys for various system tables.
Type oi d represents an object identifier. There are also several aias types for oi d, each named r eg-
sormet hi ng. Table 8.26 shows an overview.

Theoi d typeiscurrently implemented as an unsigned four-byte integer. Therefore, it is not large enough
to provide database-wide uniqueness in large databases, or even in large individual tables.

The oi d typeitself has few operations beyond comparison. It can be cast to integer, however, and then
mani pulated using the standard integer operators. (Beware of possible signed-versus-unsigned confusion
if you do this.)

TheOID aiastypeshave no operations of their own except for specialized input and output routines. These
routines are able to accept and display symbolic names for system objects, rather than the raw numeric
value that type oi d would use. The alias types allow simplified lookup of OID values for objects. For
example, to examinethepg_at t ri but e rowsrelated to atable nyt abl e, one could write:

SELECT * FROM pg_attribute WHERE attrelid = 'nmytable'::regcl ass;

rather than:

SELECT * FROM pg_attribute
WHERE attrelid = (SELECT oid FROM pg_cl ass WHERE rel nane =
"nytable');

While that doesn't look all that bad by itself, it's still oversimplified. A far more complicated sub-select
would be needed to select theright OID if there are multiple tablesnamed myt abl e in different schemas.
Ther egcl ass input converter handles the table lookup according to the schema path setting, and so it
doesthe “right thing” automatically. Similarly, casting atable'sOID tor egcl ass ishandy for symbolic
display of anumeric OID.

Table 8.26. Object Identifier Types

Name References Description Value Example
oid any numeric object identifier |564182

221

Data Types

Name References Description Value Example
regcl ass pg_cl ass relation name pg_type
regcol |l ation pg_col lation collation name " PCSI X!
regconfig pg_ts_config text search configuration|engl i sh
regdi ctionary pg_ts_dict text search dictionary sinpl e
regnanmespace pg_nanespace namespace name pg_cat al og
regoper pg_oper at or operator name +

r egoper at or

pg_oper at or

operator with argument
types

*(integer,inte-
ger) or- (NONE, i n-
teger)

regproc pg_proc function name sum

r egpr ocedur e pg_pr oc function with argument [sun{i nt 4)
types

regrol e pg_aut hid role name sm t hee

regtype pg_type data type name i nt eger

All of the OID dliastypes for objects that are grouped by namespace accept schema-qualified names, and
will display schema-qualified names on output if the object would not be found in the current search path
without being qualified. For example, nyschena. myt abl e isacceptableinput forr egcl ass (if there
issuch atable). That value might beoutput asnyschena. myt abl e, orjust nyt abl e, depending onthe
current search path. Ther egpr oc andr egoper diastypeswill only accept input namesthat are unique
(not overloaded), so they are of limited use; for most usesr egpr ocedur e or r egoper at or are more
appropriate. For r egoper at or , unary operators are identified by writing NONE for the unused operand.

The input functions for these types allow whitespace between tokens, and will fold upper-case |etters to
lower case, except within double quotes; this is done to make the syntax rules similar to the way object
names are written in SQL. Conversely, the output functions will use double quotesif needed to make the
output beavalid SQL identifier. For example, the OID of afunction named Foo (with upper case F) taking
two integer arguments could beenteredas' " Foo" (int, integer) '::regprocedure.
The output would look like " Foo" (i nt eger, i nt eger) . Both the function name and the argument
type names could be schema-qualified, too.

Many built-in PostgreSQL functions accept the OID of atable, or another kind of database object, and for
convenience are declared as taking r egcl ass (or the appropriate OID alias type). This means you do
not have to look up the object's OID by hand, but can just enter its name as a string literal. For example,
thenext val (regcl ass) function takes a sequence relation's OID, so you could call it like this:

nextval (' foo') operates on sequence foo

nextval (' FOO) sane as above
nextval (' "Foo"") operates on sequence Foo
next val (' myschena. f 00') operates on nyschema. f oo
nextval (' "nyschema". foo0") sane as above

nextval (' foo') searches search path for foo

Note

When you write the argument of such afunction as an unadorned literal string, it becomes a con-
stant of typer egcl ass (or the appropriate type). Sincethisisrealy just an OID, it will track the

222

Data Types

originally identified object despite later renaming, schemareassignment, etc. This*“early binding”
behavior is usually desirable for object references in column defaults and views. But sometimes
you might want “late binding” where the object reference isresolved at runtime. To get late-bind-
ing behavior, force the constant to be stored asat ext constant instead of r egcl ass:

nextval (' foo'::text) foo is | ooked up at runtine

Thet o_regcl ass() function and its siblings can also be used to perform run-time lookups.
See Table 9.70.

Another practical example of use of r egcl ass istolook up the OID of atablelisted inthei nf or ma-

ti on_schena views, which don't supply such OIDs directly. One might for example wish to call the
pg_rel ation_si ze() function, which requires the table OID. Taking the above rules into account,
the correct way to do that is

SELECT t abl e_schemm, tabl e _nane,
pg_relation_size((quote_ident(table_schema) || "." |]
guot e_i dent (tabl e_nane))::regcl ass)
FROM i nf or mati on_schensa. t abl es
VWHERE . ..

Thequot e_i dent () functionwill take care of double-quoting the identifierswhere needed. The seem-
ingly easier

SELECT pg_rel ation_size(tabl e_nane)
FROM i nf or mati on_schensa. t abl es
VWHERE . ..

is not recommended, because it will fail for tables that are outside your search path or have names that
require quoting.

An additional property of most of the OID alias types is the creation of dependencies. If a constant
of one of these types appears in a stored expression (such as a column default expression or view),
it creates a dependency on the referenced object. For example, if a column has a default expression
nextval (' my_seq' ::regcl ass), PostgreSQL understands that the default expression depends on
the sequence nmy_seq, so the system will not let the sequence be dropped without first removing the
default expression. The alternative of next val (' my_seq' : : t ext) does not create a dependency.
(r egr ol e isan exception to this property. Constants of thistype are not allowed in stored expressions.)

Another identifier type used by the system isxi d, or transaction (abbreviated xact) identifier. Thisisthe
data type of the system columns xni n and xmax. Transaction identifiers are 32-bit quantities. In some
contexts, a 64-bit variant xi d8 isused. Unlike xi d values, xi d8 values increase strictly monotonically
and cannot be reused in the lifetime of a database cluster.

A third identifier type used by the systemisci d, or command identifier. Thisisthe datatype of the system
columnscni n and cmax. Command identifiers are also 32-bit quantities.

A final identifier type used by the systemist i d, or tuple identifier (row identifier). Thisisthe datatype
of the system column ct i d. A tuple ID isapair (block number, tuple index within block) that identifies
the physical location of the row within itstable.

223

Data Types

8.20.

8.21.

(The system columns are further explained in Section 5.5.)

pPg | sn Type

The pg_I sn data type can be used to store LSN (Log Sequence Number) data which is a pointer to
alocation in the WAL. This type is a representation of XLogRecPt r and an internal system type of

PostgreSQL .

Internally, an LSN isa64-hit integer, representing abyte positionin thewrite-ahead log stream. It isprinted
as two hexadecimal numbers of up to 8 digits each, separated by a slash; for example, 16/ B374D848.
Thepg_| sn type supports the standard comparison operators, like = and >. Two L SNs can be subtracted
using the - operator; the result is the number of bytes separating those write-ahead log locations. Also
the number of bytes can be added into and subtracted from LSN using the +(pg_| sn, nuneri c¢) and
-(pg_l sn, nurreri c) operators, respectively. Note that the calculated LSN should be in the range of
pg_| sn type, i.e., between 0/ 0 and FFFFFFFF/ FFFFFFFF.

Pseudo-Types

The PostgreSQL type system contains a number of special-purpose entries that are collectively called
pseudo-types. A pseudo-type cannot be used as a column data type, but it can be used to declare a func-
tion's argument or result type. Each of the available pseudo-typesis useful in situations where afunction's
behavior does not correspond to simply taking or returning avalue of a specific SQL datatype. Table 8.27
lists the existing pseudo-types.

Table 8.27. Pseudo-Types

Name Description

any Indicates that a function accepts any input data type.

anyel enent Indicates that a function accepts any data type (see Sec-
tion 38.2.5).

anyarray Indicates that a function accepts any array data type (see Sec-
tion 38.2.5).

anynonarr ay Indicates that a function accepts any non-array datatype (see
Section 38.2.5).

anyenum Indicates that a function accepts any enum data type (see
Section 38.2.5 and Section 8.7).

anyr ange Indicates that a function accepts any range data type (see
Section 38.2.5 and Section 8.17).

anymul ti range Indicates that a function accepts any multirange data type
(see Section 38.2.5 and Section 8.17).

anyconpati bl e Indicates that a function accepts any data type, with automat-
ic promotion of multiple arguments to a common data type
(see Section 38.2.5).

anyconpati bl earray Indicates that a function accepts any array data type, with au-
tomatic promotion of multiple arguments to a common data
type (see Section 38.2.5).

anyconpati bl enonar r ay Indicates that a function accepts any non-array datatype,
with automatic promotion of multiple arguments to a com-
mon data type (see Section 38.2.5).

224

Data Types

Name

Description

anyconpati bl er ange

Indicates that a function accepts any range data type, with au-
tomatic promotion of multiple arguments to a common data
type (see Section 38.2.5 and Section 8.17).

anyconpati bl emul ti range

Indicates that a function accepts any multirange data type,
with automatic promotion of multiple arguments to a com-
mon data type (see Section 38.2.5 and Section 8.17).

cstring Indicates that a function accepts or returns a null-terminated
C string.
i nternal Indicates that a function accepts or returns a server-internal

datatype.

| anguage_handl er

A procedural language call handler is declared to return
| anguage_handl er.

fdw_handl er

A foreign-data wrapper handler is declared to return f d-
w_handl er.

t abl e_am handl er

A table access method handler is declared to returnt a-
bl e_am handl er.

i ndex_am handl er

An index access method handler isdeclared to returni n-
dex_am handl er.

t sm handl er

A tablesample method handler is declared to return
t sm handl er.

record Identifies a function taking or returning an unspecified row
type.
trigger A trigger function isdeclared toreturnt ri gger .

event _trigger

An event trigger function is declared to return even-
t_trigger.

pg_ddl _command

I dentifies a representation of DDL commandsthat is avail-
able to event triggers.

voi d

Indicates that a function returns no value.

unknown

| dentifies a not-yet-resolved type, e.g., of an undecorated
string literal.

Functions coded in C (whether built-in or dynamically loaded) can be declared to accept or return any of
these pseudo-types. It is up to the function author to ensure that the function will behave safely when a
pseudo-typeis used as an argument type.

Functions coded in procedural languages can use pseudo-types only as allowed by their implementation
languages. At present most procedural languages forbid use of a pseudo-type as an argument type, and
allow only voi d and r ecor d asaresult type (plust ri gger or event _t ri gger when the function
is used as a trigger or event trigger). Some also support polymorphic functions using the polymorphic
pseudo-types, which are shown above and discussed in detail in Section 38.2.5.

Thei nt er nal pseudo-type is used to declare functions that are meant only to be called internally by
the database system, and not by direct invocation in an SQL query. If afunction has at least onei nt er -

nal -type argument then it cannot be called from SQL. To preserve the type safety of this restriction it
is important to follow this coding rule: do not create any function that is declared to return i nt er nal

unlessit has at least onei nt er nal argument.

225

Chapter 9. Functions and Operators

PostgreSQL provides a large number of functions and operators for the built-in data types. This chapter
describes most of them, although additional special-purpose functions appear in relevant sections of the
manual. Users can also define their own functions and operators, as described in Part V. The psgl com-
mands\ df and\ do can be used to list all available functions and operators, respectively.

The notation used throughout this chapter to describe the argument and result data types of a function or
operator islikethis:

repeat (text, integer) - text

which says that the function r epeat takes one text and oneinteger argument and returns aresult of type
text. Theright arrow is aso used to indicate the result of an example, thus:

repeat (' Pg', 4) - PgPgPgPg

If you are concerned about portability then note that most of the functions and operators described in this
chapter, with the exception of the most trivial arithmetic and comparison operators and some explicitly
marked functions, are not specified by the SQL standard. Some of this extended functionality is present in
other SQL database management systems, and in many casesthisfunctionality iscompatible and consistent
between the various implementations.

9.1. Logical Operators

The usual logical operators are available:

bool ean AND bool ean - bool ean
bool ean OR bool ean - bool ean
NOT bool ean - bool ean

SQL uses athree-valued logic system with true, false, and nul | , which represents “unknown”. Observe
the following truth tables:

a b aANDDb aORb
TRUE TRUE TRUE TRUE
TRUE FALSE FALSE TRUE
TRUE NULL NULL TRUE
FALSE FALSE FALSE FALSE
FALSE NULL FALSE NULL
NULL NULL NULL NULL
a NOT a

TRUE FALSE

226

Functions and Operators

a NOT a
FALSE TRUE
NULL NULL

The operators AND and OR are commutative, that is, you can switch the left and right operands without af -
fecting theresult. (However, it isnot guaranteed that the left operand is evaluated before the right operand.
See Section 4.2.14 for more information about the order of evaluation of subexpressions.)

9.2. Comparison Functions and Operators

The usual comparison operators are available, as shown in Table 9.1.

Table 9.1. Comparison Operators

Operator Description
dat at ype < dat at ype — bool ean Less than
dat at ype > dat at ype - bool ean Greater than
dat at ype <= dat at ype — bool ean Less than or equal to
dat at ype >=dat at ype — bool ean Greater than or equal to
dat at ype = dat at ype — bool ean Equal
dat at ype <> dat at ype — bool ean Not equal
dat at ype ! = dat at ype — bool ean Not equal
Note
<> js the standard SQL notation for “not equal”. ! = is an alias, which is converted to <> at a

very early stage of parsing. Hence, it is not possible to implement ! = and <> operators that do
different things.

These comparison operators are available for al built-in datatypes that have anatural ordering, including
numeric, string, and date/time types. In addition, arrays, composite types, and ranges can be compared if
their component data types are comparable.

It isusually possible to compare values of related data types as well; for example i nt eger > bi gi nt
will work. Some cases of this sort are implemented directly by “cross-type” comparison operators, but
if no such operator is available, the parser will coerce the less-general type to the more-general type and
apply the latter's comparison operator.

Asshown above, al comparison operators are binary operatorsthat return values of typebool ean. Thus,
expressionslikel < 2 < 3 arenot valid (because there is no < operator to compare a Boolean value
with 3). Use the BETWEEN predi cates shown below to perform range tests.

There are also some comparison predicates, as shown in Table 9.2. These behave much like operators, but
have special syntax mandated by the SQL standard.

227

Functions and Operators

Table 9.2. Comparison Predicates

Predicate
Description
Example(s)

dat at ype BETWEEN dat at ype ANDdat at ype - bool ean
Between (inclusive of the range endpoints).

2 BETWEEN 1 AND 3 -t
2 BETWEEN 3 AND 1 - f

dat at ype NOT BETWEENdat at ype ANDdat at ype — bool ean
Not between (the negation of BETVEEEN).

2 NOT BETWEEN 1 AND 3 - f

dat at ype BETVWVEEN SYMVETRI Cdat at ype ANDdat at ype - bool ean
Between, after sorting the two endpoint values.

2 BETWEEN SYMMETRIC 3 AND 1 -t

dat at ype NOT BETWEEN SYMVETRI Cdat at ype ANDdat at ype — bool ean
Not between, after sorting the two endpoint values.

2 NOT BETWEEN SYMVETRIC 3 AND 1 - f

dat atype | S DI STI NCT FROMdat at ype - bool ean
Not equal, treating null as a comparable value.

1 1S DI STINCT FROM NULL — t (rather than NULL)
NULL 1S DI STI NCT FROM NULL - f (rather than NULL)

dat atype | S NOT DI STI NCT FROMdat at ype — bool ean
Equal, treating null as a comparable value.

1 1'S NOT DI STINCT FROM NULL - f (rather than NULL)
NULL 1S NOT DI STINCT FROM NULL — t (rather than NULL)

datatype | S NULL - bool ean
Test whether value is null.

1.5 1S NULL - f

datatype | S NOT NULL - bool ean
Test whether value is not null.

"null" 1S NOT NULL -t

dat at ype | SNULL - bool ean
Test whether value is null (nonstandard syntax).

dat at ype NOTNULL — bool ean
Test whether value is not null (nonstandard syntax).

bool ean| S TRUE - bool ean
Test whether boolean expression yields true.

true IS TRUE - t
NULL: : bool ean | S TRUE - f (rather than NULL)

bool ean| S NOT TRUE - bool ean

228

Functions and Operators

Predicate
Description
Example(s)
Test whether boolean expression yields false or unknown.
true IS NOT TRUE - f

NULL: : bool ean 1S NOT TRUE - t (rather than NULL)

bool ean| S FALSE - bool ean
Test whether boolean expression yields false.

true I'S FALSE - f
NULL: : bool ean | S FALSE - f (rather than NULL)

bool ean| S NOT FALSE - bool ean
Test whether boolean expression yields true or unknown.

true IS NOT FALSE -t
NULL: : bool ean IS NOT FALSE - t (rather than NULL)

bool ean| S UNKNOWN - bool ean
Test whether boolean expression yields unknown.

true 1'S UNKNOWN - f
NULL: : bool ean | S UNKNOMN - t (rather than NULL)

bool ean1 S NOT UNKNOWN - bool ean
Test whether boolean expression yields true or false.

true 1'S NOT UNKNOM - t
NULL: : bool ean |'S NOT UNKNOWN - f (rather than NULL)

The BETWEEN predicate simplifies range tests:

a BETWEEN x AND y

isequivalent to

a > x AND a <=y

Notice that BETWEEN treats the endpoint values asincluded in therange. BETWEEN SYMVETRI Cislike
BETWEEN except there is no requirement that the argument to the left of AND be less than or equal to the
argument on the right. If it is not, those two arguments are automatically swapped, so that a nonempty
rangeisawaysimplied.

The various variants of BETWEEN are implemented in terms of the ordinary comparison operators, and
therefore will work for any data type(s) that can be compared.

Note

The use of AND in the BETWEEN syntax creates an ambiguity with the use of AND as a logical
operator. Toresolvethis, only alimited set of expression typesare allowed as the second argument
of a BETVEEEN clause. If you need to write a more complex sub-expression in BETVEEEN, write
parentheses around the sub-expression.

229

Functions and Operators

Ordinary comparison operatorsyield null (signifying “unknown”), not true or false, when either input is
null. For example, 7 = NULL yieldsnull, asdoes7 <> NULL. When this behavior is not suitable, use
thel S [NOT] DI STI NCT FROMpredicates:

a |'S DI STINCT FROM b
a |'S NOT DI STINCT FROM b

For non-null inputs, | S DI STI NCT FROMis the same as the <> operator. However, if both inputs are
null it returns false, and if only oneinput is null it returns true. Similarly, | S NOT DI STI NCT FROM
isidentical to = for non-null inputs, but it returns true when both inputs are null, and false when only one
input is null. Thus, these predicates effectively act as though null were a normal data value, rather than
“unknown”.

To check whether avalueisor is not null, use the predicates:
expression IS NULL
expression |'S NOT NULL
or the equivalent, but nonstandard, predicates:

expression | SNULL
expressi on NOTNULL

Do not writeexpr essi on = NULL because NULL isnot “equal to” NULL. (The null value represents
an unknown value, and it is not known whether two unknown values are equal.)

Tip

Some applications might expect that expr essi on = NULL returnstrueif expr essi on eval-
uates to the null value. It is highly recommended that these applications be modified to comply
with the SQL standard. However, if that cannot be done the transform_null_equals configuration
variableisavailable. If it isenabled, PostgreSQL will convert x = NULL clausestox |'S NULL.

If theexpr essi on isrow-valued, then| S NULL istrue when the row expression itself is null or when
all therow'sfieldsare null, whilel S NOT NULL istrue when the row expression itself is non-null and
all the row's fields are non-null. Because of thisbehavior, | S NULL and | S NOT NULL do not always
return inverse results for row-valued expressions; in particular, arow-valued expression that contains both
null and non-null fields will return false for both tests. In some cases, it may be preferable to write r ow
I'S DI STINCT FROM NULL orrowl S NOT DI STI NCT FROM NULL, which will simply check
whether the overall row value is null without any additional tests on the row fields.

Boolean values can also be tested using the predicates

bool ean_expression 1S TRUE

bool ean_expression 1S NOT TRUE
bool ean_expression | S FALSE

bool ean_expression 1S NOT FALSE
bool ean_expression 1S UNKNOAN
bool ean_expressi on 1S NOT UNKNOMN

230

Functions and Operators

These will always return true or false, never a null value, even when the operand is null. A null input is
treated asthelogical value“unknown”. Noticethat | S UNKNOANand | S NOT UNKNOWN are effectively
thesameas| S NULL and IS NOT NULL, respectively, except that the input expression must be of
Boolean type.

Some comparison-related functions are also available, as shown in Table 9.3.

Table 9.3. Comparison Functions

Function
Description
Example(s)

num nonnul | s (VARI ADI C"any") - i nt eger
Returns the number of non-null arguments.

num nonnul I s(1, NULL, 2) - 2

num nul | s (VARI ADI C"any") - i nt eger
Returns the number of null arguments.

num nul I s(1, NULL, 2) -1

9.3. Mathematical Functions and Operators

Mathematical operatorsare provided for many PostgreSQL types. For typeswithout standard mathematical
conventions (e.g., date/time types) we describe the actual behavior in subsequent sections.

Table 9.4 shows the mathematical operators that are available for the standard numeric types. Unless oth-
erwise noted, operators shown as accepting nuner i ¢_t ype areavailable for all thetypessmal | i nt,
i nt eger, bi gi nt,nuneric,real ,anddoubl e preci si on. Operators shown as accepting i n-
tegral _type areavailable for thetypessnal | i nt, i nt eger, and bi gi nt . Except where noted,
each form of an operator returns the same datatype as its argument(s). Callsinvolving multiple argument
datatypes, such asi nt eger + nuneri ¢, areresolved by using the type appearing later in these lists.

Table 9.4. Mathematical Operators

Operator
Description
Example(s)

nuneric_type+nuneric_type - nuneric_type
Addition

2 +3-55

+nuneric_type - nuneric_type
Unary plus (no operation)

+3.5-3.5

nuneric_type- numeric_type - nunmeric_type
Subtraction
2-3-5-1

- nuneric_type - nuneric_type
Negation
- (-4) -4

231

Functions and Operators

Operator
Description
Example(s)

nuneric_type* numeric_type - nuneric_type
Multiplication
2* 3.6

nuneric_type/ numeric_type - numeric_type
Division (for integral types, division truncates the result towards zero)

5.0 / 2 - 2.5000000000000000
5/ 2.2
(-5) | 2 -2

nuneric_type %nuneri c_type - nunmeric_type
Modulo (remainder); availablefor smal | i nt ,i nt eger, bi gi nt,and nuneri c
5 %4 -1

Nnuneri c” nuneri ¢ — nuneric

doubl e precision”double precision - double precision
Exponentiation
2"r3-.8
Unlike typical mathematical practice, multiple uses of * will associate |eft to right by default:
2 N3 N"N 35512
2 N (3" 3) 5134217728

| / doubl e precision - doubl e precision
Square root

|/ 25.0 -5

| |/ doubl e precision - doubl e precision
Cube root

||/ 64.0 - 4

@nuneric_type - nuneric_type
Absolute value

integral type&integral type - integral _type
Bitwise AND
91 & 15 - 11

integral _type| integral _type - integral _type
Bitwise OR
32 | 3535

integral type#integral type - integral type
Bitwise exclusive OR
17 # 5 - 20

~integral _type - integral type

232

Functions and Operators

Operator
Description
Example(s)
Bitwise NOT
"'1 - - 2

integral type<<integer - integral type
Bitwise shift left
1 << 4-16

integral _type>>integer - integral _type
Bitwise shift right
8 > 2.2

Table 9.5 shows the available mathematical functions. Many of these functions are provided in multiple
forms with different argument types. Except where noted, any given form of a function returns the same
datatypeasitsargument(s); cross-type cases are resolved in the sameway asexplained abovefor operators.
The functions working with doubl e pr eci si on data are mostly implemented on top of the host sys-
tem's C library; accuracy and behavior in boundary cases can therefore vary depending on the host system.

Table 9.5. Mathematical Functions

Function
Description
Example(s)

abs (nuneric_type) - nuneric_type
Absolute value
abs(-17.4) - 17.4

cbrt (doubl e precision) - doubl e precision
Cube root

cbrt(64.0) - 4

ceil (numeric) - numeric

ceil (doubl e precision) - doubl e precision
Nearest integer greater than or equal to argument

ceil (42.2) - 43
ceil (-42.8) - -42

ceiling(nuneric) - numeric

ceiling(double precision) - doubl e precision
Nearest integer greater than or equal to argument (sameascei |)

ceiling(95.3) - 96

degrees (doubl e precision) - doubl e precision
Converts radians to degrees

degrees(0.5) - 28.64788975654116

di v (y numeric,x nuneric) - numeric
Integer quotient of y/x (truncates towards zero)

div(9, 4) -2

233

Functions and Operators

Function
Description
Example(s)

exp (nuneric) - nuneric

exp (doubl e precision) - doubl e precision
Exponential (e raised to the given power)

exp(1.0) - 2.7182818284590452

factorial (bigint) - numeric
Factorial

factorial (5) - 120

floor (numeric) - nuneric

floor (doubl e precision) - double precision
Nearest integer less than or equal to argument

floor(42.8) - 42
floor(-42.8) - -43

gcd (nuneri c_type,nunmeric_type) - nuneric_type
Greatest common divisor (the largest positive number that divides both inputs with no re-
mainder); returns O if both inputs are zero; available for i nt eger , bi gi nt, and nuneri c

gcd(1071, 462) - 21

I cm(nuneric_type,nuneric_type) - nunmeric_type
Least common multiple (the smallest strictly positive number that is an integral multiple of
both inputs); returns O if either input is zero; available for i nt eger, bi gi nt, and nuner -
ic
lcm(1071, 462) - 23562

I n(nunmeric) - nuneric

I n (doubl e precision) - doubl e precision
Natural logarithm

[n(2.0) - 0.6931471805599453

| og (nuneric) -» nuneric

| og (doubl e precision) - doubl e precision
Base 10 logarithm

| 0g(100) - 2

| 0g10 (nuneric) - nuneric

| 0g10 (doubl e precision) - doubl e precision
Base 10 logarithm (same as| 0og)

| 0g10(1000) - 3

| og (b nuneric,xnuneric) - nuneric
Logarithm of x to base b

| 0g(2.0, 64.0) — 6.0000000000

m n_scal e (nunmeric) - i nteger

234

Functions and Operators

Function
Description
Example(s)

Minimum scale (number of fractional decimal digits) needed to represent the supplied value
precisely
m n_scal e(8.4100) - 2

nmod (y nuneric_type,x nuneric_type) - nuneric_type
Remainder of y/x; availablefor smal | i nt,i nt eger, bi gi nt,and nuneri c
nod(9, 4) -1

pi () - doubl e precision
Approximate value of Tt
pi () - 3.141592653589793

power (anuneric,bnuneric) - numeric

power (adoubl e precision,bdouble precision) - double precision
a raised to the power of b

power (9, 3) - 729

radi ans (doubl e precision) - doubl e precision
Converts degrees to radians

radi ans(45.0) - 0.7853981633974483

round (nuneric) - nuneric

round (doubl e precision) - doubl e precision
Rounds to nearest integer. For nuner i ¢, ties are broken by rounding away from zero. For
doubl e preci si on, thetie-breaking behavior is platform dependent, but “round to near-
est even” isthe most common rule.

round(42.4) - 42

round (v nuneric,sinteger) - nuneric
Rounds v to s decimal places. Ties are broken by rounding away from zero.

round(42. 4382, 2) - 42.44

scal e (nuneric) - i nteger
Scale of the argument (the number of decimal digitsin the fractional part)

scal e(8.4100) - 4

sign(numeric) - nuneric

si gn (doubl e precision) - doubl e precision
Sign of the argument (-1, 0, or +1)
sign(-8.4) - -1

sqrt (nunmeric) - nuneric

sqgrt (doubl e precision) - doubl e precision
Square root

sqrt(2) — 1.4142135623730951

trimscale(nunmeric) - numeric
Reduces the value's scale (number of fractional decimal digits) by removing trailing zeroes

235

Functions and Operators

Function
Description
Example(s)

trimscal e(8.4100) - 8.41

trunc (nuneric) - nuneric

trunc (doubl e precision) - doubl e precision
Truncates to integer (towards zero)

trunc(42.8) - 42
trunc(-42.8) - -42

trunc (v nuneric,sinteger) - nuneric
Truncatesv to s decimal places

trunc(42.4382, 2) - 42.43

wi dt h_bucket (operand numeric,| ownuneri c, hi gh nuneri c, count i nteger) -
i nt eger

wi dt h_bucket (operand doubl e preci si on,l owdoubl e preci si on, hi gh doubl e
preci si on,count i nteger) - i nteger
Returns the number of the bucket in which oper and fallsin a histogram having count
equal-width buckets spanning the range | owto hi gh. Returns0 or count +1 for an input
outside that range.

wi dt h_bucket (5. 35, 0.024, 10.06, 5) — 3

wi dt h_bucket (operand anyconpati bl e,t hreshol ds anyconpati bl earray) -
i nt eger
Returns the number of the bucket in which oper and falls given an array listing the lower
bounds of the buckets. Returns 0 for an input less than the first lower bound. oper and and
the array elements can be of any type having standard comparison operators. Thet hr esh-
ol ds array must be sorted, smallest first, or unexpected results will be obtained.
wi dt h_bucket (now(), array['yesterday', 'today', 'tonor-

row]::timestanmptz[]) - 2

Table 9.6 shows functions for generating random numbers.

Table 9.6. Random Functions

Function
Description
Example(s)

random() - doubl e precision
Returns arandom valuein therange 0.0 <=x < 1.0

random() - 0.897124072839091

set seed (doubl e precision) - void
Sets the seed for subsequent r andon) calls; argument must be between -1.0 and 1.0, inclu-
sive
set seed(0. 12345)

Ther andon{) function uses asimple linear congruential algorithm. It is fast but not suitable for cryp-
tographic applications; see the pgcrypto module for a more secure aternative. If set seed() iscaled,

236

Functions and Operators

the series of results of subsequent r andomn() callsin the current session can be repeated by re-issuing
set seed() with the same argument.

Table 9.7 shows the available trigonometric functions. Each of these functions comesin two variants, one
that measures angles in radians and one that measures angles in degrees.

Table9.7. Trigonometric Functions

Function
Description
Example(s)

acos (doubl e precision) - doubl e precision
Inverse cosing, result in radians

acos(1l) -0

acosd (doubl e precision) - doubl e precision
Inverse cosing, result in degrees

acosd(0.5) - 60

asi n (doubl e precision) - doubl e precision
Inverse sing, result in radians

asin(l) - 1.5707963267948966

asi nd (doubl e precision) - doubl e precision
Inverse sing, result in degrees

asind(0.5) - 30

at an (doubl e precision) - doubl e precision
Inverse tangent, result in radians

atan(1) - 0.7853981633974483

at and (doubl e precision) - doubl e precision
Inverse tangent, result in degrees

atand(1) - 45

at an2 (y doubl e precision,x doubl e precision) - doubl e precision
Inverse tangent of y/x, result in radians

atan2(1, 0) - 1.5707963267948966

at an2d (y doubl e precision,x doubl e precision) - double precision
Inverse tangent of y/x, result in degrees

atan2d(1, 0) - 90

cos (doubl e precision) - doubl e precision
Cosine, argument in radians

cos(0) -1

cosd (doubl e precision) - doubl e precision
Cosine, argument in degrees

cosd(60) - 0.5

cot (doubl e precision) - doubl e precision
Cotangent, argument in radians

237

Functions and Operators

Function
Description
Example(s)

cot (0.5) - 1.830487721712452

cotd (doubl e precision) - doubl e precision
Cotangent, argument in degrees

cotd(45) -1

sin (doubl e precision) - doubl e precision
Sine, argument in radians

sin(1l) - 0.8414709848078965

si nd (doubl e precision) - doubl e precision
Sine, argument in degrees

sind(30) - 0.5

tan (doubl e precision) - doubl e precision
Tangent, argument in radians

tan(1) - 1.5574077246549023

tand (doubl e precision) - doubl e precision
Tangent, argument in degrees
tand(45) - 1

Note

Another way to work with angles measured in degrees is to use the unit transformation functions
radi ans() and degrees() shown earlier. However, using the degree-based trigonometric
functionsis preferred, as that way avoids round-off error for special cases such assi nd(30) .

Table 9.8 shows the available hyperbolic functions.

Table 9.8. Hyperbolic Functions

Function
Description
Example(s)

si nh (doubl e precision) - doubl e precision
Hyperbolic sine

sinh(1) - 1.1752011936438014

cosh (doubl e precision) - doubl e precision
Hyperbolic cosine

cosh(0) -1

tanh (doubl e precision) - doubl e precision
Hyperbolic tangent

tanh(1) - 0.7615941559557649

asi nh (doubl e precision) - doubl e precision

238

Functions and Operators

Function
Description
Example(s)
Inverse hyperbolic sine
asinh(1) - 0.881373587019543

acosh (doubl e precision) - doubl e precision
Inverse hyperbolic cosine

acosh(1) -0

at anh (doubl e precision) - doubl e precision
Inverse hyperbolic tangent

atanh(0.5) - 0.5493061443340548

9.4. String Functions and Operators

This section describes functions and operators for examining and manipulating string values. Strings in
this context include values of thetypeschar act er ,char act er varyi ng, andt ext . Except where
noted, these functions and operators are declared to accept and return typet ext . They will interchange-
ably accept char act er varyi ng arguments. Values of typechar act er will be convertedtot ext

before the function or operator is applied, resulting in stripping any trailing spaces in the char act er

value.

SQL defines some string functionsthat use key words, rather than commas, to separate arguments. Details
arein Table 9.9. PostgreSQL also provides versions of these functions that use the regular function invo-
cation syntax (see Table 9.10).

Note

The string concatenation operator (| |) will accept non-string input, so long as at least oneinput is
of string type, as shown in Table 9.9. For other cases, inserting an explicit coerciontot ext can
be used to have non-string input accepted.

Table 9.9. SQL String Functions and Operators

Function/Oper ator
Description
Example(s)

text || text - text
Concatenates the two strings.

"Post' || 'greSQ' - PostgreSQ

text | | anynonarray - text

anynonarray || text - text
Converts the non-string input to text, then concatenates the two strings. (The non-string input
cannot be of an array type, because that would create ambiguity with the array | | operators.
If you want to concatenate an array's text equivalent, cast it tot ext explicitly.)

"Value: ' || 42 - Value: 42

t ext | S[NOT] [f or n] NORVALI ZED - bool ean

239

Functions and Operators

Function/Operator
Description
Example(s)

Checks whether the string is in the specified Unicode normalization form. The optional
f or mkey word specifies the form: NFC (the default), NFD, NFKC, or NFKD. This expression
can only be used when the server encoding is UTF8. Note that checking for normalization us-
ing this expression is often faster than normalizing possibly already normalized strings.

U&' \ 0061\ 0308bc' 1S NFD NORMALI ZED - t

bit_length(text) - integer
Returns number of bitsin the string (8 timestheoct et _| engt h).
bit length('jose') - 32

char _length (text) - integer

character _length(text) - integer
Returns number of characters in the string.

char_length('josé') - 4

| ower (text) - text
Convertsthe string to all lower case, according to the rules of the database's locale.

[ower (' TOM) - tom

normal i ze (text [,form]) - text
Converts the string to the specified Unicode normalization form. The optional f or mkey
word specifies the form: NFC (the default), NFD, NFKC, or NFKD. This function can only be
used when the server encoding is UTF8.

nor mal i ze(U& \ 0061\ 0308bc', NFC) - U& \ OOE4bc'

octet _length(text) - integer
Returns number of bytesin the string.

octet length('josé') - 5 (if server encoding is UTF8)

octet_l ength(character) - i nteger
Returns number of bytesin the string. Since this version of the function accepts type char -
act er directly, it will not strip trailing spaces.

octet _length('abc '::character(4)) - 4

overlay (stringtext PLACI NGnewsubstringtext FROMstart i nt eger [FOR

count i nteger]) - text

Replaces the substring of st ri ng that starts at the st ar t 'th character and extends for
count characterswith newsubst ri ng. If count isomitted, it defaultsto the length of
newsubstri ng.

overl ay(' Txxxxas' placing 'hom from2 for 4) - Thonas

position(substringtext I Nstringtext) - i nteger
Returnsfirst starting index of the specified subst ri ng within st ri ng, or zero if it's not
present.

position('om in 'Thonmas') - 3

substring (stringtext [FROMstart i nteger][FORcount i nteger]) - text

240

Functions and Operators

Function/Operator
Description
Example(s)
Extracts the substring of st ri ng starting at the st ar t 'th character if that is specified,
and stopping after count charactersif that is specified. Provide at least one of st art and
count .

substring(' Thonmas' from2 for 3) - hom

substring(' Thomas' from 3) - onas
substring(' Thonas' for 2) - Th

substring(stringtext FROMpatterntext) - t ext
Extracts the first substring matching POSIX regular expression; see Section 9.7.3.

substring(' Thomas' from'...$') - mas

substring (stringtext SIM LARpatterntext ESCAPEescapetext) - text

substring (stringtext FROMpatterntext FORescapetext) - text
Extracts the first substring matching SQL regular expression; see Section 9.7.2. The first
form has been specified since SQL :2003; the second form was only in SQL:1999 and should
be considered obsol ete.

substring(' Thonas' similar '%"o_a#"_' escape '#') - oma

tri m([LEADI NG| TRAI LI NG|BOTH] [characters text]| FROMstringtext) »

t ext
Removes the longest string containing only charactersin char act er s (a space by default)
from the start, end, or both ends (BOTH is the default) of st ri ng.

trimboth 'xyz' from'yxTonxx') - Tom

tri m([LEADI NG| TRAI LI NG|BOTH] [FROM] stringtext [,characterstext]) -

t ext
Thisisanon-standard syntax fort ri n() .
trimboth from'yxTomkx', 'xyz') - Tom

upper (text) - text
Convertsthe string to all upper case, according to the rules of the database's locale.

upper('tom) - TOM

Additional string manipulation functions are available and arelisted in Table 9.10. Some of them are used
internally to implement the SQL -standard string functions listed in Table 9.9.

Table 9.10. Other String Functions

Function
Description
Example(s)

ascii (text) - integer
Returns the numeric code of the first character of the argument. In UTF8 encoding, returns
the Unicode code point of the character. In other multibyte encodings, the argument must be
an ASCI| character.

ascii('x'") - 120

btrim(stringtext [,characterstext]) - text

241

Functions and Operators

Function
Description
Example(s)

Removes the longest string containing only charactersin char act er s (a space by default)
fromthe start and end of st ri ng.

btrim'xyxtrinyyx', 'xyz') -trim

chr (i nteger) - text
Returns the character with the given code. In UTF8 encoding the argument is treated as a
Unicode code point. In other multibyte encodings the argument must designate an ASCII
character. chr (0) isdisallowed because text data types cannot store that character.

chr(65) - A

concat (val 1"any" [,val 2"any" [,..]]) - text
Concatenates the text representations of al the arguments. NULL arguments are ignored.

concat (' abcde', 2, NULL, 22) - abcde222

concat_ws (septext,val 1"any" [,val 2"any" [,..]]) - text
Concatenates all but the first argument, with separators. The first argument is used as the sep-
arator string, and should not be NULL. Other NULL arguments are ignored.

concat_ws(',', '"abcde', 2, NULL, 22) - abcde, 2,22

format (formatstr text [,formatarg"any" [,..]]) - text
Formats arguments according to aformat string; see Section 9.4.1. Thisfunction is similar to
the C functionspri ntf.

format('Hello %, %$s', 'Wrld') - Hello Wrld, Wrld

initcap(text) — text
Convertsthe first letter of each word to upper case and the rest to lower case. Words are se-
guences of aphanumeric characters separated by non-al phanumeric characters.

initcap('hi THOVAS) - H Thonas

left (stringtext,ninteger) - text
Returnsfirst n charactersin the string, or when n is negative, returns all but last |n| charac-
ters.

left(' abcde', 2) - ab

| ength (text) - integer
Returns the number of charactersin the string.

length('jose') - 4

| pad (stringtext,lengthinteger [,fill text]) - text
Extendsthe st ri ng tolength | engt h by prepending the charactersfi | | (aspace by de-
fault). If thest ri ng isalready longer than | engt h then it is truncated (on the right).

[pad(' hi", 5, "xy') - xyxhi

Itrim(stringtext [,characterstext]) - text
Removes the longest string containing only charactersin char act er s (a space by default)
fromthe start of st ri ng.

[trinm('zzzytest', 'xyz') - test

md5 (text) - text
Computes the M D5 hash of the argument, with the result written in hexadecimal.

242

Functions and Operators

Function
Description
Example(s)

nmd5(" abc') - 900150983cd24f b0d6963f 7d28el7f 72

parse_ident (qualified_identifiertext[,strict_nodebool ean DEFAULT

true]) - text[]

Splitsqual i fi ed_i denti fi er intoan array of identifiers, removing any quoting of in-
dividua identifiers. By default, extra characters after the last identifier are considered an er-
ror; but if the second parameter isf al se, then such extra characters are ignored. (This be-
havior is useful for parsing names for objects like functions.) Note that this function does not
truncate over-length identifiers. If you want truncation you can cast the result to nane[] .

parse_i dent (' " SomeSchema". soneTabl e') - { SomeSchemm, sonet abl e}

pg_client_encoding () - nanme
Returns current client encoding hame.

pg_client_encoding() - UTF8

quot e_ident (text) - text
Returns the given string suitably quoted to be used as an identifier in an SQL statement
string. Quotes are added only if necessary (i.e., if the string contains non-identifier characters
or would be case-folded). Embedded quotes are properly doubled. See also Example 43.1.

quot e_i dent (' Foo bar') - "Foo bar"

quote literal (text) - text
Returns the given string suitably quoted to be used as a string literal in an SQL state-
ment string. Embedded single-quotes and backslashes are properly doubled. Note that
qguote_literal returnsnull on null input; if the argument might be null, quot e_nul -
| abl e isoften more suitable. See also Example 43.1.

quote literal (EO'Reilly') -"O"'Reilly'

quote_literal (anyel emrent) - t ext
Converts the given value to text and then quotesiit as aliteral. Embedded single-quotes and
backsl ashes are properly doubled.

guote_literal (42.5) - '42. 5

quote_nul | abl e (text) - text
Returns the given string suitably quoted to be used as a string literal in an SQL statement
string; or, if the argument is null, returns NULL. Embedded single-quotes and backslashes are
properly doubled. See also Example 43.1.

quot e_nul | abl e(NULL) — NULL

quot e_nul | abl e (anyel enent) - t ext
Converts the given value to text and then quotesit as aliteral; or, if the argument is null, re-
turns NULL . Embedded single-quotes and backslashes are properly doubled.

qguote_nul |l abl e(42.5) - '42.5

regexp_match (stringtext,patterntext [,flagstext]) - text[]
Returns captured substrings resulting from the first match of a POSIX regular expression to
thest ri ng; see Section 9.7.3.

regexp_mat ch(' f oobar bequebaz', ' (bar)(beque)') - {bar, beque}

regexp_matches (stringtext,patterntext [,flagstext]) - setof text[]

243

Functions and Operators

Function
Description
Example(s)

Returns captured substrings resulting from the first match of a POSIX regular expression to
thest ri ng, or multiple matchesif the g flag is used; see Section 9.7.3.

regexp_mat ches(' f oobar bequebaz', 'ba.', 'g") -
{bar}
{baz}
regexp_replace (stringtext,patterntext,replacenent text [,flagstext])
- text

Replaces substrings resulting from the first match of a POSIX regular expression, or multiple
substring matches if the g flag is used; see Section 9.7.3.

regexp_replace(' Thomas', '.[mM\]Ja.', 'M) - ThM

regexp_split _to array (stringtext,patterntext [,flagstext]) - text[]
Splitsst ri ng using a POSIX regular expression as the delimiter, producing an array of re-
sults; see Section 9.7.3.

regexp_split_to array('hello world', '"\s+') - {hello,world}

regexp_split_to table(stringtext,patterntext [,flagstext]) - set of

t ext
Splitsst ri ng using a POSIX regular expression as the delimiter, producing a set of results;
see Section 9.7.3.
regexp_split_to_table('hello world, "\s+') -
hel |l o
wor | d

repeat (stringtext,nunber i nteger) - text
Repeats st ri ng the specified nunber of times.

repeat (' Pg', 4) - PgPgPgPg

replace(stringtext,fromtext,totext) - text
Replaces all occurrencesin st ri ng of substring f r omwith substring t o.

repl ace(' abcdefabcdef', 'cd', 'XX) - abXXef abXXef

reverse (text) - text
Reverses the order of the charactersin the string.

reverse(' abcde') - edcha

right (stringtext,ninteger) - text
Returnslast n charactersin the string, or when n is negative, returns al but first |n| charac-
ters.

right('abcde', 2) - de

rpad(stringtext,lengthinteger [,fill text]) - text
Extendsthe st ri ng tolength | engt h by appending the charactersfi | | (aspace by de-
fault). If thest ri ng isaready longer than| engt h theniit istruncated.

rpad(' hi', 5, 'xy') - hixyx

244

Functions and Operators

Function
Description
Example(s)

rtrim(stringtext [,characterstext]) - text
Removes the longest string containing only charactersin char act er s (a space by default)
fromtheend of st ri ng.

rtrim'testxxzx', 'xyz') - test

split_part (stringtext,delimter text,ninteger) - text
Splitsst ri ng at occurrencesof del i mi t er and returnsthe n'th field (counting from one),
or when n is negative, returns the |n|'th-from-last field.

split_part('abc~@def~@ghi', '~@', 2) - def
split_part('abc,def,ghi,jkl', ",", -2) - ghi

strpos (stringtext,substringtext) - integer
Returns first starting index of the specified subst ri ng withinst ri ng, or zero if it's not
present. (Sameasposi ti on(substring in string), butnotethereversed argu-
ment order.)

strpos('high', '"ig') -2

substr (stringtext,start i nteger [,count i nteger]) - text
Extracts the substring of st r i ng starting at the st ar t 'th character, and extending for
count charactersif that is specified. (Sameassubst ri ng(string from start
for count).)
substr (' al phabet', 3) - phabet

substr (' al phabet', 3, 2) - ph

starts with(stringtext,prefixtext) - bool ean
Returnstrueif st ri ng startswith pr ef i x.

starts_w th('al phabet', "alph') -t

string_to array (stringtext,delimter text [,null_stringtext]) -
text[]
Splitsthe st ri ng at occurrences of del i m t er and formsthe resulting fieldsinto at ext
array. If del i m t er isNULL, each character inthe st ri ng will become a separate ele-
ment inthe array. If del i mi t er isan empty string, thenthe st ri ng istreated asasingle
field. If nul | _stri ng issupplied and isnot NULL, fields matching that string are replaced
by NULL.

string_to_array(' xx~~yy~~zz', '~~'", 'yy') - {xx, NULL, zz}

string_to_table(stringtext,delimter text [,null_stringtext]) - setof
t ext
Splitsthe st ri ng at occurrences of del i mi t er and returns the resulting fields as a set of
t ext rows. If del i nmi t er isNULL, each character inthe st ri ng will become a separate
row of theresult. If del i mi t er isan empty string, thenthe st ri ng istreated asasingle
field. If nul I _stri ngissupplied andisnot NULL, fields matching that string are replaced
by NULL.

string_to_table(' xx~"~yy~r~zz', '~"~'", 'yy') -

XX

245

Functions and Operators

Function
Description
Example(s)

NULL
zz

to_ascii (stringtext) - text
to_ascii (stringtext,encodi ngnane) - text

to_ascii (stringtext,encodinginteger) - text
Convertsst ri ng to ASCII from another encoding, which may be identified by name or
number. If encodi ng isomitted the database encoding is assumed (which in practice is the
only useful case). The conversion consists primarily of dropping accents. Conversion is on-
ly supported from LATI N1, LATI N2, LATI N9, and W N1250 encodings. (See the unaccent
module for another, more flexible solution.)

to_ascii('Karél') - Karel

to_hex (integer) - text

to_hex (bigint) - text
Converts the number to its equivalent hexadecimal representation.
to_hex(2147483647) - 7fffffff

translate(stringtext,fromtext,totext) - text
Replaces each character in st r i ng that matches a character in the f r omset with the corre-
sponding character inthet o set. If f r omislonger than t o, occurrences of the extra charac-
tersinf r omare deleted.

translate(' 12345, '143', 'ax') - a2x5h

uni str (text) - text
Evaluate escaped Unicode charactersin the argument. Unicode characters can be specified
as\ XXXX (4 hexadecimal digits), \ +XXXXXX (6 hexadecimal digits), \ uXXXX (4 hexadeci-
mal digits), or \ UXXXXXXXX (8 hexadecimal digits). To specify a backslash, write two back-
slashes. All other characters are taken literally.
If the server encoding is not UTF-8, the Unicode code point identified by one of these escape
seguences is converted to the actual server encoding; an error is reported if that's not possi-
ble.
This function provides a (non-standard) alternative to string constants with Unicode escapes
(see Section 4.1.2.3).

uni str('d\0061t\+000061') - data
uni str (' d\u0061t\U00000061"') - data

The concat, concat _ws and f or mat functions are variadic, so it is possible to pass the values to
be concatenated or formatted as an array marked with the VARI ADI C keyword (see Section 38.5.6). The
array's elements are treated as if they were separate ordinary arguments to the function. If the variadic
array argument is NULL, concat and concat _ws return NULL, but f or mat treats a NULL as a
zero-element array.

See also the aggregate function st ri ng_agg in Section 9.21, and the functions for converting between
strings and the byt ea typein Table 9.13.

94.1.f or nat

246

Functions and Operators

The function f or mat produces output formatted according to aformat string, in a style similar to the C
functionsprintf.

format (formatstr text [, formatarg "any" [, ...] 1)

f or mat st r isaformat string that specifieshow theresult should beformatted. Textintheformat stringis
copied directly to the result, except where format specifiers are used. Format specifiers act as placeholders
in the string, defining how subsequent function arguments should be formatted and inserted into the result.
Each f or mat ar g argument is converted to text according to the usual output rules for its data type, and
then formatted and inserted into the result string according to the format specifier(s).

Format specifiers are introduced by a %character and have the form

% position][flags][w dth]type
where the component fields are:
posi ti on (optional)

A string of theform n$ where n istheindex of the argument to print. Index 1 meansthefirst argument
after f or mat st r. If theposi ti on isomitted, the default is to use the next argument in sequence.

fl ags (optiona)

Additional options controlling how the format specifier's output is formatted. Currently the only sup-
ported flag isaminus sign (-) which will cause the format specifier's output to be left-justified. This
has no effect unlessthewi dt h field is aso specified.

wi dt h (optional)

Specifies the minimum number of charactersto useto display the format specifier's output. The output
is padded on the left or right (depending on the - flag) with spaces as needed to fill the width. A too-
small width does not cause truncation of the output, but issimply ignored. The width may be specified
using any of the following: a positive integer; an asterisk (*) to use the next function argument asthe
width; or astring of the form * n$ to use the nth function argument as the width.

If the width comes from a function argument, that argument is consumed before the argument that is
used for the format specifier's value. If the width argument is negative, the result isleft aligned (asif
the - flag had been specified) within afield of length abs(wi dt h).

t ype (required)

The type of format conversion to use to produce the format specifier's output. The following types
are supported:

* s formats the argument value as asimple string. A null value istreated as an empty string.

* | treats the argument value as an SQL identifier, double-quoting it if necessary. It is an error for
the value to be null (equivalent to quot e_i dent).

* L quotestheargument valueasan SQL literal. A null valueisdisplayed asthe string NULL, without
quotes (equivalent to quot e_nul | abl e).

In addition to the format specifiers described above, the special sequence ¥%®%6may be used to output a
literal %character.

Here are some examples of the basic format conversions:

247

Functions and Operators

SELECT format (' Hello %', 'Wirld');
Result: Hello Wrld

SELECT format (' Testing %, %, %, %, 'one', 'tw', 'three');
Result: Testing one, two, three, %

SELECT format (' | NSERT I NTO % VALUES(%.)', 'Foo bar', E O'Reilly');
Resul t: | NSERT I NTO "Foo bar" VALUES(' O 'Reilly")

SELECT format (' I NSERT I NTO %4 VALUES(%.)', 'locations', 'C: \Program
Files');
Result: I NSERT INTO | ocations VALUES(' C:\Program Files')

Here are examplesusing wi dt h fields and the - flag:

SELECT format ('] %0s|', 'foo');
Result: | f oo|
SELECT format ('|% 10s|', 'foo');

Result: |foo |

SELECT format (' |%s|', 10, 'foo');
Result: | f oo|

SELECT format (' | %s|', -10, 'foo');
Result: |foo |

SELECT format (' | % *s|', 10, 'foo');
Result: |foo |

SELECT format('|%*s|', -10, 'foo');
Result: |foo |

These examples show use of posi ti on fields:

SELECT fornmat (' Testing ¥8%s, %®%s, %$s', 'one', 'two', 'three');
Result: Testing three, two, one

SELECT format('|%2%s|', 'foo', 10, 'bar');
Resul t: | bar |

SELECT format (' |%$*2%s|', 'foo', 10, 'bar');
Resul t: | foo|

Unlike the standard C function spri nt f , PostgreSQL'sf or mat function allows format specifierswith
and without posi t i on fields to be mixed in the same format string. A format specifier without a po-
si ti on field aways uses the next argument after the last argument consumed. In addition, the f or mat

function does not require al function arguments to be used in the format string. For example:

SELECT format (' Testing ¥8%s, %®@$s, %', 'one', 'two', 'three');
Result: Testing three, two, three

248

Functions and Operators

The% and %. format specifiers are particularly useful for safely constructing dynamic SQL statements.
See Example 43.1.

9.5. Binary String Functions and Operators

Thissection describes functions and operators for examining and manipul ating binary strings, that isvalues
of typebyt ea. Many of these are equivalent, in purpose and syntax, to the text-string functions described
in the previous section.

SQL defines some string functionsthat use key words, rather than commas, to separate arguments. Details

are in Table 9.11. PostgreSQL also provides versions of these functions that use the regular function
invocation syntax (see Table 9.12).

Table 9.11. SQL Binary String Functions and Operators

Function/Operator
Description
Example(s)

bytea|| bytea - bytea
Concatenates the two binary strings.

"\ x123456' : : bytea || '\x789a00bcde'::bytea - \x123456789a00bcde

bit_length(bytea) — i nteger
Returns number of bitsin the binary string (8 timestheoct et _| engt h).
bit length('\x123456':: bytea) - 24

octet_length(bytea) - integer
Returns number of bytesin the binary string.
octet |l ength('\x123456':: bytea) - 3
overl ay (byt es byt ea PLACI NGnewsubst ri ng byt ea FROMst art i nt eger [FOR

count integer]) - bytea

Replaces the substring of byt es that starts at the st ar t 'th byte and extends for count
byteswith newsubst ri ng. If count isomitted, it defaults to the length of newsub-
string.

overl ay('\x1234567890' : : bytea placing '\002\003"'::bytea from?2
for 3) - \x12020390

position (substringbyteal Nbytes bytea) - i nteger
Returnsfirst starting index of the specified subst r i ng within byt es, or zero if it's not
present.

position('\x5678"::bytea in '\x1234567890' :: bytea) - 3

substring (bytes bytea[FROMstart i nteger][FORcount i nteger]) - bytea
Extracts the substring of byt es starting at the st ar t 'th byte if that is specified, and stop-
ping after count bytesif that is specified. Provide at least one of st art and count .

substring('\x1234567890' : : bytea from 3 for 2) - \x5678

tri m([LEADI NG| TRAI LI NG| BOTH] byt esr enoved byt ea FROMbyt es bytea) -
byt ea
Removes the longest string containing only bytes appearing in byt esr enoved from the
start, end, or both ends (BOTH is the default) of byt es.

249

Functions and Operators

Function/Operator
Description
Example(s)

trim'\x9012'::bytea from'\x1234567890' : : bytea) - \x345678

tri m([LEADI NG| TRAI LI NG| BOTH] [FROM] byt es byt ea, byt esrenoved bytea) -
byt ea
Thisisanon-standard syntax fort ri m() .
trimboth from'\x1234567890':: bytea, '\x9012'::bytea) -
\ x345678

Additional binary string manipulation functions are available and are listed in Table 9.12. Some of them
are used internally to implement the SQL -standard string functions listed in Table 9.11.

Table 9.12. Other Binary String Functions

Function
Description
Example(s)

bi t _count (bytes bytea) - bigint
Returns the number of bits set in the binary string (also known as “ popcount™).
bit_count ('\x1234567890' : : bytea) - 15

bt ri m(byt es byt ea, byt esrenoved byt ea) - byt ea
Removes the longest string containing only bytes appearing in byt esr enoved from the
start and end of byt es.

btrim'\x1234567890' :: bytea, '\x9012'::bytea) - \x345678

get _bit (bytes bytea,nbigint) - integer
Extracts n'th bit from binary string.
get _bit('\x1234567890' : : bytea, 30) -1

get _byte (bytes bytea,ninteger) - integer
Extracts n'th byte from binary string.
get _byte('\x1234567890' : : bytea, 4) - 144

| ength (bytea) - i nteger
Returns the number of bytesin the binary string.
| engt h('\x1234567890" : : bytea) - 5

| engt h (byt es byt ea, encodi ng nane) - i nt eger
Returns the number of charactersin the binary string, assuming that it istext in the given
encodi ng.

length('jose' ::bytea, 'UTF8') - 4

Itri m(bytes bytea,bytesrenovedbytea) - bytea
Removes the longest string containing only bytes appearing in byt esr enoved from the
start of byt es.

[trim'\x1234567890" :: bytea, '\x9012'::bytea) - \x34567890

md5 (bytea) - text
Computes the MD5 hash of the binary string, with the result written in hexadecimal.

250

Functions and Operators

Function
Description
Example(s)

nd5(" Th\ 000omms' : : byt ea) — 8ab2d3c9689aaf 18b4958c334c82d8bl

rtri m(bytes bytea, bytesrenovedbytea) - bytea
Removes the longest string containing only bytes appearing in byt esr enoved from the
end of byt es.

rtrim'\x1234567890' :: bytea, '\x9012'::bytea) - \x12345678

set _bit (bytes bytea,nbigint,newal ueinteger) - bytea
Sets n'th bit in binary string to newval ue.
set _bit('\x1234567890" :: bytea, 30, 0) - \x1234563890

set _byte (bytes bytea,ninteger,newal ueinteger) - bytea
Sets n'th bytein binary string to newval ue.

set _byte('\x1234567890':: bytea, 4, 64) - \x1234567840

sha224 (bytea) - bytea
Computes the SHA-224 hash of the binary string.
sha224(' abc' :: bytea) - \x23097d223405d8228642a477bhda255b32aad-
bce4bdaOb3f 7e36c9da7

sha256 (bytea) - bytea
Computes the SHA-256 hash of the binary string.
sha256(' abc' :: bytea) - \ xba7816bf 8f 01cfea414140de5dae2223
b00361a396177a9cb410f f 61f 20015ad

sha384 (bytea) - bytea
Computes the SHA-384 hash of the binary string.

sha384("' abc' :: bytea) - \xchb00753f 45a35e8bb5a03d699ac65007

272c32ab0eded1631a8b605a43f f 5bed8086072bale7cc2358bae-
cal34c825a7

sha512 (bytea) - bytea
Computes the SHA-512 hash of the binary string.

sha512("' abc' :: bytea) - \xddaf 35a193617abac-
c417349ae20413112e6f a4e89a97ea20a9eeeeb64hb55d39a
2192992a274f c1la836ba3c23a3f eebbd
454d4423643ce80e2a9ac94f ab4cadof

substr (bytes bytea,start i nteger [,count i nteger]) - bytea
Extracts the substring of byt es starting at the st ar t 'th byte, and extending for count
bytesif that is specified. (Sameassubstri ng(bytes fromstart for count).)

substr (' \x1234567890' : : bytea, 3, 2) - \x5678

Functions get _byt e and set byt e number the first byte of a binary string as byte 0. Functions
get _bit andset bit number bits from the right within each byte; for example bit 0 is the least sig-

nificant bit of the first byte, and bit 15 is the most significant bit of the second byte.

For historical reasons, the function nd5 returns a hex-encoded value of type t ext whereas the SHA-2
functions return type byt ea. Use the functions encode and decode to convert between the two. For

251

Functions and Operators

examplewriteencode(sha256("' abc'), ' hex') toget ahex-encoded text representation, or de-
code(nd5(' abc'), 'hex') togetabytea vaue

Functions for converting strings between different character sets (encodings), and for representing arbi-
trary binary data in textual form, are shown in Table 9.13. For these functions, an argument or result of
typet ext isexpressed in the database's default encoding, while arguments or results of type byt ea are
in an encoding named by another argument.

Table 9.13. Text/Binary String Conversion Functions

Function
Description
Example(s)

convert (bytes bytea,src_encodi ng nane,dest _encodi ng nane) - byt ea
Converts a binary string representing text in encoding sr ¢_encodi ng to abinary string in
encoding dest _encodi ng (see Section 24.3.4 for available conversions).
convert('text _in utf8, 'UTF8', 'LATINLl') -
\ Xx746578745f 696e5f 75746638

convert _from(bytes bytea,src_encodi ngnane) - text
Converts abinary string representing text in encoding sr ¢_encodi ng tot ext in the data-
base encoding (see Section 24.3.4 for available conversions).

convert _from("text_in utf8 , "UTF8) - text _in_utf8

convert _to(stringtext,dest_encodi ng nane) - byt ea
Convertsat ext string (in the database encoding) to a binary string encoded in encoding
dest _encodi ng (see Section 24.3.4 for available conversions).

convert _to('some_text', 'UTF8') - \x736f6d655f 74657874

encode (bytes bytea,format text) - text
Encodes binary data into atextual representation; supported f or mat values are: base64,
escape, hex.

encode(' 123\ 000\ 001', 'base64') - Ml zAAE=

decode (stringtext,format text) - bytea
Decodes binary data from atextual representation; supported f or mat values are the same as
for encode.

decode(' MIl zAAE=", 'Dbase64') - \x3132330001

Theencode and decode functions support the following textual formats:
base64

Thebase64 format isthat of RFC 2045 Section 6.8%. As per the RFC, encoded lines are broken at 76
characters. However instead of the MIME CRLF end-of-line marker, only a newlineis used for end-
of-line. Thedecode function ignores carriage-return, newline, space, and tab characters. Otherwise,
an error is raised when decode is supplied invalid base64 data— including when trailing padding
isincorrect.

escape

The escape format converts zero bytes and bytes with the high bit set into octal escape sequences
(\ nnn), and it doubl es backsl ashes. Other byte values are represented literally. Thedecode function

1 https://tools.ietf.org/html/rfc2045#section-6.8

252

https://tools.ietf.org/html/rfc2045#section-6.8
https://tools.ietf.org/html/rfc2045#section-6.8

Functions and Operators

will raise an error if a backdlash is not followed by either a second backslash or three octal digits; it
accepts other byte values unchanged.

hex

The hex format represents each 4 hits of data as one hexadecimal digit, O through f , writing the
higher-order digit of each byte first. The encode function outputs the a-f hex digitsin lower case.
Because the smallest unit of datais 8 bits, there are always an even number of characters returned by
encode. Thedecode function acceptsthe a-f charactersin either upper or lower case. An error is
raised when decode isgiveninvalid hex data— including when given an odd number of characters.

See also the aggregate function st ri ng_agg in Section 9.21 and the large object functions in Sec-
tion 35.4.

9.6. Bit String Functions and Operators

This section describes functions and operators for examining and manipulating bit strings, that is values
of thetypeshi t andbit varyi ng. (Whileonly typebi t ismentioned in these tables, values of type
bi t varyi ng can be used interchangeably.) Bit strings support the usual comparison operators shown
in Table 9.1, aswell as the operators shown in Table 9.14.

Table 9.14. Bit String Operators

Operator
Description
Example(s)
bit || bit - bit
Concatenation
B' 10001' || B 011" - 10001011

bit &bit - bit
Bitwise AND (inputs must be of equal length)

B' 10001" & B' 01101' - 00001

bit] bit - bit
Bitwise OR (inputs must be of equal length)
B'10001' | B 01101' - 11101

bit #bit - bit
Bitwise exclusive OR (inputs must be of equal length)

B'10001' # B' 01101' - 11100

~bit - bit
Bitwise NOT
~ B'10001' - 01110

bit <<integer - bit
Bitwise shift left (string length is preserved)
B' 10001' << 3 - 01000

bit >>integer - bit
Bitwise shift right (string length is preserved)

253

Functions and Operators

Operator
Description
Example(s)

B' 10001" >> 2 - 00100

Some of the functions available for binary strings are also available for bit strings, as shown in Table 9.15.

Table 9.15. Bit String Functions

Function
Description
Example(s)

bit count (bit) - bigint
Returns the number of bits set in the bit string (also known as “popcount”).
bit count (B 10111') - 4

bit_length(bit) - integer
Returns number of bitsin the bit string.
bit_length(B 10111') - 5

length(bit) - integer
Returns number of bitsin the bit string.
[engt h(B 10111') - 5

octet _length(bit) - integer
Returns number of bytesin the bit string.
octet length(B 1011111011') - 2

overlay (bitsbit PLACI NGnewsubstringbit FROMstart i nt eger [FORcount
integer]) - bit
Replaces the substring of bi t s that starts at the st ar t 'th bit and extends for count bits
with newsubst ri ng. If count isomitted, it defaultsto the length of newsubst ri ng.

over | ay(B 01010101010101010' placing B 11111" from2 for 3) -
0111110101010101010

position(substringbit INbitsbhit) - integer
Returns first starting index of the specified subst ri ng withinbi t s, or zero if it's not
present.

posi tion(B 010' in B 000001101011') - 8

substring(bitsbit [FROMstart i nteger][FORcount i nteger]) - bit
Extracts the substring of bi t s starting at the st ar t 'th bit if that is specified, and stopping
after count bitsif that is specified. Provide at least one of st art and count .

substring(B 110010111111" from 3 for 2) - 00

get _bit (bitsbit,ninteger) - integer
Extracts n'th bit from bit string; the first (Ieftmost) bit is bit O.
get _bit (B 101010101010101010', 6) - 1

set _bit (bitsbit,ninteger,newal ueinteger) - bit
Setsn'th bit in bit string to newal ue; thefirst (Ieftmost) bit is bit 0.
set _bit(B 101010101010101010', 6, 0) - 101010001010101010

254

Functions and Operators

In addition, it is possible to cast integral values to and from type bi t . Casting an integer to bi t (n)
copies the rightmost n bits. Casting an integer to a bit string width wider than the integer itself will sign-
extend on the |eft. Some examples:

44: :bit(10) 0000101100
44: : bit(3) 100

cast(-44 as bit(12)) 111111010100
"1110'::bit(4)::integer 14

Note that casting to just “bit” means casting to bi t (1), and so will deliver only the least significant bit
of theinteger.

9.7. Pattern Matching

9.7.1.

There are three separate approaches to pattern matching provided by PostgreSQL.: the traditional SQL
LI KE operator, the morerecent S| M LAR TO operator (added in SQL:1999), and POSI X-style regular
expressions. Aside from the basic “ does this string match this pattern?’ operators, functions are available
to extract or replace matching substrings and to split a string at matching locations.

Tip

If you have pattern matching needs that go beyond this, consider writing a user-defined function
in Perl or Tcl.

Caution

While most regular-expression searches can be executed very quickly, regular expressions can
be contrived that take arbitrary amounts of time and memory to process. Be wary of accepting
regular-expression search patternsfrom hostile sources. If you must do so, it is advisableto impose
a statement timeout.

Searches using SI M LAR TO patterns have the same security hazards, since SI M LAR TO
provides many of the same capabilities as POS| X -style regular expressions.

L1 KE searches, being much simpler than the other two options, are safer to use with possibly-hos-
tile pattern sources.

The pattern matching operators of all three kinds do not support nondeterministic collations. If required,
apply adifferent collation to the expression to work around this limitation.

LI KE

string LIKE pattern [ESCAPE escape-character]
string NOT LIKE pattern [ESCAPE escape-character]

The Ll KE expression returnstrueif the st r i ng matchesthe supplied pat t er n. (As expected, the NOT
LI KE expression returns false if LI KE returns true, and vice versa. An equivalent expression is NOT
(string LIKE pattern).)

255

Functions and Operators

If pat t er n does not contain percent signs or underscores, then the pattern only represents the string
itself; inthat case LI KE actslike the equals operator. Anunderscore () inpat t er n standsfor (matches)
any single character; a percent sign (%9 matches any sequence of zero or more characters.

Some examples:

"abc' LIKE 'abc' true
"abc' LIKE 'a% true
"abc' LIKE' b’ true
"abc' LIKE 'c' fal se

LI KE pattern matching always covers the entire string. Therefore, if it's desired to match a sequence
anywhere within a string, the pattern must start and end with a percent sign.

To match aliteral underscore or percent sign without matching other characters, the respective character
inpat t er n must be preceded by the escape character. The default escape character is the backslash but
a different one can be selected by using the ESCAPE clause. To match the escape character itself, write
two escape characters.

Note

If you have standard_conforming_strings turned off, any backslashes you write in literal string
constants will need to be doubled. See Section 4.1.2.1 for more information.

It'salso possibleto select no escape character by writing ESCAPE ' ' . Thiseffectively disablesthe escape
mechanism, which makes it impossible to turn off the special meaning of underscore and percent signs
in the pattern.

According to the SQL standard, omitting ESCAPE meansthere is no escape character (rather than default-
ing to a backslash), and a zero-length ESCAPE value is disallowed. PostgreSQL 's behavior in this regard
is therefore slightly nonstandard.

The key word | L1 KE can be used instead of LI KE to make the match case-insensitive according to the
active locale. Thisisnot in the SQL standard but is a PostgreSQL extension.

The operator ~~ isequivalent to LI KE, and ~~* correspondsto | LI KE. Therearealso ! ~~ and ! ~~*
operators that represent NOT LI KE and NOT | LI KE, respectively. All of these operators are Post-
greSQL -specific. You may see these operator names in EXPLAI N output and similar places, since the
parser actually transdlates L1 KE et al. to these operators.

ThephrasesLI| KE, | LI KE,NOT LI KE,andNOT | LI KE aregenerally treated asoperatorsin PostgreSQL
syntax; for example they can be used in expr essi on oper at or ANY (subquery) constructs, al-
though an ESCAPE clause cannot be included there. In some obscure cases it may be necessary to use the
underlying operator names instead.

Also see the prefix operator * @and corresponding st art s_wi t h function, which are useful in cases
where simply matching the beginning of a string is needed.

9.7.2. SI M LAR TORegular Expressions

256

Functions and Operators

string SIMLAR TO pattern [ESCAPE escape-character]
string NOT SIMLAR TO pattern [ESCAPE escape-character]

TheSI M LAR TOoperator returnstrue or fal se depending on whether its pattern matchesthe given string.
Itissimilar to L1 KE, except that it interprets the pattern using the SQL standard's definition of aregular
expression. SQL regular expressions are a curious cross between LI KE notation and common (POSIX)
regular expression notation.

Like LI KE, the SI M LAR TO operator succeeds only if its pattern matches the entire string; this is
unlike common regular expression behavior where the pattern can match any part of the string. Also like
LI KE, SI M LAR TOuses _ and %as wildcard characters denoting any single character and any string,
respectively (these are comparableto. and. * in POSIX regular expressions).

In addition to these facilities borrowed from LI KE, SI M LAR TO supports these pattern-matching
metacharacters borrowed from POSI X regular expressions:

* | denotes alternation (either of two aternatives).
» * denotes repetition of the previous item zero or more times.
» + denotes repetition of the previous item one or more times.

» ? denotes repetition of the previous item zero or onetime.

{n} denotes repetition of the previousitem exactly mtimes.
e {m } denotes repetition of the previous item mor more times.

* {m n} denotesrepetition of the previousitem at least mand not more than n times.

Parentheses () can be used to group itemsinto asingle logical item.
» A bracket expression|[. ..] specifiesacharacter class, just asin POSIX regular expressions.
Notice that the period (.) is not a metacharacter for SI M LAR TO.

Aswith LI KE, abackslash disablesthe special meaning of any of these metacharacters. A different escape
character can be specified with ESCAPE, or the escape capability can be disabled by writing ESCAPE ' ' .

According to the SQL standard, omitting ESCAPE meansthere is no escape character (rather than default-
ing to a backslash), and a zero-length ESCAPE value is disallowed. PostgreSQL 's behavior in this regard
istherefore dlightly nonstandard.

Another nonstandard extension is that following the escape character with aletter or digit provides access
to the escape sequences defined for POSI X regular expressions; see Table 9.20, Table 9.21, and Table 9.22
below.

Some examples:

"abc' SIMLAR TO ' abc’ true
"abc' SIMLAR TO 'a' fal se
"abc' SIMLAR TO '%b|d)% true
"abc’ SIMLAR TO ' (b]c)% fal se

'-abc-' SIMLAR TO ' % nabc\M4 true
'xabcy' SIMLAR TO ' % nabc\ M4 fal se

257

Functions and Operators

9.7.3.

Thesubst ri ng function with three parameters provides extraction of a substring that matches an SQL
regular expression pattern. The function can be written according to standard SQL syntax:

substring(string simlar pattern escape escape-character)

or using the now obsolete SQL:1999 syntax:

substring(string frompattern for escape-character)

or as a plain three-argument function:

substring(string, pattern, escape-character)

Aswith SI M LAR TQ, the specified pattern must match the entire data string, or else the function fails
and returns null. To indicate the part of the pattern for which the matching data sub-string is of interest,
the pattern should contain two occurrences of the escape character followed by a double quote (*). The
text matching the portion of the pattern between these separatorsis returned when the match is successful.

The escape-double-quote separators actually divide subst r i ng's pattern into three independent regular
expressions; for example, avertical bar (|) in any of the three sections affects only that section. Also, the
first and third of these regular expressions are defined to match the smallest possible amount of text, not
the largest, when there is any ambiguity about how much of the data string matches which pattern. (In
POSIX parlance, the first and third regular expressions are forced to be non-greedy.)

As an extension to the SQL standard, PostgreSQL allows there to be just one escape-double-quote sepa-
rator, in which case the third regular expression istaken as empty; or no separators, in which case the first
and third regular expressions are taken as empty.

Some examples, with #" delimiting the return string:

substring(' foobar' simlar '%t"o _b#"'% escape '#') oob
substring(' foobar' simlar '#"0 b#"'% escape '#') NULL

POSIX Regular Expressions
Table 9.16 lists the available operators for pattern matching using POSIX regular expressions.

Table 9.16. Regular Expression Match Operators

Operator
Description
Example(s)

text ~text - bool ean
String matches regular expression, case sensitively
"thomas' ~ 't.*ma' -t

text ~* text - bool ean
String matches regular expression, case insensitively
"thomas' ~* 'T.*ma' -t

text | ~text - bool ean

258

Functions and Operators

Operator
Description
Example(s)
String does not match regular expression, case sensitively
"thomas' !~ "t.*max' -t

text ! ~* text - bool ean
String does not match regular expression, case insensitively

"thomas' !'~* 'T.*ma' - f

POSIX regular expressions provide a more powerful means for pattern matching than the LI KE and
SI M LAR TOoperators. Many Unix toolssuch asegr ep, sed, or awk use a pattern matching language
that is similar to the one described here.

A regular expression is a character sequence that is an abbreviated definition of a set of strings (aregular
set). A string is said to match a regular expression if it is a member of the regular set described by the
regular expression. Aswith LI KE, pattern characters match string characters exactly unlessthey are special
characters in the regular expression language — but regular expressions use different specia characters
than LI KE does. Unlike L1 KE patterns, aregular expression isallowed to match anywhere within astring,
unless the regular expression is explicitly anchored to the beginning or end of the string.

Some examples:

"abcd' ~ 'bc' true

"abcd' ~ 'a.c' true —dot nmatches any character

"abcd' ~ 'a.*d' true —* repeats the preceding pattern item
"abcd' ~ '(b|x)" true —| neans OR, parentheses group

"abcd' ~ '7a’ true —” anchors to start of string

"abcd' ~ '"~(b|c)' false —would match except for anchoring

The POSIX pattern language is described in much greater detail below.

The subst ri ng function with two parameters, substri ng(string from pattern), provides
extraction of a substring that matches a POSIX regular expression pattern. It returns null if there is no
match, otherwise the first portion of the text that matched the pattern. But if the pattern contains any
parentheses, the portion of the text that matched the first parenthesized subexpression (the one whose left
parenthesis comes first) is returned. Y ou can put parentheses around the whole expression if you want to
use parentheses within it without triggering this exception. If you need parentheses in the pattern before
the subexpression you want to extract, see the non-capturing parentheses described below.

Some examples:

substring(' foobar' from'o.b") oob
substring(' foobar' from'o(.)b") o]

Ther egexp_r epl ace function provides substitution of new text for substrings that match POSIX reg-
ular expression patterns. It has the syntax r egexp_r epl ace(sour ce, pattern, repl acenent [,
flags]). The sour ce string is returned unchanged if there is no match to the pat t er n. If there is
amatch, thesour ce string isreturned with ther epl acenent string substituted for the matching sub-
string. Ther epl acenent string can contain\ n, wheren is 1 through 9, to indicate that the source sub-
string matching the n'th parenthesized subexpression of the pattern should be inserted, and it can contain
\ &toindicate that the substring matching the entire pattern should beinserted. Write\ \ if you need to put
aliteral backslash in the replacement text. Thef | ags parameter isan optional text string containing zero

259

Functions and Operators

or more single-letter flags that change the function's behavior. Flagi specifies case-insensitive matching,
while flag g specifies replacement of each matching substring rather than only the first one. Supported
flags (though not g) are described in Table 9.24.

Some examples:

regexp_repl ace(' foobarbaz', '"b..", 'X)
f ooXbaz
regexp_replace(' foobarbaz', 'b..", "X, 'g")
f ooXX

regexp_replace(' foobarbaz', "b(..)", "X\1Y', 'g')
f ooXar YXazY

Ther egexp_mat ch function returns atext array of captured substring(s) resulting from the first match
of aPOSI X regular expression pattern to astring. It hasthe syntax r egexp_mat ch(st ri ng,pattern
[, fl ags]). If there is no match, the result is NULL. If a match is found, and the pat t er n contains
no parenthesized subexpressions, then the result is a single-element text array containing the substring
matching the whole pattern. If amatch isfound, and thepat t er n contains parenthesized subexpressions,
then the result is atext array whose n'th element is the substring matching the n'th parenthesized subex-
pression of the pat t er n (not counting “non-capturing” parentheses; see below for details). Thef | ags
parameter is an optional text string containing zero or more single-letter flags that change the function's
behavior. Supported flags are described in Table 9.24.

Some examples:

SELECT regexp_mat ch(' f oobar bequebaz', 'bar.*que');
regexp_match

{ bar beque}
(1 row

SELECT regexp_mat ch(' f oobar bequebaz', ' (bar) (beque)');
regexp_match
{bar, beque}

(1 row)

In the common case where you just want the whole matching substring or NULL for no match, write
something like

SELECT (regexp_match('foobarbequebaz', 'bar.*que'))[1];
regexp_match

bar beque

(1 row

Ther egexp_mat ches function returnsaset of text arraysof captured substring(s) resulting from match-
ing aPOSIX regular expression pattern to astring. It hasthe same syntax asr egexp_nat ch. Thisfunc-
tion returns no rows if there is no match, one row if there is a match and the g flag is not given, or N
rows if there are N matches and the g flag is given. Each returned row isatext array containing the whole
matched substring or the substrings matching parenthesized subexpressions of the pat t er n, just as de-
scribed above for r egexp_mat ch.r egexp_mat ches accepts all the flags shown in Table 9.24, plus
the g flag which commandsiit to return all matches, not just the first one.

260

Functions and Operators

Some examples:

SELECT regexp_matches(' foo', 'not there');
regexp_mat ches

SELECT regexp_mat ches(' f oobar bequebazi | barf bonk', ' (b[”b]+)(b[”~b]+)",

'g")

regexp_mat ches

{ bar

, beque}

{bazil, barf}
(2 rows)

Tip

Inmost casesr egexp_nmat ches() should beused withtheg flag, sinceif you only want thefirst
match, it's easier and more efficient to user egexp_mat ch() . However, r egexp_nat ch()
only existsin PostgreSQL version 10 and up. When working in older versions, acommon trick is
toplacear egexp_mat ches() cal inasub-select, for example:

SELECT col 1, (SELECT regexp_matches(col 2, ' (bar)(beque)')) FROM
t ab;

This produces a text array if there's a match, or NULL if not, the same asr egexp_mat ch()
would do. Without the sub-select, this query would produce no output at all for table rows without
amatch, which istypically not the desired behavior.

There

gexp_split_to_tabl e function splits astring using a POSIX regular expression pattern as

adelimiter. It hasthesyntax r egexp_split _to _tabl e(string,pattern[,flags]).Ifthereis
no match to the pat t er n, thefunction returnsthe st ri ng. If thereisat least one match, for each match
it returns the text from the end of the last match (or the beginning of the string) to the beginning of the
match. When there are no more matches, it returns the text from the end of the last match to the end of
the string. Thef | ags parameter is an optional text string containing zero or more single-letter flags that

change

thefunction'sbehavior.r egexp_spl it _to_t abl e supportstheflagsdescribed in Table 9.24.

Ther egexp_split _to_array function behavesthesameasr egexp_split _to_tabl e, except
thatr egexp_split_to_array returnsitsresult asan array of t ext . It hasthe syntax r egexp_s-

plit_
plit_

to_array(string,pattern|[,flags]). The parameters are the same as for r egexp_s-
to_table.

Some examples:

SELECT foo FROM regexp_split_to_table('the quick brown fox junps over

t he
f oo

lazy dog', '\s+') AS foo;

261

Functions and Operators

qui ck
br own

f ox

j unps
over

t he

| azy
dog

(9 rows)

SELECT regexp_split_to_array('the quick brown fox junps over the |azy
dog', '\s+');
regexp_split_to_array
{t he, qui ck, br own, f ox, j unps, over, t he, | azy, dog}

(1 row

SELECT foo FROM regexp_split_to_table('the quick brown fox', "\s*') AS
f oo;

Asthelast example demonstrates, the regexp split functions ignore zero-length matches that occur at the
start or end of the string or immediately after a previous match. Thisis contrary to the strict definition of
regexp matching that is implemented by r egexp_nat ch and r egexp_mat ches, but is usualy the
most convenient behavior in practice. Other software systems such as Perl use similar definitions.

9.7.3.1. Regular Expression Details

PostgreSQL 's regular expressions are implemented using a software package written by Henry Spencer.
Much of the description of regular expressions below is copied verbatim from his manual.

Regular expressions (RES), asdefined in POSI X 1003.2, comeintwo forms: extended REsor ERES (rough-
ly those of egr ep), and basic REs or BRES (roughly those of ed). PostgreSQL supports both forms, and
also implements some extensions that are not in the POSIX standard, but have become widely used dueto
their availability in programming languages such as Perl and Tcl. RES using these non-POSIX extensions
are called advanced REs or AREs in this documentation. ARES are almost an exact superset of ERES, but

262

Functions and Operators

BREs have severa notational incompatibilities (as well as being much more limited). We first describe
the ARE and ERE forms, noting features that apply only to ARES, and then describe how BREs differ.

Note

PostgreSQL always initially presumes that aregular expression follows the ARE rules. However,
the more limited ERE or BRE rules can be chosen by prepending an embedded option to the RE
pattern, as described in Section 9.7.3.4. This can be useful for compatibility with applications that
expect exactly the POSIX 1003.2 rules.

A regular expression is defined as one or more branches, separated by | . It matches anything that matches
one of the branches.

A branch is zero or more quantified atoms or constraints, concatenated. It matches a match for the first,
followed by a match for the second, etc; an empty branch matches the empty string.

A gquantified atom is an atom possibly followed by a single quantifier. Without a quantifier, it matches a
match for the atom. With a quantifier, it can match some number of matches of the atom. An atom can
be any of the possibilities shown in Table 9.17. The possible quantifiers and their meanings are shown
in Table9.18.

A constraint matches an empty string, but matches only when specific conditionsare met. A constraint can
be used where an atom could be used, except it cannot be followed by a quantifier. The simple constraints
are shown in Table 9.19; some more constraints are described later.

Table9.17. Regular Expression Atoms

Atom Description
(re) (wherer e isany regular expression) matches a
match for r e, with the match noted for possible re-
porting
2:re as above, but the match is not noted for reporting
(?:re) ab but th hi ed f i

(a*non-capturing” set of parentheses) (AREs only)

matches any single character

[char s] abracket expression, matching any one of the
char s (see Section 9.7.3.2 for more detail)

\ k (where k is a non-alphanumeric character) matches
that character taken as an ordinary character, e.g.,
\'\ matches a backslash character

\c where ¢ is alphanumeric (possibly followed by
other characters) is an escape, see Section 9.7.3.3
(AREsonly; in EREs and BRES, this matches c)

{ when followed by a character other than a digit,
matches the left-brace character { ; when followed
by adigit, it isthe beginning of abound (see be-
low)

X where x isasingle character with no other signifi-
cance, matches that character

An RE cannot end with abackslash (\).

263

Functions and Operators

Note

If you have standard_conforming_strings turned off, any backslashes you write in literal string
constants will need to be doubled. See Section 4.1.2.1 for more information.

Table 9.18. Regular Expression Quantifiers

Quantifier M atches

* a sequence of 0 or more matches of the atom

+ a sequence of 1 or more matches of the atom

? a sequence of 0 or 1 matches of the atom

{n} a sequence of exactly mmatches of the atom

{m} a sequence of mor more matches of the atom

{m n} a sequence of mthrough n (inclusive) matches of
the atom; mcannot exceed n

*? non-greedy version of *

+? non-greedy version of +

?? non-greedy version of ?

{nm?2 non-greedy version of { n}

{m}? non-greedy version of { m }

{mn}? non-greedy version of { m n}

Theformsusing{ . . . } areknown as bounds. The numbers mand n within abound are unsigned decimal
integers with permissible values from 0 to 255 inclusive.

Non-greedy quantifiers (available in AREs only) match the same possibilities as their corresponding nor-
mal (greedy) counterparts, but prefer the smallest number rather than the largest number of matches. See
Section 9.7.3.5 for more detail.

Note

A quantifier cannot immediately follow another quantifier, e.g., * * isinvalid. A quantifier cannot
begin an expression or subexpression or follow ~ or | .

Table 9.19. Regular Expression Constraints

Constraint Description

A matches at the beginning of the string

$ matches at the end of the string

(?=re) positive lookahead matches at any point where a

substring matching r e begins (AREs only)

(?'re) negative |lookahead matches at any point where no
substring matching r e begins (AREs only)

264

Functions and Operators

Constraint Description

(?<=re) positive lookbehind matches at any point where a
substring matching r e ends (AREs only)

(?<'re) negative lookbehind matches at any point where no
substring matching r e ends (AREs only)

L ookahead and lookbehind constraints cannot contain back references (see Section 9.7.3.3), and al paren-
theses within them are considered non-capturing.

9.7.3.2. Bracket Expressions

A bracket expressionisalist of charactersenclosed in[] . It normally matches any single character from
thelist (but see below). If thelist beginswith”, it matches any single character not from therest of thelist.
If two charactersin the list are separated by - , this is shorthand for the full range of characters between
those two (inclusive) in the collating sequence, e.g., [0- 9] in ASCIlI matches any decimal digit. It is
illegal for two ranges to share an endpoint, e.g., a- c- e. Ranges are very collating-sequence-dependent,
so portable programs should avoid relying on them.

Toincludealiteral] inthelist, make it the first character (after , if that is used). To include aliteral -,
make it thefirst or last character, or the second endpoint of arange. To use aliteral - asthefirst endpoint
of arange, encloseitin[. and.] tomakeit acollating element (see below). With the exception of these
characters, some combinations using [(see next paragraphs), and escapes (AREs only), all other special
characters lose their special significance within a bracket expression. In particular, \ is not special when
following ERE or BRE rules, though it is special (as introducing an escape) in ARES.

Within a bracket expression, a collating element (a character, a multiple-character sequence that collates
as if it were a single character, or a collating-sequence name for either) enclosed in[. and .] stands
for the sequence of characters of that collating element. The sequence is treated as a single element of
the bracket expression's list. This allows a bracket expression containing a multiple-character collating
element to match more than one character, e.g., if the collating sequence includes a ch collating element,
thenthe RE[[. ch.]] * c matchesthefirst five characters of chchcc.

Note

PostgreSQL currently does not support multi-character collating elements. This information de-
scribes possible future behavior.

Within a bracket expression, a collating element enclosed in [= and =] is an equivalence class, standing
for the sequences of characters of all collating elements equivaent to that one, including itself. (If there
are no other equivalent collating elements, the treatment is asif the enclosing delimiterswere[. and.] .)
For example, if 0 and* are the members of an equivalence class, then[[=0=]],[[="=]],and [0"]
are al synonymous. An equivalence class cannot be an endpoint of arange.

Within a bracket expression, the name of a character classenclosed in[: and:] standsfor thelist of all
characters belonging to that class. A character class cannot be used as an endpoint of arange. The POSIX
standard definesthese character class names: al num(lettersand numeric digits), al pha (letters), bl ank
(spaceandtab), cnt r | (control characters), di gi t (numeric digits), gr aph (printable characters except
space), | ower (lower-case letters), pri nt (printable charactersincluding space), punct (punctuation),
space (any white space), upper (upper-case letters), and xdi gi t (hexadecimal digits). The behavior
of these standard character classesis generally consistent across platformsfor charactersin the 7-bit ASCI|
set. Whether a given non-ASCII character is considered to belong to one of these classes depends on the

265

Functions and Operators

collation that is used for the regular-expression function or operator (see Section 24.2), or by default onthe
database’'s LC_CTYPE locale setting (see Section 24.1). The classification of non-ASCII characters can
vary across platforms even in similarly-named locales. (But the C locale never considers any non-ASCI|
characters to belong to any of these classes.) In addition to these standard character classes, PostgreSQL
definesthe wor d character class, which isthe same as al numplus the underscore (_) character, and the
asci i character class, which contains exactly the 7-bit ASCI| set.

There are two special cases of bracket expressions: the bracket expressions[[: <:]] and[[:>:]] are
constraints, matching empty strings at the beginning and end of aword respectively. A word is defined as
a sequence of word characters that is neither preceded nor followed by word characters. A word character
isany character belonging to the wor d character class, that is, any letter, digit, or underscore. Thisisan
extension, compatiblewith but not specified by POSI X 1003.2, and should be used with caution in software
intended to be portable to other systems. The constraint escapes described below are usually preferable;
they are no more standard, but are easier to type.

9.7.3.3. Regular Expression Escapes

Escapes are special sequences beginning with\ followed by an al phanumeric character. Escapes comein
several varieties: character entry, class shorthands, constraint escapes, and back references. A\ followed
by an aphanumeric character but not constituting avalid escapeisillegal in AREs. In EREs, there are no
escapes. outside a bracket expression, a\ followed by an aphanumeric character merely stands for that
character as an ordinary character, and inside a bracket expression, \ isan ordinary character. (The latter
is the one actual incompatibility between EREs and ARES.)

Character-entry escapes exist to make it easier to specify non-printing and other inconvenient characters
in REs. They are shown in Table 9.20.

Class-shorthand escapes provide shorthandsfor certain commonly-used character classes. They are shown
in Table 9.21.

A constraint escape is a constraint, matching the empty string if specific conditions are met, written as
an escape. They are shown in Table 9.22.

A back reference (\ n) matches the same string matched by the previous parenthesized subexpression
specified by the number n (see Table 9.23). For example, ([bc]) \ 1 matchesbb or cc but not be or cb.
The subexpression must entirely precede the back reference in the RE. Subexpressions are numbered in
the order of their leading parentheses. Non-capturing parentheses do not define subexpressions. The back
reference considers only the string characters matched by the referenced subexpression, not any constraints
contained in it. For example, (*\ d) \ 1 will match 22.

Table 9.20. Regular Expression Character-Entry Escapes

Escape Description

\a aert (bell) character, asin C

\b backspace, asin C

\B synonym for backslash (\) to help reduce the need
for backslash doubling

\cX (where X isany character) the character whose

low-order 5 bits are the same as those of X, and
whose other bits are dl zero

\e the character whose collating-sequence nameis
ESC, or failing that, the character with octal value
033

266

Functions and Operators

Escape Description

\ f formfeed, asin C

\n newline, asin C

\r carriage return, asin C

\ 't horizontal tab, asin C

\ uwxyz (wherewxyz isexactly four hexadecimal digits)

the character whose hexadecimal value is Oxwxy z

\ Ust uvwxyz (where st uvwxyz isexactly eight hexadecimal
digits) the character whose hexadecimal valueis
Oxst uvwxyz

\'v vertical tab, asin C

\ xhhh (where hhh is any sequence of hexadecimal digits)
the character whose hexadecimal valueis Oxhhh
(asingle character no matter how many hexadeci-
mal digits are used)

\0 the character whose value is O (the null byte)

\ xy (where xy is exactly two octal digits, and isnot a
back reference) the character whose octal valueis
Oxy

\ xyz (where xyz isexactly three octal digits, and is not
aback reference) the character whose octal value
isOxyz

Hexadecimal digitsare 0-9, a-f , and A-F. Octal digitsare 0-7.

Numeric character-entry escapes specifying values outside the ASCII range (0-127) have meanings de-
pendent on the database encoding. When the encoding is UTF-8, escape values are equivalent to Unicode
code points, for example\ u1234 means the character U+1234. For other multibyte encodings, charac-
ter-entry escapes usually just specify the concatenation of the byte values for the character. If the escape
value does not correspond to any legal character in the database encoding, no error will be raised, but it
will never match any data.

The character-entry escapes are always taken as ordinary characters. For example, \ 135 is] in ASCII,
but \ 135 does not terminate a bracket expression.

Table 9.21. Regular Expression Class-Shorthand Escapes

Escape Description

\d matches any digit, like[[:digit:]]

\'s matches any whitespace character, like
[[:space:]]

\'w matches any word character, like[[: wor d:]]

\D matches any non-digit, like[M : digit:]]

\'S matches any non-whitespace character, like
[~ :space:]]

\'W matches any non-word character, like
[:word:]]

267

Functions and Operators

The class-shorthand escapes al so work within bracket expressions, although the definitions shown above
are not quite syntactically valid in that context. For example, [a- c\ d] isequivalentto[a-c[: di g-

it:]].

Table 9.22. Regular Expression Constraint Escapes

Escape Description

VA matches only at the beginning of the string (see
Section 9.7.3.5 for how this differsfrom *)

\'m matches only at the beginning of aword

\M matches only at the end of aword

\y matches only at the beginning or end of aword

\'Y matches only at a point that is not the beginning or
end of aword

\Z matches only at the end of the string (see Sec-
tion 9.7.3.5 for how this differs from $)

A word isdefined asinthe specificationof [[: <:]] and[[: >:]] above. Constraint escapesareillegal
within bracket expressions.

Table 9.23. Regular Expression Back References

Escape Description

\'m (where mis anonzero digit) a back reference to the
nith subexpression

\ mn (where mis anonzero digit, and nn is some more
digits, and the decimal value rmn is not greater
than the number of closing capturing parentheses
seen so far) a back reference to the mn'th subex-
pression

Note

Thereis an inherent ambiguity between octal character-entry escapes and back references, which
isresolved by the following heuristics, as hinted at above. A leading zero alwaysindicates an octal
escape. A single non-zero digit, not followed by another digit, is always taken as a back reference.
A multi-digit sequence not starting with a zero is taken as a back reference if it comes after a
suitable subexpression (i.e., the number isin the legal range for a back reference), and otherwise
istaken as octal.

9.7.3.4. Regular Expression Metasyntax

In addition to the main syntax described above, there are some special forms and miscellaneous syntactic
facilities available.

An RE can begin with one of two special director prefixes. If an RE begins with ***: | the rest of the
RE istaken as an ARE. (This normally has no effect in PostgreSQL, since RESs are assumed to be AREs;
but it does have an effect if ERE or BRE mode had been specified by the f | ags parameter to a regex

268

Functions and Operators

function.) If an RE beginswith * * * =, the rest of the RE is taken to be a literal string, with all characters
considered ordinary characters.

An ARE can begin with embedded options: a sequence (?xyz) (where xyz is one or more a phabetic
characters) specifiesoptions affecting therest of the RE. These options override any previously determined
options — in particular, they can override the case-sensitivity behavior implied by a regex operator, or
thef | ags parameter to aregex function. The available option letters are shown in Table 9.24. Note that
these same option lettersare used in the f | ags parameters of regex functions.

Table9.24. ARE Embedded-Option Letters

Option Description

b rest of REisaBRE

c case-sensitive matching (overrides operator type)

e rest of RE isan ERE

i case-insensitive matching (see Section 9.7.3.5)
(overrides operator type)

m historical synonym for n

n newline-sensitive matching (see Section 9.7.3.5)

p partial newline-sensitive matching (see Sec-
tion 9.7.3.5)

q rest of RE isaliteral (“quoted”) string, all ordinary
characters

s non-newline-sensitive matching (default)

t tight syntax (default; see below)

w inverse partial newline-sensitive (“weird”) match-
ing (see Section 9.7.3.5)

X expanded syntax (see below)

Embedded options take effect at the) terminating the sequence. They can appear only at the start of an
ARE (after the***: director if any).

In addition to the usua (tight) RE syntax, in which all characters are significant, there is an expanded
syntax, available by specifying the embedded x option. In the expanded syntax, white-space charactersin
the RE are ignored, as are all characters between a # and the following newline (or the end of the RE).
This permits paragraphing and commenting a complex RE. There are three exceptions to that basic rule;

» awhite-space character or # preceded by \ isretained
 white space or # within a bracket expression is retained
* white space and comments cannot appear within multi-character symbols, such as (?:

For this purpose, white-space characters are blank, tab, newline, and any character that belongs to the
space character class.

Finally, in an ARE, outside bracket expressions, the sequence (?#t tt) (wheret tt isany text not con-
taining a)) isacomment, completely ignored. Again, thisis not allowed between the characters of mul-
ti-character symboals, like (?: . Such comments are more a historical artifact than a useful facility, and
their use is deprecated; use the expanded syntax instead.

269

Functions and Operators

None of these metasyntax extensions is available if an initial * ** = director has specified that the user's
input be treated as a literal string rather than as an RE.

9.7.3.5. Regular Expression Matching Rules

In the event that an RE could match more than one substring of a given string, the RE matches the one
starting earliest in the string. If the RE could match more than one substring starting at that point, either
the longest possible match or the shortest possible match will be taken, depending on whether the RE is

greedy or non-greedy.
Whether an RE is greedy or not is determined by the following rules:

* Most atoms, and all constraints, have no greediness attribute (because they cannot match variable
amounts of text anyway).

 Adding parentheses around an RE does not change its greediness.

* A quantified atom with a fixed-repetition quantifier ({ n} or { n} ?) has the same greediness (possibly
none) as the atom itself.

* A guantified atom with other normal quantifiers (including { m n} with mequal to n) isgreedy (prefers
longest match).

* A guantified atom with a non-greedy quantifier (including { m n} ? with megual to n) is non-greedy
(prefers shortest match).

» A branch — that is, an RE that has no top-level | operator — has the same greediness as the first
quantified atom in it that has a greediness attribute.

» An RE consisting of two or more branches connected by the | operator is always greedy.

Theaboverulesassociate greediness attributes not only with individual quantified atoms, but with branches
and entire REs that contain quantified atoms. What that means is that the matching is done in such away
that the branch, or whole RE, matchesthe longest or shortest possible substring asa whole. Oncethe length
of the entire match is determined, the part of it that matches any particular subexpression is determined
on the basis of the greediness attribute of that subexpression, with subexpressions starting earlier in the
RE taking priority over ones starting later.

An example of what this means:

SELECT SUBSTRI NG(' XY1234Z', ' Y*([0-9]{1,3})'):

Result: 123
SELECT SUBSTRI NG(' XY1234Z', 'Y*?([0-9]{1,3})");
Result: 1

Inthefirst case, the RE asawholeis greedy because Y* isgreedy. It can match beginning at the Y, and it
matches the longest possible string starting there, i.e., Y123. The output is the parenthesized part of that,
or 123. In the second case, the RE as a whole is non-greedy because Y* ? is non-greedy. It can match
beginning at the Y, and it matches the shortest possible string starting there, i.e., Y1. The subexpression
[0-9] {1, 3} isgreedy but it cannot change the decision as to the overall match length; so it is forced
to match just 1.

In short, when an RE contains both greedy and non-greedy subexpressions, the total match length is either
aslong aspossibleor as short as possibl e, according to the attribute assigned to thewhole RE. The attributes

270

Functions and Operators

assigned to the subexpressions only affect how much of that match they are allowed to “eat” relative to
each other.

The quantifiers{ 1, 1} and {1, 1} ? can be used to force greediness or non-greediness, respectively, on
a subexpression or awhole RE. Thisis useful when you need the whole RE to have a greediness attribute
different from what's deduced from its elements. As an example, suppose that we are trying to separate
a string containing some digits into the digits and the parts before and after them. We might try to do
that like this:

SELECT regexp_mat ch('abc01234xyz', ' (.*)(\d+)(.*)");
Resul t: {abc0123, 4, xyz}

That didn't work: thefirst . * isgreedy so it “eats’ as much asit can, leaving the\ d+ to match at the last
possible place, the last digit. We might try to fix that by making it non-greedy:

SELECT regexp_match(' abc01234xyz', '(.*?)(\d+)(.*)");
Result: {abc,0,""}

That didn't work either, because now the RE as awhole is hon-greedy and so it ends the overall match as
soon as possible. We can get what we want by forcing the RE as awhole to be greedy:

SELECT regexp_match(' abc01234xyz', ' (?2:(.*?2)(\d+)(.*)){1,1}");
Resul t: {abc, 01234, xyz}

Controlling the RE's overall greediness separately from its components' greediness allows great flexibility
in handling variable-length patterns.

When deciding what is alonger or shorter match, match lengths are measured in characters, not collating
elements. An empty string is considered longer than no match at all. For example: bb* matches the three
middle characters of abbbc; (week| wee) (ni ght | kni ght s) matches al ten characters of week-
ni ght s; when (. *) . * ismatched against abc the parenthesized subexpression matches all three char-
acters, and when (a*) * ismatched against bc both the whole RE and the parenthesized subexpression
match an empty string.

If case-independent matching is specified, the effect ismuch asiif all case distinctions had vanished from
the alphabet. When an alphabetic that exists in multiple cases appears as an ordinary character outside a
bracket expression, it is effectively transformed into a bracket expression containing both cases, e.g., X
becomes [xX] . When it appears inside a bracket expression, all case counterparts of it are added to the
bracket expression, e.g., [Xx] becomes[xX] and[*x] becomes[*xX] .

If newline-sensitive matching is specified, . and bracket expressionsusing” will never match the newline
character (so that matcheswill not crosslines unlessthe RE explicitly includesanewline) and * and $ will
match the empty string after and before a newline respectively, in addition to matching at beginning and
end of string respectively. But the ARE escapes\ A and\ Z continue to match beginning or end of string
only. Also, the character class shorthands\ Dand\ Wwill match anewline regardless of thismode. (Before
PostgreSQL 14, they did not match newlines when in newline-sensitive mode. Write [[: di git:]]
or [:word:]] togetthe old behavior.)

If partial newline-sensitive matching is specified, this affects . and bracket expressions as with new-
line-sensitive matching, but not ~ and $.

If inverse partial newline-sensitive matching is specified, this affects * and $ as with newline-sensitive
matching, but not . and bracket expressions. Thisisn't very useful but is provided for symmetry.

271

Functions and Operators

9.7.3.6. Limits and Compatibility

No particular limit isimposed on thelength of REsin thisimplementation. However, programsintended to
be highly portable should not employ REs longer than 256 bytes, as a POSI X-compliant implementation
can refuse to accept such REs.

Theonly feature of AREsthat isactually incompatible with POSIX EREsisthat\ doesnot loseits special
significanceinside bracket expressions. All other ARE features use syntax whichisillegal or hasundefined
or unspecified effectsin POSIX EREs; the* * * syntax of directors likewise is outside the POSIX syntax
for both BREs and EREs.

Many of the ARE extensions are borrowed from Perl, but some have been changed to clean them up,
and a few Perl extensions are not present. Incompatibilities of note include \ b, \ B, the lack of special
treatment for atrailing newline, the addition of complemented bracket expressionsto the things affected by
newline-sensitive matching, the restrictions on parentheses and back references in |ookahead/| ookbehind
constraints, and the longest/shortest-match (rather than first-match) matching semantics.

9.7.3.7. Basic Regular Expressions

BREs differ from EREs in several respects. In BREs, | , +, and ? are ordinary characters and there is no
equivaent for their functionality. The delimiters for boundsare\ { and\ }, with{ and} by themselves
ordinary characters. The parenthesesfor nested subexpressionsare\ (and\) ,with (and) by themselves
ordinary characters. ~ is an ordinary character except at the beginning of the RE or the beginning of
a parenthesized subexpression, $ is an ordinary character except at the end of the RE or the end of a
parenthesized subexpression, and * is an ordinary character if it appears at the beginning of the RE or
the beginning of a parenthesized subexpression (after a possible leading *). Finaly, single-digit back
referencesareavailable, and\ <and\ >aresynonymsfor[[: <:]] and[[: >:]] respectively; no other
escapes are available in BRES.

9.7.3.8. Differences from XQuery (LI KE_REGEX)

Since SQL:2008, the SQL standard includes a LI KE_REGEX operator that performs pattern matching
according to the XQuery regular expression standard. PostgreSQL does not yet implement this operator,
but you can get very similar behavior using ther egexp_nmat ch() function, since XQuery regular ex-
pressions are quite close to the ARE syntax described above.

Notable differences between the existing POSIX-based regular-expression feature and XQuery regular
expressions include:

» XQuery character class subtraction is not supported. An example of this feature is using the following
to match only English consonants: [a- z- [aei ou]] .

» XQuery character class shorthands\ c¢,\ C,\'i ,and\ | are not supported.

» XQuery character class elements using \ p{ Uni codePr operty} or the inverse \ P{ Uni code-
Pr operty} arenot supported.

» POSIX interprets character classes such as\ w(see Table 9.21) according to the prevailing locale (which
you can control by attaching a COLLATE clause to the operator or function). XQuery specifies these
classes by reference to Unicode character properties, so equivalent behavior is obtained only with a
locale that follows the Unicode rules.

e The SQL standard (not XQuery itself) attempts to cater for more variants of “newline” than POSIX
does. The newline-sensitive matching options described above consider only ASCII NL (\ n) to be a

272

Functions and Operators

newline, but SQL would have ustreat CR (\ r), CRLF (\ r\ n) (a Windows-style newline), and some
Unicode-only characters like LINE SEPARATOR (U+2028) as newlines as well. Notably, . and\ s
should count \ r \ n as one character not two according to SQL.

 Of the character-entry escapes described in Table 9.20, XQuery supportsonly \ n,\ r,and\ t .
* XQuery does not support the[: name:] syntax for character classes within bracket expressions.

» XQuery does not have lookahead or lookbehind constraints, nor any of the constraint escapes described
in Table 9.22.

» The metasyntax forms described in Section 9.7.3.4 do not exist in XQuery.

» Theregular expression flag | etters defined by XQuery arerelated to but not the same asthe option | etters
for POSIX (Table 9.24). Whilethei and g options behave the same, others do not:

e XQuery'ss (alow dot to match newline) and m(allow ~ and $ to match at newlines) flags provide
access to the same behaviors as POSIX's n, p and w flags, but they do not match the behavior of
POSIX's s and mflags. Note in particular that dot-matches-newline is the default behavior in POSIX
but not XQuery.

« XQuery'sx (ignore whitespacein pattern) flag is noticeably different from POSIX's expanded-mode
flag. POSIX's x flag also alows # to begin a comment in the pattern, and POSIX will not ignore a
whitespace character after a backslash.

9.8. Data Type Formatting Functions

The PostgreSQL formatting functions provide a powerful set of tools for converting various data types
(date/time, integer, floating point, numeric) to formatted strings and for converting from formatted strings
to specific datatypes. Table 9.25 lists them. These functions all follow a common calling convention: the
first argument is the value to be formatted and the second argument is a template that defines the output
or input format.

Table 9.25. Formatting Functions

Function
Description
Example(s)

to_char (timestanp,text) - text

to char (tinestanp with tinme zone,text) - text
Converts time stamp to string according to the given format.
to_char(tinmestanp '2002-04-20 17:31:12.66', 'HHI2: M:SS') -
05:31:12

to_char (interval,text) - text
Convertsinterval to string according to the given format.

to_char(interval '15h 2m 12s', 'HH4: M :SS') - 15:02:12

to_char (nuneric_type,text) - text
Converts number to string according to the given format; available for i nt eger , bi gi nt,
nuneric,real ,doubl e preci sion.
to_char (125, '999') - 125

to _char(125.8::real, '999D9') - 125.8

273

Functions and Operators

Function
Description
Example(s)

to_char(-125.8, '999D99S) - 125. 80-

to date(text,text) - date
Converts string to date according to the given format.

to_date(' 05 Dec 2000', 'DD Mon YYYY') - 2000-12-05

to_nunber (text,text) - nuneric
Converts string to numeric according to the given format.

to_nunber (' 12,454.8-', '99(099D9S) - -12454.8

to timestanp (text,text) - tinmestanp with tine zone
Converts string to time stamp according to the given format. (Seeasot o_ti mest am
p(doubl e precision) inTable9.32)

to_tinmestanp(' 05 Dec 2000', 'DD Mon YYYY') - 2000-12-05
00: 00: 00- 05

Tip

to_timestanpandt o_dat e exist to handle input formats that cannot be converted by simple
casting. For most standard date/time formats, simply casting the source string to the required da-
ta type works, and is much easier. Similarly, t o_nunber is unnecessary for standard numeric
representations.

Inato_char output template string, there are certain patterns that are recognized and replaced with
appropriately-formatted data based on the given value. Any text that is not a template pattern is simply
copied verbatim. Similarly, in an input template string (for the other functions), template patterns identify
the valuesto be supplied by the input data string. If there are charactersin the template string that are not
template patterns, the corresponding characters in the input data string are simply skipped over (whether
or not they are equal to the template string characters).

Table 9.26 shows the template patterns available for formatting date and time values.

Table 9.26. Template Patternsfor Date/Time Formatting

Pattern Description

HH hour of day (01-12)

HH12 hour of day (01-12)

HH24 hour of day (00-23)

M minute (00-59)

SS second (00-59)

VB millisecond (000-999)

us microsecond (000000—-999999)
FF1 tenth of second (0-9)

FF2 hundredth of second (00-99)

274

Functions and Operators

Pattern Description

FF3 millisecond (000-999)

FF4 tenth of amillisecond (0000-9999)

FF5 hundredth of a millisecond (00000—99999)
FF6 microsecond (000000-999999)

SSSS, SSSSS seconds past midnight (0-86399)

AM am PMor pm

meridiem indicator (without periods)

AM,a.m,P.M orp.m

meridiem indicator (with periods)

Y, YYY year (4 or more digits) with comma

YYYY year (4 or more digits)

YYY last 3 digits of year

YY last 2 digits of year

Y last digit of year

I YYY I SO 8601 week-numbering year (4 or more digits)

1YY last 3 digits of 1SO 8601 week-numbering year

Y last 2 digits of 1SO 8601 week-numbering year

I last digit of 1SO 8601 week-numbering year

BC, bc, ADor ad eraindicator (without periods)

B.C. ,b.c.,A D ora.d. eraindicator (with periods)

MONTH full upper case month name (blank-padded to 9
chars)

Mont h full capitalized month name (blank-padded to 9
chars)

nmont h full lower case month name (blank-padded to 9
chars)

MON abbreviated upper case month name (3 charsin
English, localized lengths vary)

Mon abbreviated capitalized month name (3 charsin
English, localized lengths vary)

non abbreviated lower case month name (3 charsin
English, localized lengths vary)

WM month number (01-12)

DAY full upper case day name (blank-padded to 9 chars)

Day full capitalized day name (blank-padded to 9
chars)

day full lower case day name (blank-padded to 9 chars)

DY abbreviated upper case day name (3 charsin Eng-
lish, localized lengths vary)

Dy abbreviated capitalized day name (3 charsin Eng-
lish, localized lengths vary)

dy abbreviated lower case day name (3 charsin Eng-

lish, localized lengths vary)

275

Functions and Operators

Pattern Description

DDD day of year (001-366)

| DDD day of 1SO 8601 week-numbering year (001-371,;
day 1 of the year is Monday of the first 1SO week)

DD day of month (01-31)

D day of the week, Sunday (1) to Saturday (7)

I D SO 8601 day of the week, Monday (1) to Sunday
(1)

w week of month (1-5) (the first week starts on the
first day of the month)

WV week number of year (1-53) (the first week starts
on thefirst day of the year)

W week number of 1SO 8601 week-numbering year
(01-53; thefirst Thursday of the year isin week 1)

CcC century (2 digits) (the twenty-first century starts on
2001-01-01)

J Julian Date (integer days since November 24, 4714
BC at local midnight; see Section B.7)

Q quarter

RM month in upper case Roman numerals (1-XI1;
I=January)

rm month in lower case Roman numerals (i—xii;
i=January)

TZ upper case time-zone abbreviation (only supported
into_char)

tz lower case time-zone abbreviation (only supported
into_char)

TZH time-zone hours

TZM time-zone minutes

OF time-zone offset from UTC (only supported in

to_char)

Modifierscan be applied to any template pattern to alter itsbehavior. For example, FMVbnt h istheMont h
pattern with the FMmodifier. Table 9.27 shows the modifier patterns for date/time formatting.

Table9.27. Template Pattern Modifiersfor Date/Time Formatting

usage notes)

M odifier Description Example
FMprefix fill mode (suppressleading ze- |FMVbnt h
roes and padding blanks)
TH suffix upper case ordinal number suffix |DDTH, e.g., 12TH
t h suffix |lower case ordinal number suffix |DDt h, e.g., 12t h
FX prefix fixed format global option (see |FX Mont h DD Day

276

Functions and Operators

M odifier Description Example
TMprefix tranglation mode (use localized | TMvbnt h
day and month names based on
Ic_time)
SP suffix spell mode (not implemented) DDSP

Usage notes for date/time formatting:

FMsuppresses leading zeroes and trailing blanks that would otherwise be added to make the output of
a pattern be fixed-width. In PostgreSQL, FMmodifies only the next specification, while in Oracle FM
affects all subsequent specifications, and repeated FMmodifiers toggle fill mode on and off.

TMsuppresses trailing blanks whether or not FMis specified.

to_timestanpandt o_dat e ignoreletter case in the input; so for example MON, Mon, and nmon all
accept the same strings. When using the TMmodifier, case-folding is done according to the rules of the
function's input collation (see Section 24.2).

to tinmestanp and t o_dat e skip multiple blank spaces at the beginning of the input string
and around date and time values unless the FX option is used. For example, t o_ti nest am
p(' 2000 JUN, "YYYY MN) andto_tinestanp('2000 - JUN, 'YYYY-
MON') work, butt o_ti nestanp(' 2000 JUN , " FXYYYY MON) returnsan error because
t o_ti mest anp expects only asingle space. FX must be specified as the first item in the template.

A separator (a space or non-letter/non-digit character) in the template string of t o_ti nest anp
and t o_dat e matches any single separator in the input string or is skipped, unless the FX option
is used. For example, t o_ti nestanp(' 2000JUN , 'YYYY///MON) andto_tinestam
p(' 2000/ JUN , ' YYYY MON) work,butto_ti nestanp(' 2000//JUN , ' YYYY/ MON)
returns an error because the number of separatorsin the input string exceeds the number of separators
in the template.

If FX is specified, a separator in the template string matches exactly one character in the input string.
But note that the input string character is not required to be the same as the separator from the template
string. For example, t o_t i nest anp(' 2000/ JUN , ' FXYYYY MON) works, butto_ti me-
stanp(' 2000/ JUN , ' FEXYYYY MON) returnsan error because the second space in the tem-
plate string consumes the letter J from the input string.

A TZH template pattern can match a signed number. Without the FX option, minus signs may be am-
biguous, and could beinterpreted as a separator. Thisambiguity is resolved asfollows: If the number of
separators before TZH in the template string is less than the number of separators before the minus sign
in the input string, the minus sign isinterpreted as part of TZH. Otherwise, the minus signis considered
to be a separator between values. For example, t o_ti nestanp(' 2000 -10', 'YYYY TZH)

matches- 10 to TZH, butt o_ti mestanp(' 2000 -10', 'YYYY TZH) matches10 to TZH.

Ordinary text isalowed int o_char templates and will be output literally. You can put a substring
in double quotes to force it to be interpreted as literal text even if it contains template patterns. For
example, in' "Hel 1 o Year "YYYY',theYYYY will bereplaced by the year data, but the single Y
inYear will notbe. Int o_dat e,t o_nunber,andt o_t i nest anp, literal text and double-quoted
strings result in skipping the number of characters contained in the string; for example " XX" skipstwo
input characters (whether or not they are XX).

Tip
Prior to PostgreSQL 12, it was possibleto skip arbitrary text in theinput string using non-letter or
non-digit characters. For example, t o_t i mest anp(' 2000y6nid’', 'yyyy- MV DD)

277

Functions and Operators

used to work. Now you can only use letter charactersfor this purpose. For example, t o_t i nme-
stanp(' 2000y6mld', 'yyyytMMDDt') and to_tinmestanp(' 2000y6nid',
"yyyy"y"MM nt DD"d"") skipy, mandd.

* If you want to have a double quote in the output you must precede it with a backsash, for example
"\"YYYY Mont h\ "' . Backdashesare not otherwise special outside of double-quoted strings. Within
a double-quoted string, a backslash causes the next character to be taken literally, whatever it is (but
this has no special effect unless the next character is a double quote or another backslash).

e Into_tinmestanpandt o_dat e, if the year format specification is less than four digits, e.g., YYY,
and the supplied year is less than four digits, the year will be adjusted to be nearest to the year 2020,
e.g., 95 becomes 1995.

* Into_timestanp andt o_dat e, negative years are treated as signifying BC. If you write both a
negative year and an explicit BCfield, you get AD again. Aninput of year zeroistreated as 1 BC.

* Into_tinmestanpandt o_dat e, the YYYY conversion has arestriction when processing years with
more than 4 digits. Y ou must use some non-digit character or template after YYYY, otherwise the year
is always interpreted as 4 digits. For example (with the year 20000): t o_dat e(' 200001131" ,
"YYYYMVDD') will be interpreted as a 4-digit year; instead use a non-digit separator after the year,
liket o_dat e(' 20000- 1131"', ' YYYY-MVDD) orto_date(' 20000Nov31', ' YYYY-
MonDD) .

 Into_tinestanp andto_dat e, the CC (century) field is accepted but ignored if thereisa YYY,
YYYYorY, YYYfield. If CCisused with YY or Y then the result is computed as that year in the specified
century. If the century is specified but the year is not, the first year of the century is assumed.

* Into_timestanpandt o_dat e, weekday names or numbers (DAY, D, and related field types) are
accepted but are ignored for purposes of computing the result. The sameistrue for quarter (Q) fields.

e Into_tinmestanpandto_dat e, an SO 8601 week-numbering date (as distinct from a Gregorian
date) can be specified in one of two ways:

¢ Year, week number, and weekday: for examplet o_dat e(' 2006-42-4', '1YYY-IWID)
returns the date 2006- 10- 19. If you omit the weekday it is assumed to be 1 (Monday).

e Year and day of year: for example t o_dat e(' 2006-291', '1YYY-I1DDD) aso returns
2006- 10- 19.

Attempting to enter a date using a mixture of 1SO 8601 week-numbering fields and Gregorian date
fieldsis nonsensical, and will cause an error. In the context of an 1SO 8601 week-numbering year, the
concept of a“month” or “day of month” has no meaning. In the context of a Gregorian year, the ISO
week has no meaning.

Caution

While t o_dat e will rgject a mixture of Gregorian and 1SO week-numbering date fields,
t o_char will not, since output format specificationslike YYYY- MM DD (| YYY-1 DDD) can
be useful. But avoid writing something like | YYY- M\t DD; that would yield surprising results
near the start of the year. (See Section 9.9.1 for more information.)

* Into_tinmestanp, millisecond (IMS) or microsecond (US) fields are used as the seconds digits after
the decimal point. For examplet o_ti mestanp(' 12.3', 'SS. M5') isnot 3 milliseconds, but

278

Functions and Operators

300, because the conversion treats it as 12 + 0.3 seconds. So, for the format SS. M5, the input values
12. 3,12. 30,and 12. 300 specify the same number of milliseconds. To get three milliseconds, one
must write 12. 003, which the conversion treats as 12 + 0.003 = 12.003 seconds.

Here is a more complex example: to tinmestanmp('15:12:02.020.001230",
" HH24: M : SS. MS. US') is15 hours, 12 minutes, and 2 seconds + 20 milliseconds + 1230 microsec-
onds = 2.021230 seconds.

* to_char (..., '1D) 'sdayof theweek numbering matchestheext r act (i sodowfrom...)
function, butt o_char (..., ' D)'sdoesnot matchextract(dow from .. .)'sday number-
ing.

e to_char(interval) formats HHand HH12 as shown on a 12-hour clock, for example zero hours
and 36 hours both output as 12, while HH24 outputs the full hour value, which can exceed 23 in an

i nterval vaue

Table 9.28 shows the template patterns available for formatting numeric values.

Table 9.28. Template Patternsfor Numeric For matting

Pattern Description

9 digit position (can be dropped if insignificant)

0 digit position (will not be dropped, even if in-
significant)

. (period) decimal point

, (comma) group (thousands) separator

PR negative value in angle brackets

S sign anchored to number (uses locale)

L currency symbol (uses locale)

D decimal point (useslocale)

G group separator (useslocale)

M minus sign in specified position (if number < 0)

PL plus sign in specified position (if number > 0)

SG plus/minus sign in specified position

RN Roman numeral (input between 1 and 3999)

THorth ordinal number suffix

\% shift specified number of digits (see notes)

EEEE exponent for scientific notation

Usage notes for numeric formatting:

» 0 specifiesadigit position that will always be printed, even if it contains aleading/trailing zero. 9 also

specifies a digit position, but if it is aleading zero then it will be replaced by a space, while if itisa
trailing zero and fill mode is specified then it will be deleted. (For t o_nunber () , these two pattern
characters are equivalent.)

The pattern characters S, L, D, and Grepresent the sign, currency symbol, decimal point, and thousands
separator characters defined by the current locale (see Ic_monetary and Ic_numeric). The pattern char-
acters period and commarepresent those exact characters, with the meanings of decimal point and thou-
sands separator, regardless of locale.

279

Functions and Operators

« If no explicit provision is made for asignint o_char () 's pattern, one column will be reserved for
the sign, and it will be anchored to (appear just |eft of) the number. If S appears just |eft of some 9's,
it will likewise be anchored to the number.

» A sign formatted using SG, PL, or M is not anchored to the number; for example, t o_char (- 12,
"M 9999') produces' - 12' butto_char(-12, ' S9999') produces' -12'.(TheOracle
implementation does not allow the use of M before 9, but rather requiresthat 9 precede M .)

» THdoes not convert values |l ess than zero and does not convert fractional numbers.
» PL, SG and TH are PostgreSQL extensions.

* Into_nunber, if non-data template patterns such as L or TH are used, the corresponding number
of input characters are skipped, whether or not they match the template pattern, unless they are data
characters (that is, digits, sign, decimal point, or comma). For example, TH would skip two non-data
characters.

* Vwitht o_char multipliestheinput values by 10" n, where n isthe number of digits following V. V
witht o_nunber dividesinasimilar manner.t o_char andt o_nunber do not support the use of
V combined with adecimal point (e.g., 99. 9V99 is not allowed).

» EEEE (scientific notation) cannot be used in combination with any of the other formatting patterns or
modifiers other than digit and decimal point patterns, and must be at the end of the format string (e.g.,
9. 99EEEE isavalid pattern).

Certain modifiers can be applied to any template pattern to alter its behavior. For example, FMB9. 99 is
the 99. 99 pattern with the FMmodifier. Table 9.29 shows the modifier patterns for numeric formatting.

Table 9.29. Template Pattern Modifiersfor Numeric Formatting

M odifier Description Example

FMprefix fill mode (suppresstrailing ze- |FMB9. 99
roes and padding blanks)

TH suffix upper case ordinal humber suffix {999TH

t h suffix lower case ordinal number suffix |999t h

Table 9.30 shows some examples of the use of thet o_char function.

Table9.30.t o_char Examples

Expression Result

to_char (current _tinmestanp, ' Tuesday , 06 05:39:18
'Day, DD HH12:M:SS')

to_char(current _tinmestanp, 'FM ' Tuesday, 6 05:39:18'
Day, FMDD HH12: M :SS')

to char(-0.1, '99.99") o= 10

to char(-0.1, 'FM.99") B A

to _char(-0.1, 'FM0.99") '-0.1

to_char (0.1, '0.9") 0.1

to_char (12, '9990999.9") ' 0012. Q'

to_char (12, ' FMP990999.9') '0012."

280

Functions and Operators

Expression Result
to_char (485, '999') 485"
to_char (-485, '999') ' -485'

to _char(485, '9 9 9') 4 8 5
to_char (1485, '9,999") 1, 485'
to_char (1485, '9@99') 1 485

to _char(148.5, '999.999") 148. 500'
to_char(148.5, ' FMP99. 999') '148. 5'
to_char(148.5, ' FMB99.990') ' 148. 500'
to_char(148.5, '999D999') 148, 500
to_char(3148.5, '9(299D999') 3 148, 500'
to_char(-485, '999S) ' 485-"'
to_char(-485, '999M ") ' 485-"
to_char (485, '999M ') ' 485
to_char (485, ' FMB99M ') ' 485"
to_char (485, 'PL999") ' +485'
to_char (485, 'S@E99') ' +485'
to_char (-485, 'S@99') ' -485'
to_char(-485, '9S@@9') ' 4-85'
to_char(-485, '999PR) ' <485>'
to_char (485, 'L999') ' DM 485"
to_char (485, 'RN) CDLXXXV'
to_char (485, ' FMRN) " CDLXXXV'
to_char (5.2, 'FMRN) "V

to_char (482, '999th') 482nd'
to_char (485, '"Good nunber:"999') |' Good numnber: 485
to_char (485. 8, "Pre: 485 Post: . 800
""Pre:"999" Post:" .999")

to_char (12, '99Vv999') 12000
to_char(12.4, '99Vv999') 12400
to_char(12.45, '99V9') 125
to_char (0.0004859, '9.99EEEE') 4. 86e- 04'

9.9. Date/Time Functions and Operators

Table 9.32 shows the available functions for date/time value processing, with details appearing in the
following subsections. Table 9.31 illustrates the behaviors of the basic arithmetic operators (+, *, etc.).
For formatting functions, refer to Section 9.8. Y ou should be familiar with the background information
on date/time data types from Section 8.5.

In addition, the usual comparison operators shownin Table 9.1 are avail able for the date/time types. Dates
and timestamps (with or without time zone) are all comparable, while times (with or without time zone)

281

Functions and Operators

and intervals can only be compared to other values of the same data type. When comparing a timestamp
without time zone to atimestamp with time zone, the former value is assumed to be given in the time zone
specified by the TimeZone configuration parameter, and is rotated to UTC for comparison to the latter
value (whichisalready in UTC internally). Similarly, adate value is assumed to represent midnight in the
Ti meZone zone when comparing it to a timestamp.

All the functions and operators described below that taket i me or t i nest anp inputs actually come in
two variants: onethat takestime with time zoneortinmestanp with tine zone, andone
that takesti ne wi thout tinme zoneortinestanp without time zone. For brevity, these
variants are not shown separately. Also, the + and * operators come in commutative pairs (for example
bothdat e +i nt eger andi nt eger + dat e); we show only one of each such pair.

Table 9.31. Date/Time Operators

Operator
Description
Example(s)

date +integer - date
Add anumber of daysto adate

date '2001-09-28" + 7 - 2001-10-05

date+interval - tinestanp
Add aninterval to adate

date '2001-09-28" + interval '1 hour' - 2001-09-28 01:00: 00

date+tinme - tinestanp
Add atime-of-day to adate

date '2001-09-28" + tine '03: 00" - 2001-09-28 03: 00: 00

interval +interval - interval
Add intervals

interval '1 day' + interval '1 hour' - 1 day 01:00: 00

ti mestanp +interval - tinmestanp
Add an interval to atimestamp
ti mestanmp ' 2001-09-28 01: 00" + interval '23 hours' - 2001-09-29
00: 00: 00

time+interval - tine
Add an interval to atime

time '01:00" + interval '3 hours' - 04:00:00

-interval - interval
Negate an interval

- interval '23 hours' - -23:00:00

date- date - i nteger
Subtract dates, producing the number of days elapsed

date '2001-10-01'" - date '2001-09-28" - 3

date- i nteger - date
Subtract a number of days from adate

date '2001-10-01" - 7 - 2001-09-24

282

Functions and Operators

Operator
Description
Example(s)

date- interval - tinmestanp
Subtract an interval from a date

date '2001-09-28'" - interval '1l hour' - 2001-09-27 23:00: 00

tine-tinme - interval
Subtract times

time '05:00" - time '03:00" - 02:00:00

time-interval - tine
Subtract an interval from atime

time '05:00" - interval '2 hours' - 03:00:00

timestanp- interval - tinmestanp
Subtract an interval from atimestamp

ti mestanp ' 2001-09-28 23: 00" - interval '23 hours' - 2001-09-28
00: 00: 00
interval - interval - interval
Subtract intervals
interval '1 day' - interval '1 hour' - 1 day -01:00: 00

ti mestanp- timestanp - i nterval
Subtract timestamps (converting 24-hour intervalsinto days, similarly toj usti -
fy_hours())
ti mestanp '2001-09-29 03: 00" - tinmestanp '2001-07-27 12:00' -
63 days 15:00: 00

i nterval * doubl e precision - interval
Multiply aninterval by a scalar

interval '1 second' * 900 - 00: 15: 00
interval '1 day' * 21 - 21 days
interval "1 hour' * 3.5 - 03:30: 00

i nterval / doubl e precision - interval
Divide an interval by ascalar

interval "1 hour' / 1.5 - 00:40: 00

Table 9.32. Date/Time Functions

Function
Description
Example(s)

age (timestanp,tinestanp) - i nterval
Subtract arguments, producing a“symbolic” result that uses years and months, rather than
just days
age(timestanmp '2001-04-10', tinestanp '1957-06-13") - 43 years
9 nons 27 days

283

Functions and Operators

Function
Description
Example(s)

age (timestanp) - i nterval
Subtract argument from cur r ent _dat e (at midnight)

age(timestamp '1957-06-13") - 62 years 6 nons 10 days

clock _timestanp () - timestanp with tine zone
Current date and time (changes during statement execution); see Section 9.9.5

cl ock_timestanp() - 2019-12-23 14: 39: 53. 662522- 05

current _date - date
Current date; see Section 9.9.5

current _date - 2019-12-23

current _time -time with tinme zone
Current time of day; see Section 9.9.5

current _tine - 14: 39: 53. 662522- 05

current _tine(integer)tinme with tinme zone
Current time of day, with limited precision; see Section 9.9.5

current _tinme(2) - 14:39:53. 66-05

current _tinestanmp - tinestanp with tinme zone
Current date and time (start of current transaction); see Section 9.9.5

current _tinestanp - 2019-12-23 14: 39: 53. 662522- 05

current _tinmestanp (integer) - tinestanp with tinme zone
Current date and time (start of current transaction), with limited precision; see Section 9.9.5

current _timestanp(0) - 2019-12-23 14:39:53-05

date_bin(interval,tinmestanp,tinmestanp) - ti nestanp
Bin input into specified interval aligned with specified origin; see Section 9.9.3
date_bin('15 mnutes', tinestanp '2001-02-16 20:38:40', time-
stanp ' 2001-02-16 20:05:00') - 2001-02-16 20: 35: 00

date_part (text,timestanp) - doubl e precision
Get timestamp subfield (equivalent to ext r act); see Section 9.9.1

date_part (' hour', tinmestanp '2001-02-16 20:38:40') - 20

date_part (text,interval) - doubl e precision
Get interval subfield (equivalent to ext r act); see Section 9.9.1

date_part('month', interval '2 years 3 nonths') - 3

date_trunc (text,tinestanp) - ti mestanp
Truncate to specified precision; see Section 9.9.2

date_trunc(' hour', tinmestanp '2001-02-16 20:38:40') -
2001- 02- 16 20: 00: 00

date_trunc (text,timestanp with tine zone,text) - tinmestanp with tine
zone
Truncate to specified precision in the specified time zone; see Section 9.9.2

284

Functions and Operators

Function
Description
Example(s)

date_trunc('day', tinestanptz '2001-02-16 20:38:40+00', ' Aus-
tralialSydney') - 2001-02-16 13:00: 00+00

date trunc (text,interval) » interval
Truncate to specified precision; see Section 9.9.2

date_trunc(' hour', interval '2 days 3 hours 40 minutes') -2
days 03:00: 00

extract (fieldfromtimestanp) - nuneric
Get timestamp subfield; see Section 9.9.1

extract (hour fromtinmestanp '2001-02-16 20:38:40') - 20

extract (fieldfrominterval) — numeric
Get interval subfield; see Section 9.9.1

extract(month frominterval '2 years 3 nonths') - 3

isfinite(date) - bool ean
Test for finite date (not +/-infinity)

isfinite(date '2001-02-16") - true

isfinite(tinestanp) - bool ean
Test for finite timestamp (not +/-infinity)

isfinite(timestanp "infinity') - fal se

isfinite(interval) - bool ean
Test for finite interval (currently always true)

isfinite(interval '4 hours') - true

justify days (interval) - interval
Adjust interval so 30-day time periods are represented as months

justify days(interval '35 days') - 1 non 5 days

justify hours (interval) - interval
Adjust interval so 24-hour time periods are represented as days

justify_ hours(interval '27 hours') - 1 day 03:00:00

justify interval (interval) - interval

Adjust interval usingj usti fy days andj ustify_ hours, with additional sign adjust-
ments

justify_interval (interval "1 nmon -1 hour') - 29 days 23:00: 00

localtine - tine
Current time of day; see Section 9.9.5

| ocal tine - 14: 39: 53. 662522

localtine(integer) —»tine
Current time of day, with limited precision; see Section 9.9.5
| ocaltine(0) - 14:39:53

| ocal tinestanp - ti nestanp

285

Functions and Operators

Function
Description
Example(s)

Current date and time (start of current transaction); see Section 9.9.5
| ocal timestanp - 2019-12-23 14: 39: 53. 662522

| ocal tinestanp (i nteger) - timestanp
Current date and time (start of current transaction), with limited precision; see Section 9.9.5

| ocal tinestanp(2) - 2019-12-23 14: 39: 53. 66

make_date (year int,monthint,dayint) - date
Create date from year, month and day fields (nhegative years signify BC)

meke_dat (2013, 7, 15) - 2013-07-15

make_interval ([yearsint [,monthsint [,weeksint [,daysint [,hoursint [,

m nsint [,secs doubl e precisionl]]]]]l]]) - i nterval
Createinterval from years, months, weeks, days, hours, minutes and seconds fields, each of
which can default to zero

make_i nterval (days => 10) - 10 days

make_tine (hour int,mnint,secdouble precision) - tine
Create time from hour, minute and seconds fields

make tine(8, 15, 23.5) - 08:15:23.5

make_tinmestanp (year int,nonthint,dayint,hour int,mnint,secdouble
precision) - timestanp
Create timestamp from year, month, day, hour, minute and seconds fields (negative years sig-
nify BC)
make_ti nestanp(2013, 7, 15, 8, 15, 23.5) - 2013-07-15
08:15:23.5

make_tinestanptz (year int,nonthint,dayint,hourint,mnint,secdouble

precision[,tinezonetext]) -tinmestanp with tinme zone

Create timestamp with time zone from year, month, day, hour, minute and seconds fields
(negative years signify BC). If t i mezone is not specified, the current time zone is used; the
exampl es assume the session time zoneis Eur ope/ London

make tinestanptz(2013, 7, 15, 8, 15, 23.5) - 2013-07-15

08: 15: 23. 5+01

make tinestanptz(2013, 7, 15, 8, 15, 23.5, 'Americal/ New York')

- 2013-07-15 13:15: 23.5+01

now() - tinmestanp with tinme zone
Current date and time (start of current transaction); see Section 9.9.5

now() - 2019-12-23 14:39:53. 662522-05

statenment _tinmestanp () - tinestanp with tinme zone
Current date and time (start of current statement); see Section 9.9.5

statement _timestanp() - 2019-12-23 14: 39: 53. 662522- 05

ti meof day () - text
Current date and time (likecl ock_ti mest anp, but asat ext string); see Section 9.9.5

ti meof day() - Mon Dec 23 14:39:53. 662522 2019 EST

286

Functions and Operators

Function
Description
Example(s)

transaction_tinmestanp() - tinestanp with tinme zone
Current date and time (start of current transaction); see Section 9.9.5

transaction_tinestanp() - 2019-12-23 14:39: 53. 662522- 05

to_timestanp (double precision) - tinestanp with tine zone
Convert Unix epoch (seconds since 1970-01-01 00:00:00+00) to timestamp with time zone

to timestanp(1284352323) - 2010- 09- 13 04: 32: 03+00

In addition to these functions, the SQL OVERLAPS operator is supported:

(startl, endl) OVERLAPS (start2, end2)
(startl, lengthl) OVERLAPS (start2, |ength2)

This expression yields true when two time periods (defined by their endpoints) overlap, false when they
do not overlap. The endpoints can be specified as pairs of dates, times, or time stamps; or as a date, time,
or time stamp followed by an interval. When a pair of valuesis provided, either the start or the end can be
written first; OVERLAPS automatically takes the earlier value of the pair as the start. Each time period is
considered to represent the half-openinterval st art <=ti me <end, unlessst art and end are equal
inwhich caseit representsthat single time instant. This means for instance that two time periods with only
an endpoint in common do not overlap.

SELECT (DATE ' 2001- 02- 16'
(DATE ' 2001- 10- 30'

Result: true

SELECT (DATE ' 2001- 02- 16'
(DATE ' 2001- 10- 30'

Result: false

SELECT (DATE ' 2001- 10- 29’
(DATE ' 2001- 10- 30'

Result: false

SELECT (DATE ' 2001- 10- 30'
(DATE ' 2001- 10- 30'

Result: true

DATE ' 2001-12-21') OVERLAPS
DATE ' 2002- 10-30");

| NTERVAL ' 100 days') OVERLAPS
DATE ' 2002- 10-30");

DATE ' 2001-10-30') OVERLAPS
DATE ' 2001-10-31");

DATE ' 2001-10-30') OVERLAPS
DATE ' 2001-10-31");

When adding ani nt er val valueto (or subtracting ani nt er val valuefrom) ati nestanp with
ti me zone value, the days component advances or decrements the date of theti nestanp with
ti me zone by theindicated number of days, keeping the time of day the same. Across daylight saving
time changes (when the sessiontime zoneis set to atime zonethat recognizesDST), thismeansi nt er val

"1 day' doesnot necessarily equal i nt erval ' 24 hours' . For example, with the session time
zone setto Arrer i ca/ Denver:

SELECT tinestanp with time zone '2005-04-02 12:00:00-07" + interval '1
day' ;

Resul t: 2005- 04-03 12: 00: 00- 06

SELECT tinestanp with tinme zone '2005-04-02 12:00: 00-07" + interval
'24 hours';

Resul t: 2005- 04-03 13: 00: 00- 06

287

Functions and Operators

9.9.1.

This happens because an hour was skipped due to a change in daylight saving time at 2005- 04- 03
02: 00: 00 intime zone Aner i ca/ Denver .

Notethere can be ambiguity inthe nont hs field returned by age because different months have different
numbers of days. PostgreSQL 's approach uses the month from the earlier of the two dates when cal culating
partial months. For example, age(' 2004- 06- 01', ' 2004- 04- 30") usesApril toyield1 nmon 1
day, whileusing May would yield 1 mon 2 days because May has 31 days, while April has only 30.

Subtraction of dates and timestamps can also be complex. One conceptually simple way to perform sub-
traction isto convert each value to anumber of seconds using EXTRACT(EPOCH FROM . . .) , then sub-
tract the results; this produces the number of seconds between the two values. Thiswill adjust for the num-
ber of daysin each month, timezone changes, and daylight saving time adjustments. Subtraction of date or
timestamp values with the “- " operator returns the number of days (24-hours) and hours/minutes/seconds
between the values, making the same adjustments. The age function returns years, months, days, and
hoursg/minutes/seconds, performing field-by-field subtraction and then adjusting for negative field values.
The following queries illustrate the differences in these approaches. The sample results were produced
withti mezone = ' US/ East er n' ; thereisadaylight saving time change between the two dates used:

SELECT EXTRACT(EPCCH FROM ti mestanptz '2013-07-01 12:00:00') -
EXTRACT(EPCCH FROM ti mestanptz '2013-03-01 12: 00:00');
Result: 10537200
SELECT (EXTRACT(EPOCH FROM ti nmestanptz '2013-07-01 12:00:00") -
EXTRACT(EPCCH FROM ti mestanptz '2013-03-01 12:00:00'))
/[60 / 60 / 24
Result: 121.958333333333
SELECT tinmestanptz '2013-07-01 12:00: 00" - tinestanptz '2013-03-01
12: 00: 00" ;
Result: 121 days 23: 00: 00
SELECT age(tinmestanptz '2013-07-01 12:00:00', timestanptz '2013-03-01
12: 00: 00");
Result: 4 nons

EXTRACT, dat e_part

EXTRACT(fi el d FROM sour ce)

Theext ract function retrieves subfields such as year or hour from date/time values. sour ce must be
avalue expression of typeti mest anp, ti me, ori nt erval . (Expressions of type dat e are cast to
ti mest anp and can therefore be used aswell.) f i el d isan identifier or string that selects what field
to extract from the source value. Theext r act function returns values of typenuner i c. Thefollowing
arevalid field names:

century

The century

SELECT EXTRACT(CENTURY FROM TI MESTAMP ' 2000-12-16 12:21:13");
Resul t: 20
SELECT EXTRACT(CENTURY FROM TI MESTAMP ' 2001-02-16 20: 38:40');
Resul t: 21

The first century starts at 0001-01-01 00:00:00 AD, although they did not know it at the time. This
definition applies to all Gregorian calendar countries. There is no century number 0, you go from -1

288

Functions and Operators

century to 1 century. If you disagree with this, please write your complaint to: Pope, Cathedral Saint-
Peter of Roma, Vatican.

day

For t i mest anp values, the day (of the month) field (1-31) ; for i nt er val values, the number
of days

SELECT EXTRACT(DAY FROM TI MESTAMP ' 2001-02-16 20: 38:40');
Resul t: 16

SELECT EXTRACT(DAY FROM | NTERVAL ' 40 days 1 minute');
Resul t: 40

decade

The year field divided by 10

SELECT EXTRACT(DECADE FROM Tl MESTAMP ' 2001- 02-16 20:38:40');
Resul t: 200

dow

The day of the week as Sunday (0) to Saturday (6)

SELECT EXTRACT(DOW FROM TI MESTAMP ' 2001- 02- 16 20: 38:40');
Result: 5

Note that ext r act 's day of the week numbering differs from that of thet o_char (..., 'D)
function.

doy
The day of the year (1-365/366)

SELECT EXTRACT(DOY FROM TI MESTAMP ' 2001-02-16 20: 38:40');
Resul t: 47

epoch

Fortimestanp with tinme zone values, the number of seconds since 1970-01-01 00:00:00
UTC (negative for timestamps before that); for dat e andt i nest anp values, the nominal number
of seconds since 1970-01-01 00:00:00, without regard to timezone or daylight-savingsrules; for i n-
t er val values, the total number of secondsin the interval

SELECT EXTRACT(EPCCH FROM Tl MESTAMP W TH TI ME ZONE ' 2001- 02- 16
20: 38:40.12-08");
Resul t: 982384720. 12

SELECT EXTRACT(EPCCH FROM TI MESTAMP ' 2001- 02-16 20: 38:40.12");
Resul t: 982355920. 12

289

Functions and Operators

SELECT EXTRACT(EPOCCH FROM I NTERVAL '5 days 3 hours');
Resul t: 442800

Y ou can convert an epoch valueback toat i mestanp with ti me zonewitht o_ti nest anp:

SELECT to_tinestanp(982384720. 12);
Resul t: 2001-02-17 04:38:40.12+00

Beware that applyingt o_t i mest anp to an epoch extracted from adat e or t i nest anp vaue
could produce a misleading result: the result will effectively assume that the original value had been
given in UTC, which might not be the case.

hour

The hour field (0-23)

SELECT EXTRACT(HOUR FROM TI MESTAMP ' 2001- 02-16 20: 38:40');
Result: 20

i sodow

The day of the week as Monday (1) to Sunday (7)

SELECT EXTRACT(| SODOW FROM Tl MESTAMP ' 2001- 02- 18 20: 38:40');
Result: 7

Thisisidentical to dow except for Sunday. This matches the |SO 8601 day of the week numbering.

i soyear

jul

The SO 8601 week-numbering year that the date fallsin (not applicable to intervals)

SELECT EXTRACT(| SOYEAR FROM DATE ' 2006-01-01');

Resul t: 2005
SELECT EXTRACT(| SOYEAR FROM DATE ' 2006- 01-02');
Resul t: 2006

Each 1SO 8601 week-numbering year begins with the Monday of the week containing the 4th of
January, so in early January or late December the | SO year may be different from the Gregorian year.
Seethe week field for more information.

Thisfield is not available in PostgreSQL releases prior to 8.3.
i an

The Julian Date corresponding to the date or timestamp (not applicableto intervals). Timestamps that
are not local midnight result in afractional value. See Section B.7 for more information.

SELECT EXTRACT(JULI AN FROM DATE ' 2006- 01-01');

Resul t: 2453737

SELECT EXTRACT(JULI AN FROM Tl MESTAMP ' 2006-01-01 12:00');
Resul t: 2453737.50000000000000000000

290

Functions and Operators

m cr oseconds
The seconds field, including fractional parts, multiplied by 1 000 000; note that this includes full

seconds

SELECT EXTRACT(M CROSECONDS FROM TI ME ' 17:12:28.5');
Resul t: 28500000

m || enni um
The millennium
SELECT EXTRACT(M LLENNI UM FROM Tl MESTAMP ' 2001-02-16 20: 38:40');
Result: 3
Y ears in the 1900s are in the second millennium. The third millennium started January 1, 2001.
mlliseconds
The secondsfield, including fractional parts, multiplied by 1000. Note that thisincludes full seconds.
SELECT EXTRACT(M LLI SECONDS FROM TI ME ' 17:12:28.5");
Resul t: 28500
m nute

The minutes field (0-59)
SELECT EXTRACT(M NUTE FROM TI MESTAMP ' 2001- 02- 16 20: 38:40');
Result: 38
nmont h
For t i mest anp values, the number of the month within the year (1-12) ; for i nt er val values,

the number of months, modulo 12 (0-11)

SELECT EXTRACT(MONTH FROM Tl MESTAMP ' 2001- 02-16 20: 38:40');
Result: 2

SELECT EXTRACT(MONTH FROM | NTERVAL '2 years 3 nonths');
Result: 3

SELECT EXTRACT(MONTH FROM | NTERVAL ' 2 years 13 nonths');
Result: 1

quarter
The quarter of the year (1-4) that the dateisin

SELECT EXTRACT(QUARTER FROM TI MESTAMP ' 2001- 02- 16 20: 38:40');
Result: 1

291

Functions and Operators

second

The seconds field, including any fractional seconds

SELECT EXTRACT(SECOND FROM Tl MESTAMP ' 2001- 02- 16 20:38:40');
Resul t: 40

SELECT EXTRACT(SECOND FROM TI ME '17:12:28.5");
Result: 28.5

ti nezone

The time zone offset from UTC, measured in seconds. Positive values correspond to time zones east
of UTC, negative valuesto zones west of UTC. (Technically, PostgreSQL does not use UTC because
leap seconds are not handled.)

ti mezone_hour

The hour component of the time zone offset
ti mezone_m nute

The minute component of the time zone offset
week

The number of the 1SO 8601 week-numbering week of the year. By definition, 1SO weeks start on
Mondays and thefirst week of ayear contains January 4 of that year. In other words, thefirst Thursday
of ayear isin week 1 of that year.

In the 1SO week-numbering system, it is possible for early-January dates to be part of the 52nd or
53rd week of the previous year, and for late-December dates to be part of the first week of the next
year. For example, 2005- 01- 01 ispart of the 53rd week of year 2004, and 2006- 01- 01 ispart of
the 52nd week of year 2005, while 2012- 12- 31 is part of the first week of 2013. It's recommended
tousethei soyear field together with week to get consistent results.

SELECT EXTRACT(WEEK FROM TI MESTAMP ' 2001-02-16 20: 38:40');
Result: 7

year

The year field. Kegp in mind thereisno 0 AD, so subtracting BC years from AD years should be
done with care.

SELECT EXTRACT(YEAR FROM TI MESTAMP ' 2001- 02-16 20: 38:40');
Resul t: 2001

Note

When the input value is +/-Infinity, ext r act returns +/-Infinity for monotonically-increasing
fields(epoch,j ul i an,year,i soyear,decade,century,andm | | enni unj. For other
fields, NULL is returned. PostgreSQL versions before 9.6 returned zero for al cases of infinite
input.

292

Functions and Operators

9.9.2.

Theext ract functionisprimarily intended for computational processing. For formatting date/time val-
ues for display, see Section 9.8.

Thedat e_part function is modeled on the traditional Ingres equivalent to the SQL-standard function
extract:

date_part('field , source)

Note that here the f i el d parameter needs to be a string value, not a name. The valid field names for
dat e_part arethesameasfor ext r act . For historical reasons, thedat e_part functionreturnsval-
ues of typedoubl e preci si on. Thiscanresultinalossof precisionin certain uses. Using ext r act
is recommended instead.

SELECT date_part (' day', TIMESTAWP '2001-02-16 20: 38:40');
Result: 16

SELECT date_part (' hour', INTERVAL '4 hours 3 minutes');
Result: 4

date_trunc

Thefunctiondat e_t r unc isconceptually similar to thet r unc function for numbers.

date_trunc(field, source [, tine_zone])

sour ce isavalueexpression of typet i nest anp,ti mestanp with tinme zone,orinterval.
(Values of type dat e and t i ne are cast automatically to ti mest anp or i nt erval , respectively.)
fi el d selectsto which precision to truncate the input value. The return valueis likewise of typet i me-
stanp,tinmestanp with tine zone,orinterval,andithasall fieldsthat are less significant
than the selected one set to zero (or one, for day and month).

Validvauesforfi el d are:

m croseconds
mlliseconds
second

m nut e

hour

day

week

nont h
quarter

year

decade
century

m |l enni um

When the input value is of typeti mestanp with tine zone, thetruncation is performed with
respect to a particular time zone; for example, truncation to day produces a value that is midnight in
that zone. By default, truncation is done with respect to the current TimeZone setting, but the optional
ti me_zone argument can be provided to specify a different time zone. The time zone name can be
specified in any of the ways described in Section 8.5.3.

293

Functions and Operators

9.9.8.

9.9.4.

A time zone cannot be specified when processingt i nest anp wi t hout tinme zoneorinterval
inputs. These are always taken at face value.

Examples (assuming the local time zoneis Arrer i ca/ New_Yor k):

SELECT date_trunc(' hour', TIMESTAWVP '2001-02-16 20:38:40');
Result: 2001-02-16 20: 00: 00

SELECT date_trunc('year', TIMESTAVP '2001-02-16 20:38:40');
Result: 2001-01-01 00: 00: 00

SELECT date_trunc(' day', TIMESTAMP WTH TI ME ZONE ' 2001-02- 16
20: 38: 40+00') ;
Resul t: 2001-02-16 00: 00: 00- 05

SELECT date_trunc(' day', TIMESTAMP WTH TI ME ZONE ' 2001- 02- 16
20: 38: 40+00', ' Australial/ Sydney');
Resul t: 2001-02-16 08: 00: 00- 05

SELECT date_trunc(' hour', |INTERVAL '3 days 02:47:33");
Result: 3 days 02: 00: 00

date bin

The function dat e_bi n “bins’ the input timestamp into the specified interval (the stride) aligned with
aspecified origin.

date_bin(stride, source, origin)

sour ce isavalue expression of typeti nestanp orti mestanp with tine zone. (Vauesof
type dat e are cast automatically tot i mest anp.) st ri de isavaue expression of typei nt erval .
Thereturnvalueislikewiseof typeti nestanporti mestanp with ti me zone, andit marksthe
beginning of the bin into which the sour ce isplaced.

Examples:

SELECT date_bin('15 minutes', TIMESTAMP '2020-02-11 15:44:17",
TI MESTAMP ' 2001- 01-01");
Resul t: 2020-02-11 15:30: 00

SELECT date_bin('15 minutes', TIMESTAMP '2020-02-11 15:44:17",
TI MESTAMP ' 2001- 01- 01 00: 02: 30");
Resul t: 2020-02-11 15:32: 30

In the case of full units (1 minute, 1 hour, etc.), it gives the same result as the analogous dat e_t r unc
call, but the differenceisthat dat e_bi n can truncate to an arbitrary interval.

The st ri de interval must be greater than zero and cannot contain units of month or larger.

AT TI ME ZONE

The AT Tl ME ZONE operator convertstime stamp without time zone to/from time stamp with time zone,
andtime with tine zone vauesto different time zones. Table 9.33 showsits variants.

294

Functions and Operators

Table9.33. AT TI ME ZONE Variants

Operator
Description
Example(s)

ti mestanp without tinme zone AT TI ME ZONEzone - tinmestanp with tine
zone
Converts given time stamp without time zone to time stamp with time zone, assuming the
given value isin the named time zone.
ti mestanp ' 2001-02-16 20:38:40' at tine zone 'Americal/ Denver'

- 2001-02-17 03: 38: 40+00

timestanp with tine zone AT TIME ZONEzone - tinestanp without tinme
zone
Converts given time stamp with time zone to time stamp without time zone, as the time
would appear in that zone.
timestanp with tinme zone '2001-02-16 20: 38:40-05" at tine zone

" Ameri cal/ Denver' - 2001-02-16 18:38: 40

time with time zone AT TI ME ZONEzone -~ tinme with tine zone
Converts given time with time zone to a new time zone. Since no date is supplied, this uses
the currently active UTC offset for the named destination zone.
time with tine zone '05:34:17-05" at time zone 'UTC -
10: 34: 17+00

In these expressions, the desired time zone zone can be specified either as atext value (e.g., ' Aneri -

cal/ Los_Angel es') or asan interval (e.g., | NTERVAL ' -08: 00'). In the text case, a time zone
name can be specified in any of the ways described in Section 8.5.3. The interval case is only useful for
zones that have fixed offsets from UTC, so it is not very common in practice.

Examples (assuming the current TimeZone setting is Arrer i ca/ Los_Angel es):

SELECT TI MESTAMP ' 2001-02-16 20:38:40" AT TINME ZONE ' Ameri cal/ Denver';
Resul t: 2001-02-16 19:38:40-08

SELECT TI MESTAMP W TH TI ME ZONE ' 2001-02-16 20: 38:40-05'" AT TI ME ZONE
" Ameri cal/ Denver' ;
Resul t: 2001-02-16 18:38:40

SELECT Tl MESTAMP ' 2001-02-16 20:38:40' AT TIME ZONE ' Asi a/ Tokyo' AT
TI ME ZONE ' Aneri ca/ Chi cago' ;
Resul t: 2001-02-16 05:38: 40

Thefirst example adds atime zone to avalue that lacksit, and displaysthe value using the current Ti ne-
Zone setting. The second example shifts the time stamp with time zone value to the specified time zone,
and returns the value without a time zone. This allows storage and display of values different from the
current Ti meZone setting. The third example converts Tokyo time to Chicago time.

Thefunctiont i mezone(zone, ti mestanp) isequivalent tothe SQL-conforming constructt i me-
stanmp AT TI ME ZONE zone.

9.9.5. Current Date/Time

295

Functions and Operators

PostgreSQL provides a number of functions that return values related to the current date and time. These
SQL -standard functions all return values based on the start time of the current transaction:

CURRENT_DATE

CURRENT_TI ME

CURRENT_TI MESTAMP

CURRENT _TI ME(pr eci si on)
CURRENT _TI MESTAMP(pr eci si on)
LOCALTI ME

LOCALTI MESTAMP

LOCALTI ME(pr eci si on)

LOCALTI MESTAMP(pr eci si on)

CURRENT_TI ME and CURRENT_TI MESTAMP deliver values with time zone; LOCALTI ME and LO-
CALTI MESTAMP deliver values without time zone.

CURRENT_TI ME, CURRENT_TI MESTAMP, LOCALTI ME, and LOCALTI MESTAMP can optionally take
aprecision parameter, which causes the result to be rounded to that many fractional digits in the seconds
field. Without a precision parameter, the result is given to the full available precision.

Some examples:

SELECT CURRENT_TI ME;
Resul t: 14:39:53.662522-05

SELECT CURRENT_DATE;
Resul t: 2019-12-23

SELECT CURRENT_TI MESTAMP,
Resul t: 2019-12-23 14: 39:53. 662522- 05

SELECT CURRENT_TI MESTAMP(2) ;
Resul t: 2019-12-23 14: 39: 53. 66- 05

SELECT LCOCALTI MESTANMP,
Resul t: 2019-12-23 14:39:53. 662522

Since these functions return the start time of the current transaction, their values do not change during
the transaction. Thisis considered afeature: the intent is to allow a single transaction to have a consistent
notion of the“current” time, so that multiple modifications within the same transaction bear the sametime
stamp.

Note

Other database systems might advance these values more frequently.

PostgreSQL also provides functions that return the start time of the current statement, as well asthe actual
current time at the instant the function is called. The complete list of non-SQL -standard time functionsis:

transaction_ti nestanp()
statenent _timestanp()
cl ock_ti mestanmp()

296

Functions and Operators

9.9.6.

ti meof day()
now()

transaction_ti nestanp() isequivalent to CURRENT_TI MESTAMP, but is named to clearly re-
flect what it returns. st at emrent _ti mest anp() returnsthe start time of the current statement (more
specifically, the time of receipt of the latest command message from the client). st at ement _ti nme-

stanp() andtransaction_timestanp() return the same value during the first command of a
transaction, but might differ during subsequent commands. cl ock_t i nmest anp() returns the actual
current time, and therefore its value changes even within a single SQL command. t i meof day() isa
historical PostgreSQL function. Like cl ock_t i mest anp(), it returns the actual current time, but as
aformatted t ext string rather thanati mestanp with tinme zone value now() isatraditiona
PostgreSQL equivalenttot r ansacti on_ti nestanp() .

All the date/time data types also accept the special literal value now to specify the current date and time
(again, interpreted as the transaction start time). Thus, the following three all return the same result:

SELECT CURRENT_TI MESTAMP;
SELECT now() ;
SELECT Tl MESTAMP 'now ; -- but see tip bel ow

Tip
Do not use the third form when specifying avalueto be evaluated later, for examplein aDEFAULT
clause for atable column. The system will convert nowto at i mest anp as soon as the constant
is parsed, so that when the default value is needed, the time of the table creation would be used!
Thefirst two formswill not be evaluated until the default value is used, because they are function

calls. Thusthey will give the desired behavior of defaulting to the time of row insertion. (See aso
Section 8.5.1.4.)

Delaying Execution

The following functions are available to delay execution of the server process:

pg_sl eep (doubl e precision)
pg_sleep_for (interval)
pg_sleep_until (tinestanp with time zone)

pg_sl eep makes the current session's process sleep until the given number of seconds have elapsed.
Fractional-second delays can be specified. pg_sl eep_f or isaconvenience function to allow the sleep
timeto bespecifiedasani nt erval . pg_sl eep_unti | isaconvenience function for when a specific
wake-up time is desired. For example:

SELECT pg_sl eep(1.5);
SELECT pg_sleep_for('5 mnutes');
SELECT pg_sleep_until ('tonorrow 03:00');

Note

The effective resolution of the dleep interval is platform-specific; 0.01 secondsisacommon value.
Thesleep delay will be at least aslong as specified. It might be longer depending on factors such as

297

Functions and Operators

server load. Inparticular, pg_sl eep_unt i | isnot guaranteed to wake up exactly at the specified
time, but it will not wake up any earlier.

Warning

Make sure that your session does not hold more locks than necessary when calling pg_sl eep or
its variants. Otherwise other sessions might have to wait for your sleeping process, slowing down
the entire system.

9.10. Enum Support Functions

For enum types (described in Section 8.7), there are several functions that allow cleaner programming
without hard-coding particular values of an enum type. These are listed in Table 9.34. The examples
assume an enum type created as:

CREATE TYPE rai nbow AS ENUM ('red', 'orange', 'yellow, 'green',
"blue', '"purple');

Table 9.34. Enum Support Functions

Function
Description
Example(s)

enum first (anyenum) - anyenum
Returns the first value of the input enum type.

enum first(null::rainbow - red

enum | ast (anyenum) —» anyenum
Returns the last value of the input enum type.

enum | ast (null::rai nbow) - purple

enum r ange (anyenum) - anyarray
Returns all values of the input enum type in an ordered array.
enum range(null::rai nbow) - {red, orange, yel | ow, green, bl ue, pur -
pl e}

enum r ange (anyenum anyenum) — anyarray
Returns the range between the two given enum values, as an ordered array. The values must
be from the same enum type. If the first parameter is null, the result will start with the first
value of the enum type. If the second parameter is null, the result will end with the last value
of the enum type.
enum range(' orange'::rai nbow, 'green'::rainbow) - {orange,yel-
| ow, gr een}
enum range(NULL, 'green'::rainbow) - {red, orange, yell ow, green}

enum range(' orange'::rai nbow, NULL) - {orange, yel |l ow, green,
bl ue, pur pl e}

298

Functions and Operators

9.11.

Notice that except for the two-argument form of enum r ange, these functions disregard the specific
value passed to them; they care only about its declared data type. Either null or a specific value of the
type can be passed, with the same result. It is more common to apply these functions to a table column or
function argument than to a hardwired type name as used in the examples.

Geometric Functions and Operators

The geometric types poi nt, box, | seg, | i ne, pat h, pol ygon, and ci r cl e have a large set of
native support functions and operators, shown in Table 9.35, Table 9.36, and Table 9.37.

Table 9.35. Geometric Operators

Operator
Description
Example(s)

geonetric_type+point - geonetric_type
Adds the coordinates of the second poi nt to those of each point of the first argument, thus
performing translation. Available for poi nt , box, pat h,circl e.

box '(1,1),(0,0)" + point '(2,0)" - (3,1),(2,0)

pat h +path - path
Concatenates two open paths (returns NULL if either path is closed).
path "'[(0,0),(1,1)]" + path "[(2,2),(3,3),(4,4)]" -1[(0,0),
(1,1).(2,2),(3,3),(4,4)]

geonetric_type- point - geonetric_type
Subtracts the coordinates of the second poi nt from those of each point of the first argu-
ment, thus performing translation. Available for poi nt , box, pat h,circl e.

box '(1,1),(0,0)" - point '(2,0)" - (-1,1),(-2,0)

geonetric_type* point - geonetric_type
Multiplies each point of the first argument by the second poi nt (treating a point as being a
complex number represented by real and imaginary parts, and performing standard complex
multiplication). If one interprets the second poi nt asavector, thisis equivalent to scaling
the object's size and distance from the origin by the length of the vector, and rotating it coun-
terclockwise around the origin by the vector's angle from the x axis. Available for poi nt ,
box,2pat h,circl e.

path '((0,0),(1,0),(1,1))" * point '(3.0,0)' - ((0,0),(3,0),
(3,3))

path ' ((0,0),(1,0),(1,1))" * point(cosd(45), sind(45))

- ((0,0),(0.7071067811865475, 0. 7071067811865475) ,

(0, 1.414213562373095))

geonetric_type/ point - geonetric_type
Divides each point of the first argument by the second poi nt (treating a point asbeing a
complex number represented by real and imaginary parts, and performing standard complex
division). If one interprets the second poi nt asavector, thisis equivaent to scaling the ob-
ject's size and distance from the origin down by the length of the vector, and rotating it clock-
wise around the origin by the vector's angle from the x axis. Available for poi nt , box,2
pat h,circle.

path ' ((0,0),(1,0),(1,1))" / point '(2.0,0)" - ((0,0),(0.5,0),
(0.5,0.5))

299

Functions and Operators

Operator
Description
Example(s)

path ' ((0,0),(1,0),(1,1))" / point(cosd(45), sind(45))
- ((0,0),(0.7071067811865476, -0. 7071067811865476) ,
(1.4142135623730951, 0))

@ @geonetric_type - doubl e precision
Computesthe total length. Availablefor | seg, pat h.

@@path '[(0,0),(1,0),(1, 1] -2

@ageonetric_type - point
Computes the center point. Available for box, | seg, pol ygon,circl e.
@ box ' (2,2),(0,0)" - (1,1)

#geonetric_type - integer
Returns the number of points. Available for pat h, pol ygon.
path '((1,0),(0,1),(-2,0))"' -3

geonetric_type#geonetric_type - point
Computes the point of intersection, or NULL if thereisnone. Availablefor | seg, | i ne.

Iseg '[(0,0),(1,1)]" # Iseg '[(1,0),(0,1)]" - (0.5,0.5)

box # box - box
Computes the intersection of two boxes, or NULL if thereis none.

box '(2,2),(-1,-1)" # box '(1,1),(-2,-2)" -(1,1),(-1,-1)

geonetric_type ## geonetric_type - point
Computes the closest point to the first object on the second object. Available for these pairs
of types: (poi nt , box), (poi nt, | seg), (poi nt,line), (l seg, box), (I seg, | seq),
(I'i ne, 1 seq).

point '(0,0)" ## Iseg '[(2,0),(0,2)]' - (1,1)

geonetric_type<->geonetric_type - doubl e precision
Computes the distance between the objects. Available for all geometric types except pol y-
gon, for al combinations of poi nt with another geometric type, and for these additional
pairs of types: (box, | seqg), (I seg, | i ne), (pol ygon, ci r cl e) (and the commutator
cases).
circle '<(0,0),1> <->circle '<(5,0),1> -3

geonetric_type @ geonetric_type - bool ean
Doesfirst object contain second? Available for these pairs of types: (box, poi nt), (box,
box), (pat h, poi nt), (pol ygon, poi nt), (pol ygon, pol ygon), (ci rcl e, poi nt),
(circle,circle).

circle '<(0,0),2> @ point '"(1,1)" -t

geonetric_type <@geonetric_type - bool ean
Isfirst object contained in or on second? Available for these pairs of types: (poi nt , box),
(poi nt, | seq), (poi nt, i ne), (poi nt, pat h), (poi nt, pol ygon), (poi nt,cir-
cl e), (box, box), (I seg, box), (I seg, | i ne), (pol ygon, pol ygon),(circle,cir-
cle).

point '(1,1)" <@circle '<(0,0),2> -t

300

Functions and Operators

Operator
Description
Example(s)

geonetric_type & geonetric_type - bool ean
Do these objects overlap? (One point in common makes this true.) Available for box,
pol ygon,circle.

box '(1,1),(0,0)" && box '(2,2),(0,0)" -t

geonetric_type <<geonetric_type - bool ean
Isfirst object strictly left of second? Available for poi nt , box, pol ygon, circl e.

circle '<(0,0),1> << circle '"<(5,0),1> -t

geonetric_type >>geonetric_type - bool ean
Isfirst object strictly right of second? Available for poi nt , box, pol ygon, ci rcl e.

circle '<(5,0),1>" >>circle '<(0,0),1> -t

geonetric_type & geonetric_type - bool ean
Doesfirst object not extend to the right of second? Available for box, pol ygon, circl e.

box ' (1,1),(0,0)" &< box '(2,2),(0,0)" -t

geonetric_type & geonetric_type - bool ean
Doesfirst object not extend to the left of second? Available for box, pol ygon, ci rcl e.

box ' (3,3),(0,0)" & box '(2,2),(0,0)" -t

geonetric_type <<| geonetric_type - bool ean
Isfirst object strictly below second? Available for poi nt , box, pol ygon, circl e.

box ' (3,3),(0,0)" <<| box '(5,5),(3,4)" -t

geonetric_type|>>geonetric_type - bool ean
Isfirst object strictly above second? Available for poi nt , box, pol ygon, circl e.

box '(5,5),(3,4)"' |>> box '(3,3),(0,0)' -t

geonetric_type &| geonetric_type - bool ean
Doesfirst object not extend above second? Available for box, pol ygon, ci rcl e.

box '(1,1),(0,0)" &| box '(2,2),(0,0)" -t

geonetric_type| & geonetric_type - bool ean
Does first object not extend below second? Available for box, pol ygon, ci rcl e.

box ' (3,3),(0,0)" |& box '(2,2),(0,0)" -t

box <" box - bool ean
Isfirst object below second (allows edges to touch)?

box '((1,1),(0,0))" <A box '((2,2),(1,1))" -t

box >" box - bool ean
Isfirst object above second (allows edges to touch)?

box ' ((2,2),(1,1))" > box '((1,1),(0,0))" -t

geonetric_type ?#geonetric_type - bool ean
Do these objects intersect? Available for these pairs of types: (box, box), (I seg, box),
(I seqg, | seq), (I seg,line),(Iine, box),(line,line), (path,path).

Iseg "[(-1,0),(1,0)]" ?# box '(2,2),(-2,-2)" -t

301

Functions and Operators

Operator
Description
Example(s)

?- 1i ne = bool ean

?- I seg - bool ean
Isline horizontal ?

?- Iseg '"[(-1,0),(1,0)]" -t

poi nt ?- poi nt - bool ean
Are points horizontally aligned (that is, have samey coordinate)?

point '(1,0)" ?- point '(0,0)" -t

?| i ne - bool ean

?| | seg - bool ean
Islinevertical ?

2] Iseg '[(-1,0),(1,0)]" - f

poi nt ?| point - bool ean
Are points vertically aligned (that is, have same x coordinate)?

point '(0,1)' ?| point '(0,0)" -t

line?-] line - bool ean

| seg ?-| | seg - bool ean
Arelines perpendicular?

Iseg '[(0,0),(0,1)]" ?-] Iseg '[(0,0),(1,0)]" -t

line?|| Iine - bool ean

I seg?|| | seg - bool ean
Arelines paralle?

Iseg '[(-1,0),(1,0]" ?|| Iseg "[(-1,2),(1,2)]" -t

geonetric_type ~=geonetric_type - bool ean
Are these objects the same? Available for poi nt , box, pol ygon, circl e.

pol ygon ' ((0,0),(1,1))" ~= polygon '((1,1),(0,0))" —t

&Rotating” a box with these operators only moves its corner points: the box is still considered to have sides parallel to the axes.
Hence the box's size is not preserved, as a true rotation would do.

Caution

Notethat the“same as’ operator, ~=, represents the usual notion of equality for the poi nt , box,
pol ygon,andci r cl e types. Some of the geometric types also have an = operator, but = com-
paresfor equal areasonly. The other scalar comparison operators (<= and so on), where available
for these types, likewise compare areas.

302

Functions and Operators

Note

are deprecated and will eventually be removed.

Before PostgreSQL 14, the point isstrictly bel ow/above comparison operatorspoi nt <<| poi nt
and poi nt | >>poi nt wererespectively called <" and >". These names are still available, but

Table 9.36. Geometric Functions

Function
Description
Example(s)

area (geonetric_type) - doubl e precision
Computes area. Available for box, pat h, ci r cl e. A pat h input must be closed, else
NULL isreturned. Also, if the pat h is self-intersecting, the result may be meaningless.

area(box '(2,2),(0,0)') -4

center (geonetric_type) - point
Computes center point. Available for box, ci rcl e.

center(box '(1,2),(0,0)") - (0.5,1)

di agonal (box) - | seg
Extracts box's diagonal as aline segment (same as| seg(box)).

di agonal (box '(1,2),(0,0)') -[(1,2),(0,0)]

di ameter (circle) - doubl e precision
Computes diameter of circle.

di aneter(circle '<(0,0),2>) - 4

hei ght (box) - doubl e precision
Computes vertical size of box.

hei ght (box ' (1,2),(0,0)') - 2

i scl osed (path) - bool ean
I's path closed?

i sclosed(path '"((0,0),(1,1),(2,0))") >t

i sopen (path) - bool ean
I's path open?
i sopen(path '[(0,0),(1,1),(2,0)]") ~t

| ength (geonetric_type) - doubl e precision
Computesthe total length. Availablefor | seg, pat h.

I ength(path '((-1,0),(1,0))"') - 4

npoi nts (geonetric_type) - i nteger
Returns the number of points. Available for pat h, pol ygon.
npoi nts(path '[(0,0),(1,1),(2,0)]') -3

pcl ose (path) - path
Converts path to closed form.

303

Functions and Operators

Function
Description
Example(s)

pclose(path '[(0,0),(1,1),(2,0)]") -((0,0),(1,1),(2,0))

popen (path) - path
Converts path to open form.

popen(path *((0,0),(1,1),(2,0))") -[(0,0),(1,1),(2,0)]

radius (circle) - doubl e precision
Computes radius of circle.

radius(circle '<(0,0),2>) -2

sl ope (poi nt, poi nt) - doubl e precision
Computes slope of aline drawn through the two points.

sl ope(point '(0,0)', point '(2,1)') - 0.5

wi dt h (box) - doubl e preci sion
Computes horizontal size of box.

wi dth(box ' (1,2),(0,0)') -1

Table 9.37. Geometric Type Conversion Functions

Function
Description
Example(s)

box (circle) - box
Computes box inscribed within the circle.
box(circle '<(0,0),2>) >
(1.414213562373095, 1. 414213562373095),
(-1.414213562373095, - 1. 414213562373095)

box (poi nt) - box
Converts point to empty box.

box(point '(1,0)") - (1,0),(1,0)

box (poi nt, poi nt) - box
Converts any two corner points to box.

box(point '(0,1)", point '(1,0)') -(1,1),(0,0)

box (pol ygon) - box
Computes bounding box of polygon.

box(pol ygon * ((0,0),(1,1),(2,0))") - (2,1),(0,0)

bound_box (box, box) - box
Computes bounding box of two boxes.

bound_box(box ' (1,1),(0,0)', box '(4,4),(3,3)") - (4,4),(0,0)

circle(box) »circle
Computes smallest circle enclosing box.

circle(box '(1,1),(0,0)') - <(0.5,0.5),0.7071067811865476>

304

Functions and Operators

Function
Description
Example(s)

circle(point,double precision) circle
Constructs circle from center and radius.

circle(point '(0,0)', 2.0) - <(0,0), 2>

circle(polygon) - circle
Converts polygon to circle. The circle's center is the mean of the positions of the polygon's
points, and the radius is the average distance of the polygon's points from that center.
circle(polygon '((0,0),(1,3),(2,0))"') -
<(1,1),1.6094757082487299>

l'ine(point,point)-1line
Converts two points to the line through them.
line(point '(-1,0)", point '(1,0)') -{0,-1,0}

| seg (box) - | seg
Extracts box's diagonal as a line segment.

I seg(box ' (1,0),(-1,0)') - [(1,0),(-1,0)]

| seg (point,point) - |seg
Constructs line segment from two endpoints.

I seg(point '(-1,0)', point '(1,0)') -[(-1,0),(1,0)]

pat h (pol ygon) — path
Converts polygon to a closed path with the same list of points.

pat h(pol ygon * ((0,0),(1,1),(2,0))") - ((0,0),(1,1),(2,0))

poi nt (doubl e preci sion,doubl e precision) - point
Constructs point from its coordinates.

poi nt (23. 4, -44.5) - (23.4,-44.5)

poi nt (box) - poi nt
Computes center of box.
poi nt (box ' (1,0),(-1,0)") - (0,0)

point (circle) - point
Computes center of circle.
point(circle '<(0,0),2>) - (0,0)

poi nt (I seg) - poi nt
Computes center of line segment.
point(lseg '[(-1,0),(1,0)]") - (0,0)

poi nt (pol ygon) - poi nt
Computes center of polygon (the mean of the positions of the polygon's points).
poi nt (polygon ' ((0,0),(1,1),(2,0))') - (1,0.3333333333333333)

pol ygon (box) - pol ygon
Converts box to a4-point polygon.
pol ygon(box '(1,1),(0,0)') - ((0,0),(0,1),(1,1),(1,0))

305

Functions and Operators

9.12.
tors

Function
Description
Example(s)

pol ygon (circle) - pol ygon
Converts circle to a 12-point polygon.
pol ygon(circle '<(0,0),2>) - ((-2,0),
(-1.7320508075688774, 0. 9999999999999999) ,
(-1.0000000000000002, 1. 7320508075688772) ,
(-1.2246063538223773e- 16, 2),
(0.9999999999999996, 1. 7320508075688774) ,
(1. 732050807568877, 1. 0000000000000007) ,
(2,2.4492127076447545e- 16) ,
(1. 7320508075688776, - 0. 9999999999999994) ,
(1. 0000000000000009, - 1. 7320508075688767) ,
(3.673819061467132e- 16, - 2),
(-0.9999999999999987, - 1. 732050807568878) ,
(-1.7320508075688767, - 1. 0000000000000009))

pol ygon (i nteger,circle) - pol ygon
Converts circle to an n-point polygon.
pol ygon(4, circle '<(3,0),1>) - ((2,0),(3,1),
(4,1.2246063538223773e-16),(3,-1))

pol ygon (pat h) — pol ygon
Converts closed path to a polygon with the same list of points.

pol ygon(path * ((0,0),(1,1),(2,0))") - ((0,0),(1,1),(2,0))

It is possible to access the two component numbers of a poi nt as though the point were an array with
indexes 0 and 1. For example, if t . p isapoi nt columnthen SELECT p[0] FROMt retrievesthe X
coordinateand UPDATE t SET p[1] = ... changestheY coordinate. In the same way, avalue of
typebox or | seg can betreated as an array of two poi nt values.

Network Address Functions and Opera-

ThelP network addresstypes, ci dr andi net , support the usual comparison operatorsshownin Table9.1
aswell as the specialized operators and functions shown in Table 9.38 and Table 9.39.

Any ci dr value can be cast toi net implicitly; therefore, the operators and functions shown below as
operatingoni net asowork on ci dr values. (Where there are separate functionsfor i net andci dr,
it is because the behavior should be different for the two cases.) Also, it is permitted to cast an i net

valueto ci dr . When thisis done, any bits to the right of the netmask are silently zeroed to create avalid
ci dr value.

Table9.38. |P Address Operators

Operator
Description
Example(s)

i net <<inet - bool ean

306

Functions and Operators

Operator
Description
Example(s)

I's subnet strictly contained by subnet? This operator, and the next four, test for subnet inclu-
sion. They consider only the network parts of the two addresses (ignoring any bits to the right
of the netmasks) and determine whether one network isidentical to or a subnet of the other.

inet '192.168.1.5 << inet '192.168.1/24" -t
inet '192.168.0.5 << inet '192.168.1/24" - f
inet '192.168.1/24' << inet '192.168.1/24" - f

i net <<=inet - bool ean
I's subnet contained by or equal to subnet?

inet '192.168.1/24' <<= inet '192.168.1/24" -t

i net >>inet - bool ean
Does subnet strictly contain subnet?

inet '192.168.1/24' >> inet '192.168.1.5" -t

i net >>=inet - bool ean
Does subnet contain or equal subnet?

inet '192.168.1/24' >>= inet '192.168.1/24' -t

i net & i net - bool ean
Does either subnet contain or equal the other?

inet '192.168.1/24' && inet '192.168.1.80/28 -t
inet '192.168.1/24'" && inet '192.168.2.0/28 f

~inet - inet
Computes bitwise NOT.

~ inet '192.168.1.6" - 63.87.254. 249

i net &i net - inet
Computes bitwise AND.

inet '192.168.1.6' & inet '0.0.0.255 - 0.0.0.6

inet | inet - inet
Computes bitwise OR.

inet '192.168.1.6" | inet '0.0.0.255 - 192.168.1.255

i net +bigint - inet
Adds an offset to an address.

inet '192.168.1.6" + 25 - 192.168.1.31

bi gint +inet - inet
Adds an offset to an address.

200 + inet ':: ffff:fff0O:1" - ::ffff:255.240.0.201

i net - bigint - inet
Subtracts an offset from an address.
inet '192.168.1.43" - 36 - 192.168.1.7

i net - i net - bi gint

307

Functions and Operators

Operator
Description
Example(s)
Computes the difference of two addresses.
inet '192.168.1.43" - inet '192.168.1.19" - 24
inet '"::1'" - inet '::ffff:1" - -4294901760

Table 9.39. IP Address Functions

Function
Description
Example(s)

abbrev (i net) - text

Creates an abbreviated display format astext. (Theresult isthe same asthei net output
function produces; it is“abbreviated” only in comparison to the result of an explicit cast to
t ext , which for historical reasons will never suppress the netmask part.)

abbrev(inet '10.1.0.0/32') - 10.1.0.0

abbrev (cidr) - text

Creates an abbreviated display format as text. (The abbreviation consists of dropping all-zero
octets to the right of the netmask; more examples arein Table 8.22.)

abbrev(cidr '10.1.0.0/16") - 10.1/16

broadcast (inet) - inet
Computes the broadcast address for the address's network.

broadcast (i net '192.168.1.5/24") - 192.168. 1. 255/ 24

famly (inet) - integer
Returns the address's family: 4 for |Pv4, 6 for IPv6.
famly(inet '::1') - 6

host (i net) - text
Returns the | P address as text, ignoring the netmask.

host (i net '192.168.1.0/24") - 192.168.1.0

host mask (i net) - i net
Computes the host mask for the address's network.

host mask(i net '192.168.23.20/30') - 0.0.0.3

inet_merge(inet,inet) - cidr
Computes the smallest network that includes both of the given networks.

i net_nerge(inet '192.168.1.5/24', inet '192.168.2.5/24"') -
192.168. 0.0/ 22

i net_sane_famly (inet,inet) - bool ean
Tests whether the addresses belong to the same P family.

inet_sane_famly(inet '192.168.1.5/24", inet '::1") - f

maskl en (i net) - i nteger
Returns the netmask length in bits.

maskl en(inet '192.168.1.5/24") - 24

308

Functions and Operators

Function
Description
Example(s)

net mask (i net) - i net
Computes the network mask for the address's network.

net mask(inet '192.168.1.5/24") - 255.255.255.0

networ k (i net) » cidr
Returns the network part of the address, zeroing out whatever isto the right of the netmask.
(Thisisequivalent to casting the valueto ci dr.)

networ k(inet '192.168.1.5/24") - 192.168.1.0/24

set _maskl en (i net,integer) - inet
Setsthe netmask length for ani net value. The address part does not change.
set _maskl en(inet '192.168.1.5/24', 16) - 192.168.1.5/16

set _naskl en (cidr,integer) - cidr
Sets the netmask length for aci dr value. Address hits to the right of the new netmask are
set to zero.

set _maskl en(cidr '192.168.1.0/24', 16) - 192.168.0.0/16

text (inet) - text
Returns the unabbreviated | P address and netmask length astext. (This has the same result as
an explicit cast tot ext .)

text(inet '192.168.1.5) - 192.168. 1.5/ 32

Tip
Theabbr ev, host , and t ext functions are primarily intended to offer aternative display for-
mats for P addresses.

The MAC address types, mracaddr and macaddr 8, support the usual comparison operators shown in
Table 9.1 as well as the specialized functions shown in Table 9.40. In addition, they support the bitwise
logical operators~, & and | (NOT, AND and OR), just as shown above for | P addresses.

Table 9.40. MAC Address Functions

Function
Description
Example(s)

trunc (rmacaddr) - nacaddr
Setsthe last 3 bytes of the address to zero. The remaining prefix can be associated with a par-
ticular manufacturer (using data not included in PostgreSQL).

trunc(macaddr ' 12:34:56:78:90:ab') - 12:34:56: 00: 00: 00

trunc (rmacaddr8) - macaddr 8
Setsthe last 5 bytes of the address to zero. The remaining prefix can be associated with a par-
ticular manufacturer (using data not included in PostgreSQL).

trunc(nacaddr8 ' 12:34:56:78:90: ab: cd: ef') -
12: 34: 56: 00: 00: 00: 00: 00

309

Functions and Operators

Function
Description
Example(s)

macaddr 8 set 7bit (nmacaddr8) — nacaddr 8
Sets the 7th bit of the address to one, creating what is known as modified EUI-64, for inclu-
sion in an |Pv6 address.
macaddr 8_set 7bi t (macaddr8 ' 00: 34: 56: ab: cd: ef') -
02: 34:56:ff: fe:ab: cd: ef

9.13. Text Search Functions and Operators

Table 9.41, Table 9.42 and Table 9.43 summarize the functions and operators that are provided for full
text searching. See Chapter 12 for a detailed explanation of PostgreSQL's text search facility.

Table 9.41. Text Search Operators

Operator
Description
Example(s)

t svect or @@ squery - bool ean

t squery @@t svect or - bool ean
Doest svect or matcht squer y? (The arguments can be given in either order.)

to tsvector('fat cats ate rats') @to _tsquery('cat &rat') -t

text @@ squery - bool ean
Doestext string, after implicit invocation of t o_t svect or (), matcht squery?

"fat cats ate rats' @@to_tsquery('cat &rat') -t

t svect or @@t squery - bool ean

t squery @aox svect or - bool ean
Thisis adeprecated synonym for @@

to_tsvector('fat cats ate rats') @@to_tsquery('cat &rat') -
t

tsvector || tsvector - tsvector
Concatenatestwo t svect or s. If both inputs contain lexeme positions, the second input's
positions are adjusted accordingly.
"a:l b:2"::tsvector || 'c:1 d:2 b:3"::tsvector -'a':1 'b':2,5
‘c':3'd:4

tsquery &&tsquery - tsquery
ANDstwot squer ystogether, producing a query that matches documents that match both

input queries.
"fat | rat'::tsquery && 'cat'::tsquery - ('fat' | 'rat') &
'cat'’

tsquery || tsquery - tsquery
ORstwot squer ystogether, producing a query that matches documents that match either
input query.
"fat | rat'::tsquery ||

cat'::tsquery - 'fat' | 'rat' | 'cat

310

Functions and Operators

Operator
Description
Example(s)

I'l tsquery - tsquery
Negatesat squery, producing a query that matches documents that do not match the input
query.
Il 'cat'::tsquery —!'cat'

tsquery <->tsquery - tsquery
Constructs a phrase query, which matchesif the two input queries match at successive lex-
emes.
to tsquery('fat') <->to _ tsquery('rat') - 'fat' <-> 'rat

tsquery @ tsquery - bool ean
Doesfirstt squery contain the second? (This considers only whether al the lexemes ap-
pearing in one query appear in the other, ignoring the combining operators.)

"cat'::tsquery @ 'cat & rat'::tsquery - f

t squery <@t squery - bool ean
Isfirstt squery contained in the second? (This considers only whether all the lexemes ap-
pearing in one query appear in the other, ignoring the combining operators.)
"cat'::tsquery <@'cat & rat'::tsquery -t

cat'::tsquery <@''cat & rat'::tsquery -t

In addition to these specialized operators, the usual comparison operators shown in Table 9.1 are available
for typest svect or andt squery. These are not very useful for text searching but allow, for example,
unique indexes to be built on columns of these types.

Table 9.42. Text Search Functions

Function
Description
Example(s)

array _to tsvector (text[]) - tsvector
Converts an array of lexemesto at svect or . The given strings are used as-is without fur-
ther processing.
array_to_tsvector('{fat,cat,rat}'::text[]) - "'cat' 'fat' 'rat

get _current _ts_config() - regconfig
Returns the OID of the current default text search configuration (as set by default_tex-
t_search_config).

get _current_ts config() - english

| ength (tsvector) - i nteger
Returns the number of lexemesinthet svect or.

length('fat:2,4 cat:3 rat:5A ::tsvector) - 3

nunmode (t squery) — i nt eger
Returns the number of lexemes plus operatorsinthet squery.

numode(' (fat & rat) | cat'::tsquery) -5

311

Functions and Operators

Function
Description
Example(s)

pl ainto_tsquery ([configregconfig,]querytext) - tsquery
Convertstextto at squer y, normalizing words according to the specified or default config-
uration. Any punctuation in the string isignored (it does not determine query operators). The
resulting query matches documents containing all non-stopwords in the text.

plainto_tsquery('english', 'The Fat Rats') - 'fat' & 'rat’

phraseto_tsquery ([configregconfig,]querytext) - tsquery
Convertstextto at squer y, normalizing words according to the specified or default config-
uration. Any punctuation in the string isignored (it does not determine query operators). The
resulting query matches phrases containing all non-stopwords in the text.
phraseto_tsquery('english', 'The Fat Rats') - 'fat' <-> 'rat'
phraseto_tsquery('english', 'The Cat and Rats') - 'cat' <2>
"rat’

websearch_to_tsquery ([configregconfig,]querytext) - tsquery
Convertstext toat squer y, normalizing words according to the specified or default config-
uration. Quoted word sequences are converted to phrase tests. The word “or” is understood
as producing an OR operator, and a dash produces a NOT operator; other punctuation isig-
nored. This approximates the behavior of some common web search tools.

websearch to tsquery('english', ""fat rat" or cat dog') - 'fat’
<->'rat' | 'cat' & 'dog

querytree (tsquery) - text
Produces a representation of the indexable portion of at squery. A result that is empty or
just T indicates a non-indexable query.

querytree('foo & ! bar'::tsquery) - 'foo

setwei ght (vector tsvector,wei ght "char") - tsvector
Assigns the specified wei ght to each element of thevect or.
setweight('fat:2,4 cat:3 rat:5B ::tsvector, '"A') - 'cat':3A
"fat':2A 4A 'rat':5A

setwei ght (vector tsvector,wei ght "char",l exemestext[]) - tsvector
Assigns the specified wei ght to elementsof thevect or that arelisted in| exenes.
setweight('fat:2,4 cat:3 rat:5,6B ::tsvector, 'A,

"{cat,rat}') - 'cat':3A 'fat':2,4 'rat':5A 6A

strip(tsvector) - tsvector
Removes positions and weights from thet svect or .

strip('fat:2,4 cat:3 rat:5A ::tsvector) - 'cat' 'fat’

rat

to_tsquery ([configregconfig,]querytext) - tsquery
Convertstextto at squer y, normalizing words according to the specified or default config-
uration. The words must be combined by validt squer y operators.

to_tsquery('english', 'The & Fat & Rats') - 'fat' & 'rat’

to_tsvector ([configregconfig,]docunment text) - tsvector
Convertstextto at svect or, normalizing words according to the specified or default con-
figuration. Position information isincluded in the result.

312

Functions and Operators

Function
Description
Example(s)

to_tsvector('english', 'The Fat Rats') - 'fat':2 'rat':3

to_tsvector ([configregconfig,]docunent json) - tsvector

to_tsvector ([configregconfig,]docunent jsonb) - tsvector
Converts each string value in the JSON document to at svect or , normalizing words ac-
cording to the specified or default configuration. The results are then concatenated in docu-
ment order to produce the output. Position information is generated as though one stopword
exists between each pair of string values. (Beware that “ document order” of the fields of a
JSON object isimplementation-dependent when the input isj sonb; observe the difference
in the examples.)
to _tsvector('english', '{"aa": "The Fat Rats", "b":
"dog"}'::json) - 'dog':5 'fat':2 'rat':3
to_tsvector('english', '{"aa": "The Fat Rats", "b":
"dog"}'::jsonb) - 'dog':1 'fat':4 'rat':5

json_to tsvector ([configregconfig,]docunent json,filter jsonb) -
t svect or

jsonb_to tsvector ([configregconfig,]docunent jsonb,filter jsonb) -
t svect or
Selects each item in the JSON document that is requested by thef i | t er and converts each
onetoat svect or, normalizing words according to the specified or default configuration.
The results are then concatenated in document order to produce the output. Position informa-
tion is generated as though one stopword exists between each pair of selected items. (Beware
that “document order” of the fields of a JSON object isimplementation-dependent when the
inputisj sonb.) Thefil ter must beaj sonb array containing zero or more of these key-
words. " string" (toincludeall string values), " nuneri ¢" (toinclude al numeric val-
ues), " bool ean" (toinclude al boolean values), " key" (toinclude all keys), or"al | "
(toinclude al the above). As a specia case, thefi | t er can aso beasimple JSON vaue
that is one of these keywords.

json_to tsvector('english', '{"a": "The Fat Rats", "b":
123}'::json, '["string", "nuneric"]') - '123':5 'fat':2 'rat':3
json_to tsvector('english', '{"cat": "The Fat Rats", "dog":

123} ::json, ""all"') -"123':9 'cat':1 'dog':7 'fat':4 'rat':5

ts_del ete(vector tsvector,|l exenetext) - tsvector
Removes any occurrence of the given | exene fromthevect or.
ts delete('fat:2,4 cat:3 rat:5A ::tsvector, 'fat') - "'cat':3
"rat':5A

ts_delete(vector tsvector,l exenestext[]) - tsvector
Removes any occurrences of the lexemesin| exenes fromthevect or .
ts _delete('fat:2,4 cat:3 rat:5A ::tsvector, AR-

RAY['fat','rat']) - 'cat':3

ts filter (vector tsvector,weights"char"[]) - tsvector
Selects only elements with the given wei ght s from thevect or .
ts filter('fat:2,4 cat:3b,7c rat:5A ::tsvector, '{a,b}') -
‘cat':3B 'rat':5A

313

Functions and Operators

Function
Description
Example(s)

ts_headline([configregconfig,]docunent text,querytsquery[,options

text]) - text

Displays, in an abbreviated form, the match(es) for the quer y inthedocunent , which
must be raw text not at svect or . Words in the document are normalized according to the
specified or default configuration before matching to the query. Use of thisfunction isdis-
cussed in Section 12.3.4, which also describes the available opt i ons.

ts_headline(' The fat cat ate the rat.', 'cat') - The fat
cat ate the rat.

ts_headline ([configregconfig,]docunment json,querytsquery[,options
text]) - text
ts_headline([configregconfig,]document jsonb,querytsquery|[,options

text]) - text

Displays, in an abbreviated form, match(es) for the quer y that occur in string values within
the JSON docunent . See Section 12.3.4 for more details.

ts headline('{"cat":"raining cats and dogs"}'::jsonb, 'cat') -
{"cat": "raining cats and dogs"}

ts_rank ([weightsreal[],]vector tsvector,querytsquery[,nornalization

i nteger]) - real
Computes a score showing how well thevect or matchesthe quer y. See Section 12.3.3
for details.

ts rank(to_tsvector('raining cats and dogs'), 'cat') -
0. 06079271

ts rank _cd ([weightsreal[],]vector tsvector,querytsquery[,nornaliza-

tioninteger]) - real
Computes a score showing how well thevect or matchesthe query, using a cover density
algorithm. See Section 12.3.3 for details.

ts_rank_cd(to_tsvector('raining cats and dogs'), 'cat') - 0.1

ts_ rewite(querytsquery,target tsquery,substitutetsquery) - tsquery
Replaces occurrences of t ar get with subst i t ut e withinthe quer y. See Sec-
tion 12.4.2.1 for details.
ts rewite('a & b'::tsquery,

-'b" & ('foo' | '"bar')

"a'::tsquery, 'foo|bar'::tsquery)

ts_ rewite(querytsquery,sel ect text) - tsquery
Replaces portions of the quer y according to target(s) and substitute(s) obtained by execut-
ing a SELECT command. See Section 12.4.2.1 for details.
SELECT ts_rewite('a & b'::tsquery, 'SELECT t,s FROM al i ases')

->'b" & ('foo' | 'bar')

tsquery_phrase (queryltsquery,query2tsquery) - tsquery
Constructs a phrase query that searches for matches of quer y1 and quer y2 at successive
lexemes (same as <- > operator).
tsquery_phrase(to_tsquery('fat'), to_tsquery('cat')) - ' 'fat' <-
> 'cat'’

314

Functions and Operators

Function
Description
Example(s)

t squery_phrase (queryltsquery,query2tsquery,di stanceinteger) - ts-
query
Constructs a phrase query that searches for matches of quer y1 and quer y2 that occur ex-
actly di st ance lexemes apart.
tsquery_phrase(to_tsquery('fat'), to_tsquery('cat'), 10) -
'fat' <10> 'cat'

tsvector_to_array (tsvector) - text[]
Convertsat svect or to an array of lexemes.
tsvector to array('fat:2,4 cat:3 rat:5A ::tsvector) -
{cat,fat,rat}

unnest (tsvector) —» setof record(lexenmetext,positionssmallint[],
wei ght stext)
Expandsat svect or into aset of rows, one per lexeme.

select * fromunnest('cat:3 fat:2,4 rat:5A ::tsvector) -

________ e
cat | {3} | {D}

f at | {2, 4} | {D D}
rat | {5} | {A

Note

All the text search functions that accept an optional r egconf i g argument will use the configu-
ration specified by default_text_search_config when that argument is omitted.

Thefunctionsin Table 9.43 are listed separately because they are not usually used in everyday text search-
ing operations. They are primarily helpful for development and debugging of new text search configura-
tions.

Table 9.43. Text Search Debugging Functions

Function
Description
Example(s)

ts_debug ([configregconfig,]docunent text) -~ setof record(aliastext,
descriptiontext,tokentext,dictionariesregdictionary[],dictio-
nary regdi ctionary,|l exemestext[])
Extracts and normalizes tokens from the docunent according to the specified or default
text search configuration, and returns information about how each token was processed. See
Section 12.8.1 for details.

ts_debug('english', 'The Brightest supernovaes') - (ascii-
word, "Word, all ASCII", The, {english_sten},english_stem{})

315

Functions and Operators

Function
Description
Example(s)

ts_lexize(dict regdictionary,tokentext) - text[]
Returns an array of replacement lexemes if the input token is known to the dictionary, or an
empty array if the token is known to the dictionary but it is a stop word, or NULL if itisnot a
known word. See Section 12.8.3 for details.

ts_lexize('english_stem, 'stars') - {star}

ts_parse (parser_nanmetext,docunent text) - setof record(tokidinteger,

t okentext)
Extracts tokens from the documrent using the named parser. See Section 12.8.2 for details.

ts parse('default', 'foo - bar') - (1,foo0)

ts_parse (parser_oidoid,docunent text) - setof record(tokidinteger,

t okentext)
Extracts tokens from the docunent using a parser specified by OID. See Section 12.8.2 for
details.

ts_parse(3722, 'foo - bar') - (1,foo0)

ts_token_type (parser_nanetext) » setof record(tokidinteger,alias

text,descriptiontext)
Returns a table that describes each type of token the named parser can recognize. See Sec-
tion 12.8.2 for details.

ts_token_type('default') - (1,asciiword,"Wrd, all ASCI1")

ts_token_type (parser_oidoid) - setof record(tokidinteger,aliastext,

descriptiontext)
Returns atable that describes each type of token a parser specified by OID can recognize.
See Section 12.8.2 for details.

ts _token_ type(3722) - (1,asciiword,"Word, all ASCI")

ts_stat (sqlquerytext [,weightstext]) - setof record (wordtext,ndoc
i nteger,nentryinteger)
Executesthe sql quer y, which must return asinglet svect or column, and returns statis-
tics about each distinct lexeme contained in the data. See Section 12.4.4 for details.

ts_stat (' SELECT vector FROM apod') - (foo, 10, 15)

9.14. UUID Functions

PostgreSQL includes one function to generate a UUID:

gen_randomuuid () - uuid

This function returns aversion 4 (random) UUID. This is the most commonly used type of UUID and is
appropriate for most applications.

The uuid-ossp module provides additional functions that implement other standard algorithms for gener-
ating UUIDs.

PostgreSQL also provides the usual comparison operators shown in Table 9.1 for UUIDs.

316

Functions and Operators

9.15. XML Functions

The functions and function-like expressions described in this section operate on values of type xm . See
Section 8.13 for information about thexm type. The function-like expressionsxm par se andxmi se-
ri al i ze for converting to and from type xm are documented there, not in this section.

Use of most of these functions requires PostgreSQL to have been built with confi gure --wit h-
[ibxm .

9.15.1. Producing XML Content

A set of functions and function-like expressionsis available for producing XML content from SQL data.
As such, they are particularly suitable for formatting query results into XML documents for processing
in client applications.

9.15.1.1. xnl comrent

xm comment (text) - xm

The function xm comrent creates an XML value containing an XML comment with the specified text
as content. The text cannot contain “- - ” or end with a“- ", otherwise the resulting construct would not
beavaid XML comment. If the argument is null, the result is null.

Example:

SELECT xm conment (' hell o');

xm conment

<l--hello-->

9.15.1.2. xnl concat

xm concat (xm [, ...]) - xni

Thefunctionxm concat concatenatesalist of individual XML valuesto create asingle value containing
an XML content fragment. Null values are omitted; theresultisonly null if there are no nonnull arguments.

Example:

SELECT xm concat (' <abc/>', '<bar>foo</bar>");

xm concat

<abc/ ><bar >f oo</ bar >

XML declarations, if present, are combined asfollows. If al argument values have the same XML version
declaration, that version is used in the result, else no version is used. If al argument values have the
standalone declaration value “yes’, then that value is used in the result. If all argument values have a
standal one declaration value and at least oneis“no”, then that isused in the result. Else the result will have
no standalone declaration. If the result is determined to require a standalone declaration but no version

317

Functions and Operators

declaration, aversion declaration with version 1.0 will be used because XML requiresan XML declaration
to contain aversion declaration. Encoding declarations are ignored and removed in all cases.

Example:

SELECT xm concat (' <?xm version="1.1"?><foo/>", '<?xm version="1.1"
st andal one="no" ?><bar/>");

xm concat

<?xml version="1.1"?><f oo/ ><bar/ >

9.15.1.3. xnl el ement

xm el enent (NAME nane [, XM.ATTRIBUTES (attvalue [AS attnane]
[, -.--1)1 [, content [, ...]]) - xm

The xm el ement expression produces an XML element with the given name, attributes, and content.
The nane and at t nane items shown in the syntax are simple identifiers, not values. The at t val ue
and cont ent itemsare expressions, which can yield any PostgreSQL data type. The argument(s) within
XMLATTRI BUTES generate attributes of the XML element; the cont ent value(s) are concatenated to
form its content.

Examples:

SELECT xmnl el enent (nane fo00);

xm el ement

<f oo/ >
SELECT xml el enent (nane foo, xmattributes('xyz' as bar));

xm el ement

<foo bar="xyz"/>

SELECT xml el enent (nane foo, xmattributes(current_date as bar),
‘cont', 'ent');

xm el ement

<f oo bar ="2007-01- 26" >cont ent </ f oo>

Element and attribute names that are not valid XML names are escaped by replacing the offending char-
acters by the sequence xHHHH_, where HHHH is the character's Unicode codepoint in hexadecimal no-
tation. For example:

SELECT xml el enent (name "foo$bar", xmattributes('xyz' as "a&b"));

xm el enent

318

Functions and Operators

<f o0o_x0024_bar a_x0026_b="xyz"/>

An explicit attribute name need not be specified if the attribute value is a column reference, in which case
the column's name will be used as the attribute name by default. In other cases, the attribute must be given
an explicit name. So this exampleisvalid:

CREATE TABLE test (a xm, b xm);
SELECT xml el ement (nane test, xmattributes(a, b)) FROMtest;

But these are not:

SELECT xm el ement (nane test, xm attributes('constant'), a, b) FROM
test;
SELECT xm el ement (nane test, xmattributes(func(a, b))) FROMtest;

Element content, if specified, will be formatted according to its data type. If the content is itself of type
xm , complex XML documents can be constructed. For example:

SELECT xmi el enent (name foo, xmattributes('xyz' as bar),
xm el enent (nanme abc),
xm comment (" test'),
xm el enent (nane xyz));

xm el enent

<f oo bar="xyz"><abc/><!--test--><xyz/></foo>

Content of other types will be formatted into valid XML character data. This meansin particular that the
characters <, >, and & will be converted to entities. Binary data (datatype byt ea) will be represented in
base64 or hex encoding, depending on the setting of the configuration parameter xmlbinary. The particular
behavior for individual data typesis expected to evolve in order to align the PostgreSQL mappings with
those specified in SQL:2006 and later, as discussed in Section D.3.1.3.

9.15.1.4. xnl f or est

xm forest (content [ASnamre] [, ...]) - xm

Thexnl f or est expression produces an XML forest (sequence) of elements using the given names and
content. Asfor xm el ermrent , each nane must be a simple identifier, while the cont ent expressions
can have any datatype.

Examples:

SELECT xm forest('abc' AS foo, 123 AS bar);
xm f or est

<f oo>abc</ f oo><bar >123</ bar >

SELECT xml f orest (tabl e_nane, col unm_nane)

319

Functions and Operators

FROM i nf or mati on_schena. col unms
WHERE t abl e_schema = 'pg_catal og";

xm f or est

<t abl e_nane>pg_aut hi d</t abl e_nanme><col um_nane>r ol nane</ col um_nane>
<t abl e_nane>pg_aut hi d</t abl e_name><col utmm_namne>r ol super </ col um_nane>

Asseenin the second example, the element name can be omitted if the content valueisacolumn reference,
in which case the column name is used by default. Otherwise, a name must be specified.

Element names that are not valid XML names are escaped as shown for xm el enent above. Similarly,
content datais escaped to make valid XML content, unlessit is aready of typexm .

Note that XML forests are not valid XML documentsif they consist of more than one element, so it might
be useful to wrap xm f or est expressionsin xni el enent .

9.15.1.5. xn pi

xm pi (NAME nane [, content]) - xm

Thexnl pi expression creates an XML processing instruction. Asfor xm el erment , the nanme must be
a simple identifier, while the cont ent expression can have any data type. The cont ent , if present,
must not contain the character sequence ?>.

Example:

SELECT xml pi (nane php, 'echo "hello world";");

<?php echo "hello world"; ?>

9.15.1.6. xnl r oot

xm root (xm, VERSION {text|NO VALUE} [, STANDALONE { YES| NO NO
VALUE}]) - xni

Thexm r oot expression altersthe properties of the root node of an XML value. If aversionis specified,
it replaces the value in the root node's version declaration; if a standalone setting is specified, it replaces
the value in the root node's standal one declaration.

SELECT xm r oot (xm par se(docunent '<?xm version="1.1"?><cont ent >abc</
content>"),

version '1.0', standal one yes);

<?xm version="1.0" standal one="yes"?>
<cont ent >abc</ cont ent >

320

Functions and Operators

9.15.1.7. xm agg

xmagg (xm) - xm

Thefunction xm agg is, unlike the other functions described here, an aggregate function. It concatenates
the input values to the aggregate function call, much like ximl concat does, except that concatenation
0CCurs across rows rather than across expressions in a single row. See Section 9.21 for additional infor-
mation about aggregate functions.

Example:

CREATE TABLE test (y int, x xm);
I NSERT | NTO test VALUES (1, '<foo>abc</foo>');
| NSERT | NTO test VALUES (2, '<bar/>");
SELECT xml agg(x) FROM test;
xm agg

<f oo>abc</ f oo><bar/ >

To determine the order of the concatenation, an ORDER BY clause may be added to the aggregate call
as described in Section 4.2.7. For example:

SELECT xm agg(x ORDER BY y DESC) FROM test;
xm agg

<bar/ ><f oo>abc</f 0oo>
The following non-standard approach used to be recommended in previous versions, and may still be

useful in specific cases:

SELECT xm agg(x) FROM (SELECT * FROM test ORDER BY y DESC) AS tab;
xm agg

<bar/ ><f oo>abc</ f oo>

9.15.2. XML Predicates

The expressions described in this section check properties of xm values.

9.15.2.1. 1 S DOCUMENT

xm |'S DOCUMENT - bool ean

Theexpression| S DOCUMENT returnstrueif the argument XML valueisaproper XML document, false
if it isnot (that is, it is a content fragment), or null if the argument is null. See Section 8.13 about the
difference between documents and content fragments.

9.15.2.2.1 S NOT' DOCUMENT

321

Functions and Operators

xm 'S NOT DOCUVENT - bool ean

Theexpression| S NOT DOCUNMENT returnsfalseif theargument XML valueisaproper XML document,
trueif itisnot (that is, it is a content fragment), or null if the argument is null.

9.15.2.3. XMLEXI STS

XMLEXI STS (text PASSING [BY { REF| VALUE}] xml [BY
{ REF| VALUE}]) - bool ean

The function xrm exi st s evaluates an XPath 1.0 expression (the first argument), with the passed XML
value as its context item. The function returns false if the result of that evaluation yields an empty node-
set, true if it yields any other value. The function returns null if any argument is null. A nonnull value
passed as the context item must be an XML document, not a content fragment or any non-XML value.

Example:

SELECT xm exists('//town[text() = "'Toronto'']"' PASSI NG BY VALUE
' <t owns><t own>Tor ont o</t own><t own>Ot t awa</ t own></t owns>') ;

xm exi sts

The BY REF and BY VALUE clauses are accepted in PostgreSQL, but are ignored, as discussed in
Section D.3.2.

In the SQL standard, the xm exi st s function evaluates an expression in the XML Query language, but
PostgreSQL allows only an XPath 1.0 expression, as discussed in Section D.3.1.

9.15.24.xm is well forned

xm _is well fornmed (text) - bool ean
xm _is_well_formed_docunment (text) - boolean
xm _is well fornmed content (text) - boolean

These functions check whether a t ext string represents well-formed XML, returning a Boolean
result. xm _is_well _fornmed_docunent checks for a well-formed document, while xm

| is_well _forned_content checksfor well-formed content. xm _i s_wel | _f or med doesthe
former if the xmloption configuration parameter is set to DOCUMENT, or the latter if it is set to CON-

TENT. Thismeansthat xm _is_wel | _for med isuseful for seeing whether a simple cast to type xmi

will succeed, whereas the other two functions are useful for seeing whether the corresponding variants of
XMLPARSE will succeed.

Examples:

SET xm opti on TO DOCUMENT;
SELECT xm _is_well _forned('<>");
xm _is well formed

322

Functions and Operators

f
(1 row

SELECT xm _is_wel |l _forned(' <abc/>");
xm _is well formed

SET xm opti on TO CONTENT;
SELECT xm _is_well _formed(' abc');
xm _is well formed

SELECT xm _is_wel | _forned_docunent (' <pg:foo xm ns:pg="http://
post gresql . org/ st uf f">bar </ pg: f 00>") ;
xm _is well formed_docunent

SELECT xm _is_wel | _forned_docunent (' <pg:foo xm ns:pg="http://
post gresql . org/ stuff">bar</my:foo>");
xm _is well formed_docunent

The last exampl e shows that the checks include whether namespaces are correctly matched.

9.15.3. Processing XML

To processvauesof datatypexm , PostgreSQL offersthefunctionsxpat h andxpat h_exi st s, which
evaluate XPath 1.0 expressions, and the XML TABLE table function.

9.15.3.1. xpat h

xpath (xpath text, xm xm [, nsarray text[]]) - xm[]

The function xpat h evaluates the XPath 1.0 expression xpat h (given as text) against the XML value
xm . It returns an array of XML values corresponding to the node-set produced by the X Path expression.
If the XPath expression returns a scalar value rather than a node-set, a single-element array is returned.

The second argument must be a well formed XML document. In particular, it must have a single root
node element.

The optional third argument of the function is an array of namespace mappings. This array should be a
two-dimensional t ext array with the length of the second axis being equal to 2 (i.e., it should be an
array of arrays, each of which consists of exactly 2 elements). The first element of each array entry isthe
namespace name (alias), the second the namespace URI. It isnot required that aliases provided in thisarray
be the same as those being used in the XML document itself (in other words, both in the XML document
and in the xpat h function context, aliases are local).

323

Functions and Operators

Example:

SELECT xpath('/my:altext()', '<my:a xmns:my="http://
exanpl e. con' >t est </ nmy: a>' ,
ARRAY[ARRAY[' ny', 'http://exanple.com]]);

{test}
(1 row

To deal with default (anonymous) namespaces, do something like this:

SELECT xpath('//mydefns:b/text()', '<a xm ns="http://
exanpl e. con' >t est </ b></ a>',
ARRAY[ARRAY[' nydefns', 'http://exanple.com]]);

ftest}
(1 row

9.15.3.2. xpat h_exi st s

xpat h_exists (xpath text, xm xm [, nsarray text[]]) - bool ean

The function xpat h_exi st s is a specialized form of the xpat h function. Instead of returning the
individual XML values that satisfy the XPath 1.0 expression, this function returns a Boolean indicating
whether the query was satisfied or not (specifically, whether it produced any value other than an empty
node-set). This function is equivalent to the XMLEXI STS predicate, except that it also offers support for
anamespace mapping argument.

Example:
SELECT xpath_exists('/ny:altext()', '"<ny:a xmns:nmy="http://
exanpl e. cont' >t est </ ny: a>',

ARRAY[ARRAY["' ny', 'http://exanple.com]]);

xpat h_exi sts

9.15.3.3. xnl t abl e

XMLTABLE (
[XMLNAMESPACES (nanespace_uri AS namespace_nanme [, ...]),]
row_expressi on PASSI NG [BY { REF| VALUE}] docunent _expressi on [BY
{ REF| VALUE}]

COLUWNS name { type [PATH col umm_expr essi on]
[DEFAULT defaul t _expression] [NOT NULL | NULL]

324

Functions and Operators

| FOR ORDI NALITY }
[, ...]

) - setof record

Thexnl t abl e expression produces atable based on an XML value, an XPath filter to extract rows, and
a set of column definitions. Although it syntactically resembles a function, it can only appear as a table
in aquery's FROMclause.

The optional XM_LNAMESPACES clause gives a comma-separated list of namespace definitions, where
each namespace_uri isatext expression and each nanmespace_nane is a smple identifier. It
specifies the XML namespaces used in the document and their aliases. A default namespace specification
is not currently supported.

Therequiredr ow_expr essi on argument isan XPath 1.0 expression (given ast ext) that is evaluated,
passing the XML value docunent _expr essi on as its context item, to obtain a set of XML nodes.
These nodes are what xim t abl e transforms into output rows. No rows will be produced if the docu-

ment _expr essi on isnull, nor if ther ow_expr essi on produces an empty node-set or any value
other than a node-set.

docunent _expr essi on provides the context item for the r ow_expr essi on. It must be a well-
formed XML document; fragments/forests are not accepted. The BY REF and BY VALUE clauses are
accepted but ignored, as discussed in Section D.3.2.

In the SQL standard, the xm t abl e function evaluates expressions in the XML Query language, but
PostgreSQL allows only XPath 1.0 expressions, as discussed in Section D.3.1.

The required COLUMNS clause specifies the column(s) that will be produced in the output table. See the
syntax summary above for the format. A name isrequired for each column, asis a data type (unless FOR
ORDI NALI TY is specified, in which case type i nt eger isimplicit). The path, default and nullability
clauses are optional .

A column marked FOR ORDI NALI TY will be populated with row numbers, starting with 1, in the order
of nodes retrieved from the r ow_expr essi on's result node-set. At most one column may be marked
FOR ORDI NALI TY.

Note

XPath 1.0 does not specify an order for nodesin anode-set, so code that relies on aparticular order
of the results will be implementation-dependent. Details can be found in Section D.3.1.2.

Thecol umm_expr essi on for acolumnisan XPath 1.0 expression that is evaluated for each row, with
the current node from ther ow_expr essi on result asits context item, to find the value of the column.
If nocol unm_expr essi on isgiven, then the column nameis used as an implicit path.

If acolumn's X Path expression returnsanon-XML value (which islimited to string, boolean, or doublein
XPath 1.0) and the column has a PostgreSQL type other than x , the column will be set asif by assigning
the value's string representation to the PostgreSQL type. (If the valueis aboolean, its string representation
istaken to be 1 or O if the output column's type category is numeric, otherwiset r ue or f al se.)

If acolumn's X Path expression returns a non-empty set of XML nodes and the column's PostgreSQL type
isxm , the column will be assigned the expression result exactly, if it is of document or content form.

2 A result containi ng more than one element node at the top level, or non-whitespace text outside of an element, is an example of content form. An
XPath result can be of neither form, for example if it returns an attribute node selected from the element that contains it. Such aresult will be put
into content form with each such disallowed node replaced by its string value, as defined for the XPath 1.0 st r i ng function.

325

Functions and Operators

A non-XML result assigned to an xn output column produces content, a single text node with the string
value of the result. An XML result assigned to a column of any other type may not have more than one
node, or an error israised. If thereis exactly one node, the column will be set asif by assigning the node's
string value (as defined for the XPath 1.0 st r i ng function) to the PostgreSQL type.

The string value of an XML element is the concatenation, in document order, of all text nodes contained
in that element and its descendants. The string value of an element with no descendant text nodes is an
empty string (not NULL). Any xsi : ni | attributes are ignored. Note that the whitespace-only t ext ()
node between two non-text elements is preserved, and that leading whitespace on at ext () nodeisnot
flattened. The XPath 1.0 st ri ng function may be consulted for the rules defining the string value of
other XML node types and non-XML values.

The conversion rules presented here are not exactly those of the SQL standard, as discussed in Sec-
tion D.3.1.3.

If the path expression returns an empty node-set (typically, when it does not match) for a given row, the
columnwill besettoNULL, unlessadef aul t _expr essi on isspecified; then the value resulting from
evaluating that expression is used.

A def aul t _expr essi on, rather than being evaluated immediately whenxm t abl e iscalled, iseval-
uated each time adefault is needed for the column. If the expression qualifies as stable or immutable, the
repeat evaluation may be skipped. This means that you can usefully use volatile functions like next val
indef aul t _expr essi on.

Columns may be marked NOT NULL. If the col um_expr essi on for aNOT NULL column does
not match anything and thereis no DEFAULT or thedef aul t _expr essi on aso evaluatesto null, an
error is reported.

Examples:

CREATE TABLE xnl data AS SELECT
xm $$
<RONG>
<ROWid="1">
<COUNTRY_| D>AU</ COUNTRY_I| D>
<COUNTRY_NAME>Aust r al i a</ COUNTRY_NAME>
</ RON
<ROW i d="5">
<COUNTRY_| D>JP</ COUNTRY_| D>
<COUNTRY_NAME>Japan</ COUNTRY_NAME>
<PREM ER_NAME>Shi nzo Abe</ PREM ER_NAME>
<S| ZE uni t ="sq_m " >145935</ S| ZE>
</ RON
<ROW i d="6">
<COUNTRY_| D>SG</ COUNTRY_| D>
<COUNTRY_NANME>Si ngapor e</ COUNTRY_NAME>
<Sl| ZE uni t ="sq_kni' >697</ S| ZE>
</ RON
</ RONG>
$$ AS dat a;

SELECT xnltable.*
FROM xni dat a,
XMLTABLE("' / / RONS/ ROW

326

Functions and Operators

PASSI NG dat a
COLUMNS id int PATH ' @d',
ordinality FOR ORDI NALITY,
" COUNTRY_NAME" text,
country_id text PATH ' COUNTRY_ID ,
size_sq_kmfloat PATH 'SIZE[@nit = "sq_kn']",
si ze_other text PATH
‘concat (SI ZE[@nit! ="sq_kni], " ",
SIZE[@nit! ="sq_kni]/@nit)"’,
prem er_nane text PATH ' PREM ER _NAME' DEFAULT
"not specified);

id | ordinality | COUNTRY_NAME | country id | size_sq_km|

Size_other | premnier_nane
T T o m e o - - o m e o - -
T o e e e e oo - -

1| 1| Australia | AU | |

| not specified

5| 2 | Japan | JP | | 145935
sg_m | Shinzo Abe

6 | 3 | Singapore | SG | 697 |

| not specified

The following exampl e shows concatenation of multiple text() nodes, usage of the column name as X Path
filter, and the treatment of whitespace, XML comments and processing instructions:

CREATE TABLE xnl el enents AS SELECT

xm $$

<r oot >

<el enent> Hello<!-- xyxxz -->2a2<?aaaaa?> <!--x--> bbb<x>xxx</
x>CC </el enent>

</root >
$$ AS dat a;

SELECT xm tabl e.*
FROM xm el ements, XMLTABLE('/root' PASSI NG data COLUWNS el enment
text);
el enent

Hel | 02a2 bbbxxxCC

The following exampleillustrates how the XML NAMESPACES clause can be used to specify alist of name-
spaces used in the XML document as well asin the X Path expressions:

W TH xm dat a(data) AS (VALUES ('
<exanpl e xm ns="http://exanmpl e.conf nyns” xm ns: B="http://exanmpl e. con!
b" >
<itemfoo="1" B:bar="2"/>
<item foo="3" B:bar="4"/>
<item foo="4" B:bar="5"/>
</ exampl e>"::xm)
)
SELECT xm table.*

327

Functions and Operators

FROM XMLTABLE(XMLNAMESPACES("' htt p: // exanpl e. com nyns' AS x,
"http://exanple.com b AS "B"),
"I x:exanple/ x:item
PASSI NG (SELECT data FROM xml dat a)
COLUWNS foo int PATH ' @oo0',
bar int PATH ' @B: bar');
foo | bar

9.15.4. Mapping Tables to XML

The following functions map the contents of relational tablesto XML values. They can be thought of as
XML export functionality:

table to xml (table regclass, nulls bool ean,

t abl ef orest bool ean, targetns text) - xm
query to_xm (query text, nulls bool ean,

t abl ef orest bool ean, targetns text) - xni
cursor_to xm (cursor refcursor, count integer, nulls bool ean,

t abl ef orest bool ean, targetns text) - xm

tabl e_t o_xm mapsthe content of the named table, passed asparameter t abl e. Ther egcl ass type
accepts strings identifying tables using the usual notation, including optional schema qualification and
double quotes (see Section 8.19 for details). query_t o_xm executes the query whose text is passed as
parameter quer y and mapstheresult set. cur sor _t o_xmi fetchestheindicated number of rows from
the cursor specified by the parameter cur sor . This variant is recommended if large tables have to be
mapped, because the result value is built up in memory by each function.

If t abl ef or est isfalse, then the resulting XML document looks like this:

<t abl enane>
<r ow>
<col umnanel>dat a</ col utmnanel>
<col umnane2>dat a</ col utmnane2>
</ row>

<r ow>
</ row>
</t abl enanme>

If t abl ef or est istrue, theresultisan XML content fragment that looks like this:

<t abl enane>
<col umnanel>dat a</ col umnanel>

328

Functions and Operators

<col utmnane2>dat a</ col umnane2>
</ t abl enane>

<t abl enane>

</ t abl enane>

If no table name is available, that is, when mapping a query or a cursor, the string t abl e isused in the
first format, r owin the second format.

The choi ce between these formatsis up to the user. Thefirst format isaproper XML document, which will
be important in many applications. The second format tends to be more useful inthe cur sor _t o_xni
function if the result values are to be reassembl ed into one document later on. The functionsfor producing
XML content discussed above, in particular xm el emrent , can be used to alter the results to taste.

The data values are mapped in the same way as described for the function xm el enrent above.

The parameter nul | s determineswhether null values should beincluded in the output. If true, null values
in columns are represented as.

<col umnane xsi:nil="true"/>

wherexsi isthe XML namespace prefix for XML Schema Instance. An appropriate namespace declara-
tion will be added to the result value. If false, columns containing null values are simply omitted from
the output.

The parameter t ar get ns specifiesthe desired XML namespace of the result. If no particular namespace
iswanted, an empty string should be passed.

The following functions return XML Schema documents describing the mappings performed by the cor-
responding functions above:

table to xm schema (table regclass, nulls bool ean,

t abl ef orest bool ean, targetns text) - xni
query_to_xm schema (query text, nulls bool ean,

t abl ef orest bool ean, targetns text) - xm
cursor_to_xm schema (cursor refcursor, nulls bool ean,

t abl ef orest bool ean, targetns text) - xni

It is essential that the same parameters are passed in order to obtain matching XML data mappings and
XML Schema documents.

The following functions produce XML data mappings and the corresponding XML Schema in one docu-
ment (or forest), linked together. They can be useful where self-contained and self-describing results are
wanted:

table to xml _and_xm schema (table regclass, nulls bool ean,
t abl ef orest bool ean, targetns text

) - xm
query_to_xm _and_xm schema (query text, nulls bool ean,

329

Functions and Operators

t abl ef orest bool ean, targetns text
) - xm

In addition, the following functions are available to produce anal ogous mappings of entire schemas or the
entire current database:

schema_to_xm (schema name, nulls bool ean,

t abl ef orest bool ean, targetns text) - xm
schema_to_xm schema (schema name, nulls bool ean,

t abl ef orest bool ean, targetns text) - xm

schema_to_xm _and_xm schema (schema name, nulls bool ean,
t abl ef orest bool ean, targetns text

) - xm

dat abase to xm (nulls bool ean,

t abl ef orest bool ean, targetns text) - xni
dat abase_to_xm schema (nulls bool ean,

t abl ef orest bool ean, targetns text) - xm

dat abase _to _xm _and_xm schema (nulls bool ean,
t abl ef orest bool ean, targetns text

) - xm

These functionsignore tables that are not readable by the current user. The database-wide functions addi-
tionally ignore schemas that the current user does not have USAGE (lookup) privilege for.

Note that these potentially produce alot of data, which needs to be built up in memory. When requesting
content mappings of large schemas or databases, it might be worthwhile to consider mapping the tables
separately instead, possibly even through a cursor.

Theresult of a schema content mapping looks like this:

<schenmanane>
t abl el- mappi ng

t abl e2- mappi ng

</ schemanane>
where the format of atable mapping depends onthet abl ef or est parameter as explained above.

The result of a database content mapping looks like this:

<dbnane>
<schemalnane>

</ schemalnane>

330

Functions and Operators

<schema2nane>

</ schema2nane>

</ dbnane>
where the schema mapping is as above.

As an example of using the output produced by these functions, Example 9.1 shows an XSLT stylesheet
that converts the output of t abl e_t o_xm _and_xm schena to an HTML document containing a
tabular rendition of the table data. In a similar manner, the results from these functions can be converted
into other XML -based formats.

Example 9.1. XSLT Stylesheet for Converting SQL/XML Output toHTML

<?xm version="1.0"?>

<xsl :styl esheet version="1.0"
xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or nf
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schema"
xm ns="http://ww. w3. org/ 1999/ xht m "

<xsl : out put net hod="xm "
doct ype-system="http://ww. wW3. or g/ TR/ xht m 1/ DTDY xht m 1-
strict.dtd"
doct ype-public="-//WBC/DTD XHTM. 1.0 Strict//EN'
i ndent ="yes"/ >

<xsl:tenplate match="/*">
<xsl :vari abl e nanme="schem" sel ect="//xsd: schema"/>
<xsl :vari abl e name="t abl et ypenane”
sel ect =" $schena/ xsd: el ement [@anme=nane(current ())]/
@ype"/>
<xsl :vari abl e name="r owt ypenane"
sel ect =" $schena/ xsd: conpl exType[@ane=
$t abl et ypenane] / xsd: sequence/ xsd: el ement [@ame="row]/ @ype"/ >

<htm >
<head>
<title><xsl:val ue-of select="name(current())"/></title>
</ head>
<body>
<t abl e>
<tr>
<xsl :for-each sel ect ="$schema/ xsd: conpl exType[@ane=
$rowt ypenane] / xsd: sequence/ xsd: el ement / @ane" >

<t h><xsl : val ue-of select="."/></th>
</ xsl : for-each>
</[tr>

331

Functions and Operators

<xsl :for-each sel ect="row'>

<tr>

<xsl :for-each select="*">
<t d><xsl : val ue-of select="."/></td>

</ xsl :for-each>

</[tr>

</ xsl :for-each>
</t abl e>
</ body>

</htm >
</ xsl : tenpl at e>

</ xsl : styl esheet >

9.16. JSON Functions and Operators

This section describes:
« functions and operators for processing and creating JSON data
* the SQL/JSON path language

To learn more about the SQL/JSON standard, see [sgltr-19075-6]. For details on JSON types supported
in PostgreSQL , see Section 8.14.

9.16.1. Processing and Creating JSON Data

Table 9.44 shows the operators that are available for use with JSON data types (see Section 8.14). In
addition, the usual comparison operators shown in Table 9.1 are available for j sonb, though not for
j son. The comparison operatorsfollow the ordering rulesfor B-tree operations outlined in Section 8.14.4.

Table9.44.j son and j sonb Operators

Operator
Description
Example(s)

json->integer - json

jsonb->integer - jsonb
Extracts n'th element of JSON array (array elements are indexed from zero, but negative inte-
gers count from the end).

"[{"a":"foo0"},{"b":"bar"},{"c":"baz"}]"'::json -> 2 -

{"c":"baz"}
"[{"a":"foo"},{"b":"bar"},{"c":"baz"}]"'::json -> -3 >
{"a":"foo"}

json->text - json

jsonb->text - jsonb
Extracts JSON object field with the given key.

"{"a": {"b":"foo"}}" ::json ->"'a - {"b":"foo0"}

j son->>integer - text

j sonb->>integer - text

332

Functions and Operators

Operator
Description
Example(s)
Extracts n'th element of JSON array, ast ext .
"11,2,3]'::json ->> 2 . 3

json->>text - text

jsonb->>text - text
Extracts JSON object field with the given key, ast ext .

"{"a":1,"b":2}'::json ->>"'b'" -2

json#>text[] - json

jsonb#>text[] - jsonb
Extracts JSON sub-object at the specified path, where path elements can be either field keys
or array indexes.

“{"a": {"b": ["foo","bar"]}} ::json #> '{a,b,1}' - "bar"

json#>>text[] - text

jsonb#>>text[] - text
Extracts JSON sub-object at the specified path ast ext .

{"a": {"b": ["foo","bar"]}} ::json #>> '{a,b,1}' - bar

Note

The field/element/path extraction operators return NULL, rather than failing, if the JSON input
does not have the right structure to match the request; for exampleif no such key or array element
exists.

Some further operators exist only for j sonb, as shown in Table 9.45. Section 8.14.4 describes how these
operators can be used to effectively search indexed j sonb data.

Table 9.45. Additional] sonb Operators

Operator
Description
Example(s)

j sonb @ j sonb - bool ean
Doesthe first JSON value contain the second? (See Section 8.14.3 for details about contain-
ment.)

"{"a":1, "b":2}'::jsonb @ '{"b":2}'::jsonb >t

j sonb <@)j sonb - bool ean
Isthe first JSON value contained in the second?

"{"b":2}'::jsonb <@'{"a":1, "b":2}" ::jsonb >t

j sonb ?text - bool ean
Does the text string exist as atop-level key or array element within the JSON value?

"{"a":1, "b":2}"::jsonb ? 'b'" 1t
l[llall’ Ilbll’ IICII]I::jsonb ? lbl _}t

333

Functions and Operators

Operator
Description
Example(s)

jsonb?| text[] - bool ean
Do any of the stringsin the text array exist astop-level keys or array elements?

"{"a":1, "b":2, "c":3}'::jsonb ?| array['b', 'd] -t

jsonb ?&text[] - bool ean
Do all of the strings in the text array exist astop-level keys or array elements?

"["a", "b", "c"]'::jsonb ?& array['a', 'b'] >t

jsonb || jsonb - jsonb
Concatenatestwo j sonb values. Concatenating two arrays generates an array containing
all the elements of each input. Concatenating two objects generates an object containing the
union of their keys, taking the second object's value when there are duplicate keys. All oth-
er cases are treated by converting a non-array input into a single-element array, and then pro-
ceeding as for two arrays. Does not operate recursively: only the top-level array or object
structure is merged.

"["a", "b"]'::jsonb || '["a", "d"]'::jsonb - ["a", "b", "a",
"d"]

"{"a": "b"}'::jsonb || "{"c": "d"}'::jsonb - {"a": "b", "c":
"d"y

"1, 2]'::jsonb || '"3"::jsonb - [1, 2, 3]

"{"a": "b"}'::jsonb || "42'::jsonb - [{"a": "b"}, 42]

To append an array to another array as asingle entry, wrap it in an additional layer of array,
for example:

"[1, 2]'::jsonb || jsonb_build_array('[3, 4]'::jsonb) - [1, 2,
[3, 4]]

jsonb- text - jsonb
Deletes akey (and its value) from a JSON object, or matching string value(s) from a JSSON

array.
“{"a": "b", "c": "d"}'::jsonb - "a' - {"c": "d"}
) [n aII , n bll , n CII , n bll]) : : j Sonb -) bl N [n aII , n CII]

jsonb- text[] - jsonb
Deletes all matching keys or array elements from the left operand.

“{"a": "b", "c": "d"}'::jsonb - "{a,c}'::text[] - {}

jsonb- integer - jsonb
Deletes the array element with specified index (negative integers count from the end).
Throws an error if JSON valueis not an array.

"["a", "b"]"::jsonb - 1 -~ ["a"]

jsonb#- text[] - jsonb
Deletesthefield or array element at the specified path, where path elements can be either
field keys or array indexes.

"["a", {"b":1}]"::jsonb #- '{1,b}' - ["a", {}]

jsonb @ j sonpat h - bool ean
Does JSON path return any item for the specified JSON value?

334

Functions and Operators

Operator
Description
Example(s)

"{"a":[1,2,3,4,5]}' ::jsonb @ '$.a[*] ? (@> 2)' -t

j sonb @@j sonpat h - bool ean
Returns the result of a JSON path predicate check for the specified JSON value. Only the
first item of the result istaken into account. If the result is not Boolean, then NULL isre-
turned.

"{"a":[1,2,3,4,5]} ::jsonb @' $.a[*] > 2' -t

Note

Thej sonpat h operators @ and @@suppress the following errors: missing object field or array
element, unexpected JSON item type, datetime and numeric errors. Thej sonpat h-related func-
tions described below can also be told to suppress these types of errors. This behavior might be
helpful when searching JSON document collections of varying structure.

Table 9.46 shows the functions that are available for constructingj son and j sonb values.

Table 9.46. JSON Creation Functions

Function
Description
Example(s)

to_json (anyel ement) - json

to_jsonb (anyel enent) - j sonb
Convertsany SQL valuetoj son or j sonb. Arrays and composites are converted recursive-
ly to arrays and objects (multidimensional arrays become arrays of arraysin JSON). Other-
wise, if thereisacast from the SQL datatypetoj son, the cast function will be used to per-
form the conversion;? otherwise, a scalar JSON value is produced. For any scalar other than a
number, a Boolean, or anull value, the text representation will be used, with escaping as nec-
essary to make it avalid JSON string value.

to json('Fred said "H .""::text) - "Fred said \"Hi .\""
to_jsonb(rowm(42, 'Fred said "H ."'::text)) - {"f1": 42, "f2":
"Fred said \"H .\""}

array_to_json(anyarray [,boolean]) - json
Converts an SQL array to aJSON array. The behavior isthe sameast o_j son except that
line feeds will be added between top-level array elementsif the optional boolean parameter is
true.

array_to json('{{1,5},{99,100}}'::int[]) - [[1,5],[99, 100]]

row to _json(record[,boolean]) - json
Converts an SQL composite value to a JSON object. The behavior isthesameast 0_j son
except that line feeds will be added between top-level elementsiif the optional boolean para-
meter istrue.

row to_json(row(1l,'foo')) - {"f1":1,"f2":"foo"}

json_build _array (VAR ADI C"any") - j son

335

Functions and Operators

Function
Description
Example(s)
j sonb_buil d_array (VAR ADI C"any") - j sonb

Builds a possibly-heterogeneously-typed JSON array out of avariadic argument list. Each ar-
gument isconverted aspert o_j sonort o_j sonb.

json_build_array(1, 2, 'foo', 4, 5) -[1, 2, "foo", 4, 5]

json_buil d_object (VAR ADI C"any") - j son

jsonb_buil d_object (VARI ADI C"any") - j sonb
Builds a JSON object out of avariadic argument list. By convention, the argument list con-
sists of aternating keys and values. Key arguments are coerced to text; value arguments are
convertedaspert o_j sonorto_j sonb.
json_build_object('foo', 1, 2, rom3,"bar')) - {"foo" : 1,
II2II : {Ilflll:3,Ilf2":llbarll}}

j son_object (text[]) - json

j sonb_object (text[]) - jsonb
Builds a JSON object out of atext array. The array must have either exactly one dimension
with an even number of members, in which case they are taken as alternating key/value pairs,
or two dimensions such that each inner array has exactly two elements, which aretaken asa
key/value pair. All values are converted to JSON strings.

json_object('{a, 1, b, "def", ¢, 3.5}") - {"a" : "1", "b"
"def", "c" : "3.5"}

json_object('{{a, 1}, {b, "def"}, {c, 3.5}}') - {"a" : "1",
n bll : n def n , n CII : n 3. 5II }

j son_obj ect (keystext[],valuestext[]) - json

j sonb_obj ect (keystext[],valuestext[]) - jsonb
Thisform of j son_obj ect takes keys and values pairwise from separate text arrays. Oth-
erwiseit isidentical to the one-argument form.
json_object('{a,b}', "{21,2}') - {"a": "1", "b": "2"}

& For example, the hstore extension has a cast from hst or e to j son, so that hst or e values converted via the JSON creation
functions will be represented as JISON objects, not as primitive string values.

Table 9.47 shows the functions that are available for processingj son andj sonb values.

Table9.47. JSON Processing Functions

Function
Description
Example(s)

json_array_elenments (json) - setof json

jsonb_array_el enents (jsonb) - setof jsonb
Expands the top-level JSON array into a set of JSON values.

select * fromjson_array_elements('[1,true, [2,false]]’') -

336

Functions and Operators

Function
Description
Example(s)

true
[2, fal se]

json_array_el ements_text (json) - setof text

jsonb_array_ el enents_text (jsonb) - setof text
Expands the top-level JSON array into a set of t ext values.

select * fromjson_ array_elenments _text('["foo", "bar"]') -
val ue
foo
bar

json_array_|length(json) - integer
jsonb_array length(jsonb) - integer
Returns the number of elementsin the top-level JSON array.
json_array length('[21,2,3,{"f1":1,"f2":[5,6]},4]') -5

j son_each (json) - setof record (keytext,valuejson)

j sonb_each (jsonb) - setof record(keytext,valuejsonb)
Expands the top-level JSON object into a set of key/value pairs.

select * fromjson each('{"a":"foo", "b":"bar"}') -
key | val ue

a | "foo"
b | "bar"

j son_each_text (json) - setof record(keytext,valuetext)

jsonb_each_text (jsonb) - setof record(keytext,valuetext)
Expands the top-level JSON object into a set of key/value pairs. Thereturned val ueswill
be of typet ext .

select * fromjson_each text('{"a":"foo", "b":"bar"}') -

key | val ue

json_extract _path (fromjsonjson,VARI ADI Cpath_elenstext[]) - json

jsonb_extract_path (fromjsonjsonb, VAR ADlI Cpath_elenstext[]) - jsonb
Extracts JSON sub-object at the specified path. (Thisis functionally equivalent to the #> op-
erator, but writing the path out as a variadic list can be more convenient in some cases.)
json_extract_path('{"f2":{"f3":1},"f4":{"f5":99,"f6":"fo0"}}",
"f4', 'f6') - "foo"

337

Functions and Operators

Function
Description
Example(s)

json_extract path_text (fromjsonjson,VARI ADI Cpath_elenstext[]) -
t ext

jsonb_extract _path_text (fromjsonjsonb,VARI ADI Cpath_elenstext[]) -
t ext
Extracts JSON sub-object at the specified path ast ext . (Thisis functionally equivalent to
the #>> operator.)
json_extract_path_ text('{"f2":{"f3":1},"f4":
{"f5":99,"f6":"foo"}}', 'f4'", 'f6') - foo

j son_obj ect _keys (j son) - setof text

j sonb_obj ect keys (jsonb) - setof text
Returns the set of keysin the top-level JSON object.
select * fromjson_object keys('{"fl1l":"abc","f2":{"f3":"a",
Ilf4ll:llbll}}l) =

j son_obj ect _keys

j son_popul ate_record (base anyel enent ,from jsonjson) - anyel enent

j sonb_popul ate_record (base anyel enent ,from j sonjsonb) - anyel enent
Expands the top-level JSON object to arow having the composite type of the base argu-
ment. The JSON object is scanned for fields whose names match column names of the out-
put row type, and their values are inserted into those columns of the output. (Fields that do
not correspond to any output column name are ignored.) In typical use, the value of base is
just NULL, which means that any output columns that do not match any object field will be
filled with nulls. However, if base isn't NULL then the values it contains will be used for un-
matched columns.

To convert a JSON value to the SQL type of an output column, the following rules are ap-
plied in sequence:

* A JSON null valueis converted to an SQL null in all cases.

* If the output columnisof typej son or j sonb, the JSON valueisjust reproduced exact-
ly.

« If the output column is a composite (row) type, and the JSON valueis a JSON aobject, the
fields of the object are converted to columns of the output row type by recursive applica
tion of theserules.

» Likewise, if the output column is an array type and the JSON valueis a JSON array, the el-
ements of the JSON array are converted to elements of the output array by recursive appli-
cation of theserules.

» Otherwise, if the JSON valueis a string, the contents of the string are fed to the input con-
version function for the column's data type.

» Otherwise, the ordinary text representation of the JSON value is fed to the input conver-
sion function for the column's data type.

While the exampl e below uses a constant JSON value, typical use would be to reference a
j son or j sonb column laterally from another table in the query's FROMclause. Writing

338

Functions and Operators

Function
Description
Example(s)

j son_popul at e_r ecor d inthe FROMclause is good practice, since all of the extracted
columns are available for use without duplicate function calls.

create type subrowtype as (d int, e text); create type nyrow

type as (aint, b text[], ¢ subrowtype);

select * fromjson_ populate record(null::mrowype, '{"a": 1,

"b": ["2", "a b"], "c": {"d": 4, "e": "a b c"}, "x": "foo0"}")

1] {2,"ab"} | (4,"abc")

j son_popul ate_recordset (base anyel enent ,fromjsonjson) - set of
anyel erment

j sonb_popul at e_recordset (base anyel ement,fromjsonjsonb) - set of
anyel erment
Expands the top-level JSON array of objects to a set of rows having the composite type of
the base argument. Each element of the JSSON array is processed as described above for
j son[b] _popul ate_record.
create type twoints as (a int, b int);
select * fromjson_popul ate_recordset(null::twints,

"[{"a":1,"b":2}, {"a":3,"b":4}]") -

al| b
T .
1] 2
3] 4

json_to _record(json) - record

jsonb_to_record(jsonb) - record
Expands the top-level JISON object to arow having the composite type defined by an AS
clause. (Aswith all functionsreturning r ecor d, the calling query must explicitly define the
structure of the record with an AS clause.) The output record isfilled from fields of the JSON
object, in the same way as described above for j son[b] _popul at e_r ecor d. Since
thereis no input record value, unmatched columns are aways filled with nulls.
create type nyrowmype as (a int, b text);
select * fromjson_to record('{"a":1,"b":[1,2,3],"c":
[1,2,3],"e":"bar","r": {"a": 123, "b": "a b c¢"}}') as x(a int,
b text, cint[], dtext, r nmyrowtype) -

a | b | c | d | r

1] [1,2,3] | {1,2,3} | | (123,"a b c")

json_to_recordset (json) - setof record
jsonb_to_recordset (jsonb) - setof record

339

Functions and Operators

Function
Description
Example(s)

Expands the top-level JSON array of objects to a set of rows having the composite type de-
fined by an AS clause. (Aswith all functions returning r ecor d, the calling query must ex-
plicitly define the structure of the record with an AS clause.) Each element of the JSON array
is processed as described above for j son[b] _popul at e_r ecord.

select * fromjson to recordset('[{"a":1,"b":"fo0"},

{"a":"2","c":"bar"}]') as x(a int, b text) -

al|] b

e
1| foo
2 |

jsonb_set (target jsonb,pathtext[],new valuejsonb[,create_if_m ssing

bool ean]) - j sonb

Returnst ar get with the item designated by pat h replaced by new _val ue, or with

new val ue addedif creat e_i f _mi ssi ng istrue (which isthe default) and the item
designated by pat h does not exist. All earlier stepsin the path must exist, or thet ar get is
returned unchanged. As with the path oriented operators, negative integers that appear in the
pat h count from the end of JSON arrays. If the last path step is an array index that is out of
range, andcreate_i f_m ssi ng istrue, the new value is added at the beginning of the
array if theindex is negative, or at the end of the array if it is positive.
jsonb_set('[{"f1":1,"f2":null},2,null,3]", '{0O,f1}",

'12,3,4]', false) - [{"f1": [2, 3, 4], "f2": null}, 2, null, 3]
jsonb_set("[{"f1":2,"f2":null},2]", "{O,f3}', '[2,3,4]') -
[{"f1*: 1, "f2": null, "f3": [2, 3, 4]}, 2]

jsonb_set |ax (target jsonb,pathtext[],new val uejsonb][,cre-

ate if_nissingboolean[,null _val ue treatnment text]]) - jsonb

If new _val ue isnot NULL, behavesidentically toj sonb_set . Otherwise behaves ac-
cording tothevalueof nul | _val ue_treat ment which mustbeoneof ' rai se_ex-
ception',"use_json_null', delete key',or'return_target'.Thede
faultis' use_j son_null"'.

jsonb_set lax('[{"f1":2,"f2":null},2,null,3]", "{0,f1}', null)
S[{"f1":null,"f2":null}, 2, null, 3]

jsonb_set lax('[{"f1":99,"f2":null},2]', "{0O,f3}', null, true,
"return_target') - [{"f1": 99, "f2": null}, 2]

jsonb_insert (target jsonb,pathtext[],new valuejsonb[,insert_after

bool ean]) - j sonb

Returnst ar get withnew_val ue inserted. If the item designated by the pat h isan array
element, new_val ue will beinserted before that itemif i nsert _aft er isfalse (which
isthe default), or after itif i nsert _aft er istrue. If theitem designated by the pat h is
an object field, new_val ue will be inserted only if the object does not already contain that
key. All earlier stepsin the path must exist, or thet ar get isreturned unchanged. Aswith
the path oriented operators, negative integers that appear in the pat h count from the end of
JSON arrays. If the last path step is an array index that is out of range, the new value is added
at the beginning of the array if the index is negative, or at the end of the array if it is positive.

Functions and Operators

Function
Description
Example(s)
jsonb_insert('{"a": [0,1,2]}', '{a, 1}', '"new.value"') - {"a":
[0, "new value", 1, 2]}
jsonb_insert('{"a": [0,1,2]}', '{a, 1}', '"new_.value"', true)

~{"a": [0, 1, "new value", 2]}

json_strip_nulls(json) - json

jsonb_strip_nulls (jsonb) - jsonb
Deletes all object fields that have null values from the given JSON value, recursively. Null
values that are not object fields are untouched.
json_strip_nulls('[{"f1":1, "f2":null}, 2, null, 3]') -
[{"f1":1},2,null, 3]

j sonb_pat h_exists (target jsonb,pathjsonpath][,varsjsonb][,silent

bool ean]]) - bool ean

Checks whether the JSON path returns any item for the specified JSON value. If thevar s
argument is specified, it must be a JSON object, and its fields provide named valuesto be
substituted into thej sonpat h expression. If thesi | ent argument is specified and is

t r ue, the function suppresses the same errors as the @ and @@operators do.
jsonb_path_exists('{"a":[1,2,3,4,5]}', '$.a[*] ? (@>= $min &&

@<= $max)', '{"mn":2, "max":4}') -t

jsonb_path_match (target jsonb,pathjsonpath[,varsjsonb][,silent

bool ean]]) - bool ean

Returns the result of a JSON path predicate check for the specified JSON value. Only the
first item of the result istaken into account. If the result is not Boolean, then NULL isre-
turned. The optiona var s and si | ent arguments act the same asfor j sonb_pat h_ex-
i sts.

jsonb_path_match('{"a":[1,2,3,4,5]}', 'exists($.a[*] ? (@>=
$min && @<= $max))', "{"mn":2, "max":4}') -t

jsonb_path_query (target jsonb,pathjsonpath[,varsjsonb][,silent

bool ean]]) - setof jsonb

Returns all JSON items returned by the JSON path for the specified JSON value. The option-
al var s andsi | ent arguments act the sameasfor j sonb_pat h_exi st s.

select * fromjsonb _path _query('{"a":[1,2,3,4,5]}', "$.a[*] ?

(@>= $nmin & @<= $max)', '{"mn":2, "max":4}') -

j sonb_pat h_query

jsonb_path_query_array (target jsonb,pathjsonpath][,varsjsonb[,silent

bool ean]]) - j sonb

Returns all JSON items returned by the JSON path for the specified JSON value, as a JSON
array. The optional var s and si | ent arguments act the sameasforj sonb_pat h_ex-
i sts.

341

Functions and Operators

Function
Description
Example(s)
jsonb_path_query array('{"a":[1,2,3,4,5]}', '$.a[*] ? (@>=
$min & @<= $max)', '{"mn":2, "max":4}') -[2, 3, 4]

j sonb_path_query_first (target jsonb,pathjsonpath[,varsjsonb][,silent

bool ean]]) - j sonb

Returns the first JSON item returned by the JSON path for the specified JSON value. Returns
NULL if there are no results. The optional var s and si | ent arguments act the same as for
j sonb_pat h_exi sts.

jsonb_path_query first('{"a":[1,2,3,4,5]}', '$.a[*] ? (@>=
$min && @<= $max)', '{"mn":2, "max":4}') -2

jsonb_path_exists tz (target jsonb,pathjsonpath[,varsjsonb][,silent

bool ean]]) - bool ean
jsonb_path_match_tz (target jsonb,pathjsonpath[,varsjsonb[,silent

bool ean]]) - bool ean
jsonb_path_query_ tz (target jsonb,pathjsonpath[,varsjsonbl[,silent

bool ean]]) - setof jsonb
jsonb_path_query array tz (target jsonb,pathjsonpath][,varsjsonb],

sil ent bool ean]]) - j sonb
jsonb_path_query first tz (target jsonb,pathjsonpath][,varsjsonb],

sil ent bool ean]]) - j sonb

These functions act like their counterparts described above without the _t z suffix, except
that these functions support comparisons of date/time values that reguire timezone-aware
conversions. The example below requires interpretation of the date-only value 2015- 08- 02
as atimestamp with time zone, so the result depends on the current TimeZone setting. Dueto
this dependency, these functions are marked as stable, which means these functions cannot
be used in indexes. Their counterparts are immutable, and so can be used in indexes; but they
will throw errorsif asked to make such comparisons.

jsonb_path_exists tz('["2015-08-01 12:00:00 -05"]", "9$[*] ?
(@datetime() < "2015-08-02".datetinme())') -t

jsonb_pretty (jsonb) - text
Converts the given JSON value to pretty-printed, indented text.

jsonb_pretty('[{"f1":1,"f2":null}, 2]') -

B A A
"f2": null

N —

]

j son_typeof (json) - text
j sonb_typeof (jsonb) - text

342

Functions and Operators

Function
Description
Example(s)
Returns the type of the top-level JSON value as atext string. Possible types are obj ect ,
array,string,nunber, bool ean,andnul | . (Thenul | result should not be confused
with an SQL NULL; seethe examples.)

json_typeof ('-123.4") - nunber

json_typeof ("null'::json) - null
json_typeof (NULL::json) IS NULL -t

See also Section 9.21 for the aggregate functionj son_agg which aggregates record values as JSON, the
aggregate function j son_obj ect _agg which aggregates pairs of values into a JSON object, and their
j sonb equivalents,j sonb_agg andj sonb_obj ect _agg.

9.16.2. The SQL/JSON Path Language

SQL/JISON path expressions specify the items to be retrieved from the JSON data, similar to XPath ex-
pressions used for SQL accessto XML. In PostgreSQL, path expressions are implemented asthej son-
pat h datatype and can use any elements described in Section 8.14.7.

JSON query functions and operators pass the provided path expression to the path enginefor evaluation. If
the expression matches the queried JSON data, the corresponding JSON item, or set of items, is returned.
Path expressions are written in the SQL/JSON path language and can include arithmetic expressions and
functions.

A path expression consists of a sequence of elements allowed by the j sonpat h data type. The path
expression is normally evaluated from left to right, but you can use parentheses to change the order of
operations. If the evaluation is successful, a sequence of JSON itemsis produced, and the eval uation result
isreturned to the JSON query function that completes the specified computation.

To refer to the JSON value being queried (the context item), use the $ variable in the path expression.
It can be followed by one or more accessor operators, which go down the JSON structure level by level
to retrieve sub-items of the context item. Each operator that follows deals with the result of the previous
evaluation step.

For example, suppose you have some JSON data from a GPS tracker that you would like to parse, such as:

{
"track": {
"segnents": [
{
"l ocation": [47.763, 13.4034],
"start tinme": "2018-10-14 10:05: 14",
"HR': 73
b
{
"l ocation": [47.706, 13.2635],
"start tinme": "2018-10-14 10:39: 21",
"HR': 135
}
]
}
}

Functions and Operators

To retrieve the available track segments, you need to use the . key accessor operator to descend through
surrounding JSON objects:

$.track. segnent s

To retrieve the contents of an array, you typically usethe[*] operator. For example, the following path
will return the location coordinates for al the available track segments:

$.track. segnments[*].l ocation

To return the coordinates of the first segment only, you can specify the corresponding subscript in the|]
accessor operator. Recall that JSON array indexes are O-relative:

$.track. segnments[0] .l ocation

Theresult of each path eval uation step can be processed by oneor morej sonpat h operatorsand methods
listed in Section 9.16.2.2. Each method name must be preceded by a dot. For example, you can get the
size of an array:

$.track. segnents. si ze()

More examples of using j sonpat h operators and methods within path expressions appear below in
Section 9.16.2.2.

When defining a path, you can also use one or more filter expressions that work similarly to the WHERE
clausein SQL. A filter expression begins with a question mark and provides a condition in parentheses:

? (condition)

Filter expressions must be written just after the path eval uation step to which they should apply. The result
of that step is filtered to include only those items that satisfy the provided condition. SQL/JSON defines
three-valued logic, so the condition can bet r ue, f al se, or unknown. The unknown value plays the
samerole as SQL NULL and can be tested for withthei s unknown predicate. Further path evaluation
steps use only those items for which the filter expression returned t r ue.

The functions and operators that can be used in filter expressions are listed in Table 9.49. Within afilter
expression, the @variable denotes the value being filtered (i.e., one result of the preceding path step). Y ou
can write accessor operators after @to retrieve component items.

For example, suppose you would like to retrieve all heart rate values higher than 130. Y ou can achieve
this using the following expression:

$.track. segments[*].HR ? (@> 130)

To get the start times of segments with such values, you have to filter out irrelevant segments before
returning the start times, so the filter expression is applied to the previous step, and the path used in the
condition is different:

$.track. segments[*] ? (@HR > 130)."start tinme"

You can use several filter expressions in sequence, if required. For example, the following expression
selectsstart times of all segmentsthat contain locationswith relevant coordinatesand high heart rate values:

344

Functions and Operators

$.track. segnents[*] ? (@location[1l] < 13.4) ? (@HR > 130)."start
tinme"

Using filter expressions at different nesting levelsis also allowed. The following example first filters all
segments by location, and then returns high heart rate values for these segments, if available:

$.track.segnents[*] ? (@location[1l] < 13.4).HR ? (@> 130)

Y ou can also nest filter expressions within each other:

$.track ? (exists(@segments[*] ? (@HR > 130))).segnments. size()

This expression returns the size of the track if it contains any segments with high heart rate values, or an
empty sequence otherwise.

PostgreSQL 'simplementation of the SQL/JSON path language has the following deviationsfrom the SQL/
JSON standard:

* A path expression can be a Boolean predicate, although the SQL/JSON standard allows predicates only
in filters. Thisis necessary for implementation of the @@operator. For example, the following j son-
pat h expression isvalid in PostgreSQL :

$.track. segnents[*].HR < 70

» There are minor differences in the interpretation of regular expression patternsused in | i ke_r egex
filters, as described in Section 9.16.2.3.

9.16.2.1. Strict and Lax Modes

When you query JSON data, the path expression may not match the actual JSON data structure. An attempt
to access a non-existent member of an object or element of an array resultsin astructural error. SQL/JSON
path expressions have two modes of handling structural errors:

* lax (default) — the path engine implicitly adapts the queried data to the specified path. Any remaining
structural errors are suppressed and converted to empty SQL/JSON sequences.

e strict — if astructural error occurs, an error is raised.

Thelax modefacilitates matching of aJSON document structure and path expression if the JSON data does
not conform to the expected schema. If an operand does not match the requirements of a particular opera-
tion, it can be automatically wrapped as an SQL/JSON array or unwrapped by converting its el ementsinto
an SQL/JSON sequence before performing this operation. Besides, comparison operators automatically
unwrap their operands in the lax mode, so you can compare SQL/JSON arrays out-of-the-box. An array
of size 1 isconsidered equal to its sole element. Automatic unwrapping is not performed only when:

» The path expression containst ype() or si ze() methods that return the type and the number of
elementsin the array, respectively.

» Thequeried JSON data contain nested arrays. In this case, only the outermost array is unwrapped, while
al the inner arrays remain unchanged. Thus, implicit unwrapping can only go one level down within
each path evaluation step.

For example, when querying the GPS data listed above, you can abstract from the fact that it stores an
array of segments when using the lax mode:

Functions and Operators

lax $.track.segnments.|ocation

In the strict mode, the specified path must exactly match the structure of the queried JISON document to
return an SQL/JSON item, so using this path expression will cause an error. To get the same result asin
the lax mode, you have to explicitly unwrap thesegment s array:

strict $.track.segnents[*].location

The. ** accessor canlead to surprising resultswhen using the lax mode. For instance, the following query
selects every HR value twice:

lax $.**. HR

This happens becausethe . ** accessor selects both the segnent s array and each of its elements, while
the . HR accessor automatically unwraps arrays when using the lax mode. To avoid surprising results, we
recommend using the . ** accessor only in the strict mode. The following query selects each HR value
just once:

strict $.**. HR

9.16.2.2. SQL/JSON Path Operators and Methods

Table 9.48 shows the operators and methods availableinj sonpat h. Note that while the unary operators
and methods can be applied to multiple values resulting from a preceding path step, the binary operators
(addition etc.) can only be applied to single values.

Table9.48.] sonpat h Operatorsand Methods

Operator/Method
Description
Example(s)

nunber + nunber - numnber
Addition

jsonb_path_query('[2]', "$[0] + 3") -5

+ nunber - nunber
Unary plus (no operation); unlike addition, this can iterate over multiple values

jsonb_path_query_array('{"x": [2,3,4]}', "+ $.x') -[2, 3, 4]

nunber - nunber - nunber
Subtraction

jsonb_path _query('[2]', '7 - $[0]') -5

- nunber — nunber
Negation; unlike subtraction, this can iterate over multiple values
jsonb_path_query_array('{"x": [2,3,4]}', '- $.x') -[-2, -3,
-4]

nunber * nunber - nunber
Multiplication

jsonb_path _query('[4]', '2 * $[0]') - 8

346

Functions and Operators

Operator/Method
Description
Example(s)

nunber / nunber - nunber
Division
jsonb_path_query('[8.5]', "$[0] / 2') - 4.2500000000000000

nunber %nunber - nunber
Modulo (remainder)

jsonb_path_query('[32]', "$[0] % 10') - 2

val ue. type() - string
Type of the JSON item (seej son_t ypeof)
jsonb_path_query_array('[1, "2", {}]', "$[*].type()') - ["num
ber", "string", "object"]

val ue . size() - nunber
Size of the JSON item (number of array elements, or 1 if not an array)

jsonb_path_query('{"nf: [11, 15]}', '$.msize()') -2

val ue . doubl e() - nunber
Approximate floating-point number converted from a JSON number or string

jsonb_pat h_query('{"len": "1.9"}", "$.len.double() * 2') - 3.8

nunber . cei ling() - nunber
Nearest integer greater than or equal to the given number

jsonb_path_query('{"h": 1.3}', '"$.h.ceiling()') -2

nunber . floor() - nunber
Nearest integer less than or equal to the given number

jsonb_path_query('{"h": 1.7}', "$.h.floor()') -1

nunber . abs() - nunber
Absolute value of the given number

jsonb_pat h_query('{"z": -0.3}', "$.z.abs()') - 0.3

string. datetine() - dateti ne_type (seenote)
Date/time value converted from a string
j sonb_path_query('["2015-8-1", "2015-08-12"]1"', "'$[*] ?
(@datetime() < "2015-08-2".datetime())') - "2015-8-1"

string. datetine(tenplate) - datetine_type (seenote)
Date/time value converted from a string using the specifiedt o_t i nest anp template
jsonb_path _query array('["12:30", "18:40"]', '$[*].date-
tine("HHR4:M")") - ["12:30:00", "18:40:00"]

obj ect . keyval ue() - array
The object's key-value pairs, represented as an array of objects containing three fields:
"key","val ue",and"i d";"id" isauniqueidentifier of the object the key-value pair
belongsto

347

Functions and Operators

Operator/Method
Description
Example(s)
jsonb_path _query array('{"x": "20", "y": 32}', '$.keyvalue()")
S [{"id": 0, "key": "x", "value": "20"}, {"id": 0, "key": "y",
"val ue": 32}]

Note

The result type of the dat eti me() and dat eti me(tenpl at e) methods can be dat e,
tinmetz,tine, tinmestanptz,ortinmestanp. Both methods determine their result type dy-
namically.

Thedat et i me() method sequentially triesto match itsinput string to the SO formatsfor dat e,
tinmetz,time,timestanptz, andti mestanp. It stops on the first matching format and
emits the corresponding data type.

Thedat eti me(tenpl at e) method determines the result type according to the fields used in
the provided template string.

The dat eti me() and dat eti ne(tenpl at e) methods use the same parsing rules as the
to_ti mestanp SQL function does (see Section 9.8), with three exceptions. First, these meth-
ods don't allow unmatched template patterns. Second, only the following separators are allowed
in the template string: minus sign, period, solidus (slash), comma, apostrophe, semicolon, colon
and space. Third, separators in the template string must exactly match the input string.

If different date/time types need to be compared, an implicit cast is applied. A dat e value can
becasttoti mestanp orti mestanptz,ti mestanp canbecasttoti mestanptz, and
timetoti met z. However, al but thefirst of these conversions depend on the current TimeZone
setting, and thus can only be performed within timezone-awarej sonpat h functions.

Table 9.49 shows the available filter expression elements.

Table 9.49. j sonpat h Filter Expression Elements

Predicate/Value
Description
Example(s)

val ue ==val ue - bool ean
Equality comparison (this, and the other comparison operators, work on al JSON scalar val-

ues)

jsonb_pat h_query_array('[1, "a", 1, 3]', "$[*] ? (@==1)") -
[1, 1]

jsonb_path_query_array('[1, "a", 1, 3]', "$[*] ? (@== "a")")
S ["a"]

val ue! =val ue - bool ean

val ue <>val ue - bool ean
Non-equality comparison
jsonb_path _query array('[1, 2, 1, 3]', '$[*] ? (@!'=1)') -[2,
3]

Functions and Operators

Predicate/Value
Description
Example(s)

jsonb_path _query array('["a", "b", "c"]', "$[*] ? (@<> "b")")
S ["a", "c"]

val ue <val ue - bool ean
L ess-than comparison

jsonb_path _query array('[1, 2, 3]', '"$[*] ? (@< 2)') -[1]

val ue <=val ue - bool ean
L ess-than-or-equal-to comparison
jSOﬂb_pat h_query_array(l [nan’ "b", IICII]I , l$[*] f) (@<: nbn)u)
S ["a", "b"]

val ue >val ue - bool ean
Greater-than comparison

jsonb_path_query array('[1, 2, 3]', '"$[*] ? (@> 2)') - [3]

val ue >=val ue - bool ean
Greater-than-or-equal-to comparison

jsonb_path_query array('[1, 2, 3]', "$[*] ? (@>= 2)') -[2, 3]

true - bool ean
JSON constantt r ue

jsonb_path_query('[{"nane": "John", "parent": false}, {"name":
“Chris", "parent": true}]', "$[*] ? (@parent == true)') -
{"name": "Chris", "parent": true}

fal se - bool ean
JSON constant f al se

jsonb_path_query('[{"nane": "John", "parent": false}, {"nanme":
"Chris", "parent": true}]', "$[*] ? (@parent == false)') -
{"name": "John", "parent": false}

nul | - val ue
JSON constant nul | (note that, unlike in SQL, comparison to nul | works normally)
jsonb_path_query('[{"nane": "Mary", "job": null}, {"nane":
"M chael", "job": "driver"}]', "$[*] ? (@job == null) .nane')
- "Mary"

bool ean && bool ean - bool ean
Boolean AND

jsonb_path_query('[1, 3, 7]', "$[*] ? (@> 1 & @< 5)') - 3

bool ean || bool ean - bool ean
Boolean OR

jsonb_path_query('[1, 3, 7]', "$[*] ? (@< 1 || @>5)') -7

I bool ean - bool ean
Boolean NOT

jsonb_path query('[1, 3, 7]', "$[*] ? (1 (@< 5))') -7

349

Functions and Operators

Predicate/Value
Description
Example(s)

bool eani s unknown - bool ean
Tests whether a Boolean condition isunknown.
jsonb_path_query('[-1, 2, 7, "foo"]', "$[*] ? ((@> 0) is un-
known)') - "foo"

stringlike_regexstring[flagstring] - bool ean
Tests whether the first operand matches the regular expression given by the second
operand, optionally with modifications described by a string of f | ag characters (see Sec-
tion 9.16.2.3).
jsonb_path_query_array('["abc", "abd", "aBdC', "abdacb",
"babc"]', "$[*] ? (@!like_regex ""ab.*c")') - ["abc", "abdacbh"]
jsonb_path_query_ array('["abc", "abd", "aBdC', "abdach",
"babc"]', "$[*] ? (@!like_regex ""ab.*c" flag "i")') - ["abc",
"aBdC', "abdacb"]

stringstarts withstring - bool ean
Tests whether the second operand is an initial substring of the first operand.
jsonb_path_query('["John Snith", "Mary Stone", "Bob John-

son"]', '$[*] ? (@starts with "John")') - "John Smith"

exi sts (pat h_expression) - bool ean
Tests whether a path expression matches at least one SQL/JSON item. Returns unknown if
the path expression would result in an error; the second example uses this to avoid a no-such-
key error in strict mode.
jsonb_path_query('{"x": [1, 2], "y": [2, 4]}', 'strict $.* 2
(exists (@2 (@*] > 2)))") -[2, 4]
jsonb_path_query array('{"value": 41}', 'strict $? (exists
(@nane)) .nanme') - []

9.16.2.3. SQL/JSON Regular Expressions

SQL/JSON path expressions allow matching text to a regular expression with the |l i ke_r egex filter.
For example, the following SQL/JSON path query would case-insensitively match all stringsin an array
that start with an English vowel:

$[*] ? (@like_regex "~[aeiou]l" flag "i")

The optional f | ag string may include one or more of the charactersi for case-insensitive match, mto
allow ® and $ to match at newlines, s to allow . to match a newline, and g to quote the whole pattern
(reducing the behavior to a simple substring match).

The SQL/JSON standard borrows its definition for regular expressions from the L1 KE_REGEX operator,
which in turn uses the XQuery standard. PostgreSQL does not currently support the LI KE_REGEX op-
erator. Therefore, the | i ke_r egex filter is implemented using the POSIX regular expression engine
described in Section 9.7.3. This leads to various minor discrepancies from standard SQL/JSON behavior,
which are cataloged in Section 9.7.3.8. Note, however, that the flag-letter incompatibilities described there
do not apply to SQL/JSON, asit trand atesthe X Query flag | ettersto match what the POSI X engine expects.

350

Functions and Operators

Keep in mind that the pattern argument of | i ke_r egex isaJSON path string literal, written according
to the rules given in Section 8.14.7. This means in particular that any backslashes you want to use in the
regular expression must be doubled. For example, to match string values of the root document that contain
only digits:

$.* ?2 (@like_regex "M\d+$")

9.17. Sequence Manipulation Functions

This section describes functions for operating on sequence objects, also called sequence generators or just
seguences. Sequence objects are specia single-row tables created with CREATE SEQUENCE. Sequence
objects are commonly used to generate unique identifiers for rows of a table. The sequence functions,
listed in Table 9.50, provide simple, multiuser-safe methodsfor obtaining successive sequence valuesfrom
seguence objects.

Table 9.50. Sequence Functions

Function
Description

next val (regcl ass) — bi gint
Advances the sequence object to its next value and returns that value. Thisis done atomical-
ly: even if multiple sessions execute next val concurrently, each will safely receive adis-
tinct sequence value. If the sequence object has been created with default parameters, succes-
sive next val callswill return successive values beginning with 1. Other behaviors can be
obtained by using appropriate parameters in the CREATE SEQUENCE command.
This function requires USAGE or UPDATE privilege on the sequence.

setval (regcl ass, bi gi nt [,bool ean]) - bi gi nt
Sets the sequence object's current value, and optionally itsi s_cal | ed flag. The two-
parameter form sets the sequence's| ast _val ue field to the specified value and setsits
i s_call edfieldtot r ue, meaning that the next next val will advance the sequence
before returning a value. The value that will be reported by cur r val isalso set to the
specified value. In the three-parameter form, i s_cal | ed can be set to either t r ue or
f al se.tr ue hasthe same effect as the two-parameter form. If itisset tof al se, the next
next val will return exactly the specified value, and sequence advancement commences
with the following next val . Furthermore, the value reported by cur r val isnot changed
in this case. For example,

SELECT setval (' nyseq', 42); Next nextval will return
43

SELECT setval (' nyseq', 42, true); Sane as above

SELECT setval (' nyseq', 42, false); Next nextval will return
42

Theresult returned by set val isjust the value of its second argument.
This function requires UPDATE privilege on the sequence.

currval (regclass) - bigint
Returns the value most recently obtained by next val for this sequence in the current ses-
sion. (An error isreported if next val has never been called for this sequence in this ses-
sion.) Because thisisreturning a session-local value, it gives a predictable answer whether or
not other sessions have executed next val since the current session did.

351

Functions and Operators

Function
Description

This function requires USAGE or SELECT privilege on the sequence.

| astval () - bigint
Returns the value most recently returned by next val in the current session. This function
isidentical to cur r val , except that instead of taking the sequence name as an argument it
refers to whichever sequence next val was most recently applied to in the current session.
Itisanerrortocal | ast val if next val hasnot yet been called in the current session.
This function requires USAGE or SELECT privilege on the last used sequence.

Caution

To avoid blocking concurrent transactions that obtain numbers from the same sequence, the val-
ue obtained by next val isnot reclaimed for re-use if the calling transaction later aborts. This
means that transaction aborts or database crashes can result in gaps in the sequence of assigned
values. That can happen without a transaction abort, too. For example an | NSERT with an ON
CONFLI CT clause will compute the to-be-inserted tuple, including doing any required next val
calls, before detecting any conflict that would cause it to follow the ON CONFLI CT rule instead.
Thus, PostgreSQL sequence objects cannot be used to obtain “ gapless’ sequences.

Likewise, sequence state changes made by set val areimmediately visible to other transactions,
and are not undone if the calling transaction rolls back.

If the database cluster crashes before committing atransaction containing anext val orset val
call, the sequence state change might not have made its way to persistent storage, so that it is
uncertain whether the sequence will have its original or updated state after the cluster restarts.
Thisis harmlessfor usage of the sequence within the database, since other effects of uncommitted
transactions will not be visible either. However, if you wish to use a sequence value for persistent
outside-the-database purposes, make surethat thenext val call has been committed before doing
So.

The sequence to be operated on by a sequence function is specified by ar egcl ass argument, which
is simply the OID of the sequence in the pg_cl ass system catalog. You do not have to look up the
OID by hand, however, since ther egcl ass data type's input converter will do the work for you. See
Section 8.19 for details.

9.18. Conditional Expressions

This section describes the SQL-compliant conditional expressions available in PostgreSQL.

Tip

If your needs go beyond the capabilities of these conditional expressions, you might want to con-
sider writing a server-side function in amore expressive programming language.

352

Functions and Operators

Note

Although COALESCE, GREATEST, and LEAST are syntactically similar to functions, they are not
ordinary functions, and thus cannot be used with explicit VARI ADI C array arguments.

9.18.1. CASE

The SQL CASE expression is a generic conditional expression, similar to if/else statements in other pro-
gramming languages:

CASE WHEN condition THEN result
[WHEN . ..]
[ELSE resul t]

END

CASE clauses can be used wherever an expressionisvalid. Eachcondi t i on isan expression that returns
abool ean result. If the condition's result is true, the value of the CASE expression isther esul t that
follows the condition, and the remainder of the CASE expression is not processed. If the condition'sresult
is not true, any subsequent WHEN clauses are examined in the same manner. If no WHEN condi ti on
yields true, the value of the CASE expression isther esul t of the ELSE clause. If the ELSE clause is
omitted and no condition istrue, the result is null.

An example:

SELECT * FROM test;

a
1
2
3
SELECT a,
CASE WHEN a=1 THEN ' one
WHEN a=2 THEN ' two'
ELSE ' ot her'
END
FROM t est
a | case
e,
1| one
2] two
3 | other

Thedatatypesof all ther esul t expressions must be convertibleto asingle output type. See Section 10.5
for more details.

Thereisa“simple’ form of CASE expression that is a variant of the general form above:

353

Functions and Operators

CASE expression
VWHEN val ue THEN result
[WHEN . . .]
[ELSE result]

END

The first expr essi on is computed, then compared to each of the val ue expressions in the WHEN
clauses until oneisfound that is equal to it. If no match isfound, ther esul t of the ELSE clause (or a
null value) isreturned. Thisis similar to theswi t ch statement in C.

The example above can be written using the simple CASE syntax:
SELECT a,
CASE a WHEN 1 THEN ' one'

WHEN 2 THEN 't wo'
ELSE ' ot her'

A CASE expression does not evaluate any subexpressions that are not needed to determine the result. For
example, thisis a possible way of avoiding a division-by-zero failure:

SELECT ... WHERE CASE WHEN x <> 0 THEN y/x > 1.5 ELSE fal se END,

Note

As described in Section 4.2.14, there are various situations in which subexpressions of an expres-
sion are evaluated at different times, so that the principle that “ CASE evaluates only necessary
subexpressions’ is not ironclad. For example a constant 1/ O subexpression will usually result in
a division-by-zero failure at planning time, even if it's within a CASE arm that would never be
entered at run time.

9.18.2. COALESCE

COALESCE(value [, ...])
The COALESCE function returns the first of its arguments that is not null. Null is returned only if al

arguments are null. It is often used to substitute a default value for null values when data is retrieved for
display, for example:

SELECT COALESCE(description, short_description, '(none)')

354

Functions and Operators

Thisreturnsdescri pti onifitisnot null, otherwiseshort descri pti onifitisnot null, otherwise
(none).

The arguments must all be convertible to a common data type, which will be the type of the result (see
Section 10.5 for details).

Like a CASE expression, COALESCE only evaluatesthe argumentsthat are needed to determine the result;
that is, argumentsto the right of the first non-null argument are not evaluated. This SQL-standard function
provides capabilities similar to NVL and | FNULL, which are used in some other database systems.

9.18.3. NULLI F

NULLI F(val uel, val ue2)

TheNULLI Ffunctionreturnsanull valueif val uel equalsval ue?2; otherwiseit returnsval uel. This
can be used to perform the inverse operation of the COAL ESCE exampl e given above:

SELECT NULLI F(val ue, '(none)')
In thisexample, if val ue is(none), null isreturned, otherwise the value of val ue isreturned.

The two arguments must be of comparable types. To be specific, they are compared exactly as if you had
writtenval uel = val ue2, so there must be a suitable = operator available.

The result has the same type as the first argument — but there is a subtlety. What is actually returned is
the first argument of the implied = operator, and in some cases that will have been promoted to match
the second argument's type. For example, NULLI F(1, 2. 2) yields nuneri c, because there is no
i nt eger =numeri c operator, only nuneri ¢ =nuneri c.

9.18.4. GREATEST and LEAST

9.19.

GREATEST(value [, ...])

LEAST(value [, ...])

The GREATEST and LEAST functions select the largest or smallest value from alist of any number of
expressions. The expressions must all be convertible to acommon data type, which will be the type of the
result (see Section 10.5 for details). NULL values in the list are ignored. The result will be NULL only
if al the expressions evaluate to NULL.

Note that GREATEST and LEAST are not in the SQL standard, but are acommon extension. Some other
databases make them return NULL if any argument is NULL, rather than only when all are NULL.

Array Functions and Operators

Table 9.51 shows the specialized operators available for array types. In addition to those, the usual com-
parison operators shown in Table 9.1 are available for arrays. The comparison operators compare the ar-
ray contents element-by-element, using the default B-tree comparison function for the element data type,
and sort based on the first difference. In multidimensional arrays the elements are visited in row-major
order (last subscript varies most rapidly). If the contents of two arrays are equal but the dimensionality is
different, the first difference in the dimensionality information determines the sort order.

355

Functions and Operators

Table9.51. Array Operators

Operator
Description
Example(s)

anyarray @ anyarray — bool ean
Doesthefirst array contain the second, that is, does each element appearing in the second
array equal some element of the first array? (Duplicates are not treated specially, thus AR-
RAY[1] and ARRAY[1, 1] are each considered to contain the other.)

ARRAY[1, 4,3] @ ARRAY[3,1,3] -t

anyarray <@anyarray - bool ean
Isthefirst array contained by the second?

ARRAY[2,2,7] <@ARRAY[1,7,4,2,6] -t

anyarray & anyarray - bool ean
Do the arrays overlap, that is, have any elementsin common?

ARRAY[1, 4, 3] && ARRAY[2, 1] -t

anyconpati bl earray || anyconpati bl earray - anyconpati bl earray
Concatenates the two arrays. Concatenating a null or empty array is ano-op; otherwise the
arrays must have the same number of dimensions (asillustrated by the first example) or differ
in number of dimensions by one (asillustrated by the second). If the arrays are not of identi-
cal element types, they will be coerced to a common type (see Section 10.5).

ARRAY[1,2,3] || ARRAY[4,5,6,7] -{1,2, 3,4,5,6,7}

ARRAY[1,2,3] || ARRAY[[4,5,6],[7,8,9.9]1] - {{1,2 3},{4,5,6},
{7,8,9.9}}

anyconpati bl e || anyconpati bl earray - anyconpati bl earray
Concatenates an element onto the front of an array (which must be empty or one-dimension-
a).
3 || ARRAY[4,5,6] - {3,4,5,6}

anyconpati bl earray || anyconpati bl e - anyconpati bl earr ay
Concatenates an element onto the end of an array (which must be empty or one-dimensional).

ARRAY[4,5,6] || 7 -{4,5,6,7}

See Section 8.15 for more details about array operator behavior. See Section 11.2 for more details about
which operators support indexed operations.

Table 9.52 shows the functions available for use with array types. See Section 8.15 for more information
and exampl es of the use of these functions.

Table9.52. Array Functions

Function
Description
Example(s)

array_append (anyconpati bl earray,anyconpati bl e) - anyconpati bl earray
Appends an element to the end of an array (same astheanyconpati bl earray | | any-
conpat i bl e operator).

array_append(ARRAY[1, 2], 3) -{1,2,3}

356

Functions and Operators

Function
Description
Example(s)

array_cat (anyconpati bl earray, anyconpati bl earray) - anyconpati bl ear -
ray
Concatenates two arrays (same astheanyconpat i bl earray | | anyconpati bl ear -
ray operator).
array_cat (ARRAY[1, 2,3], ARRAY[4,5]) -{1,2,3,4,5}

array_di ns (anyarray) — text
Returns a text representation of the array's dimensions.

array_di m(ARRAY[[1,2,3], [4,5,6]]) —[1:2][1:3]

array_fill (anyel enent,integer[] [,integer[]]) - anyarray
Returns an array filled with copies of the given value, having dimensions of the lengths spec-
ified by the second argument. The optional third argument supplies lower-bound values for
each dimension (which default to all 1).
array_fill (11, ARRAY[2,3]) - {{11,11,11},6{11,11,11}}

array _fill(7, ARRAY[3], ARRAY[2]) - [2:4]={7,7, 7}

array_| ength (anyarray,i nteger) - i nteger
Returns the length of the requested array dimension.
array_length(array[1,2,3], 1) -3

array_| ower (anyarray,integer) - i nteger
Returns the lower bound of the requested array dimension.

array lower('[0:2]={1,2,3}'::integer[], 1) -0

array_ndi ns (anyarray) - i nt eger
Returns the number of dimensions of the array.

array_ndi ns(ARRAY[[1,2,3], [4,5,6]]) - 2

array_position (anyconpati bl earray,anyconpati bl e[,integer]) - i nteger
Returns the subscript of the first occurrence of the second argument in the array, or NULL if
it's not present. If the third argument is given, the search begins at that subscript. The array
must be one-dimensional. Comparisonsare doneusing| S NOT DI STI NCT FROMseman-
tics, so it is possible to search for NULL.
array_position(ARRAY['sun', 'nmon', 'tue', 'wed', 'thu', 'fri',
"sat'], 'nmon') - 2

array_positions (anyconpati bl earray,anyconpati ble) - i nteger|[]
Returns an array of the subscripts of all occurrences of the second argument in the array giv-
en asfirst argument. The array must be one-dimensional. Comparisons aredone using | S
NOT DI STI NCT FROMsemantics, so it ispossible to search for NULL. NULL isreturned
only if the array isNULL; if the valueis not found in the array, an empty array is returned.

array_positions(ARRAY['A ,'A "B ,'A], 'A) - {1,2, 4}

array_prepend (anyconpati bl e,anyconpati bl earray) - anyconpati bl earray
Prepends an element to the beginning of an array (same astheanyconpati bl e | | any-
conpati bl ear r ay operator).

array_prepend(1l, ARRAY[2,3]) - {1,2,3}

357

Functions and Operators

Function
Description
Example(s)

array_renove (anyconpati bl earray,anyconpati bl e) - anyconpati bl earray
Removes all elements equal to the given value from the array. The array must be one-dimen-
sional. Comparisonsaredoneusingl S NOT DI STI NCT FROMsemantics, soit ispossible
toremove NULLs.

array_remove(ARRAY[1, 2,3,2], 2) - {1, 3}

array_repl ace (anyconpati bl earray, anyconpati bl e,anyconpati bl e) - any-
conpati bl earray
Replaces each array element equal to the second argument with the third argument.

array_replace(ARRAY[1, 2,5,4], 5, 3) -{1,2,3,4}

array_to_string(array anyarray,delimter text [,null_stringtext]) -
t ext
Converts each array element to itstext representation, and concatenates those separated by
thedel i mi ter string. If nul | _stri ngisgivenandisnot NULL, then NULL array en-
tries are represented by that string; otherwise, they are omitted.

array_to_string(ARRAY[1, 2, 3, NULL, 5], ',', '*') -1,2,3,*5

array_upper (anyarray,integer) - i nteger
Returns the upper bound of the requested array dimension.
array_upper (ARRAY[1,8,3,7], 1) - 4

cardinality (anyarray) - i nteger
Returns the total number of elementsin the array, or O if the array is empty.

cardinality(ARRAY[[1,2],[3,4]]) - 4

trimarray (array anyarray,ninteger) — anyarray
Trims an array by removing the last n elements. If the array is multidimensional, only the
first dimension is trimmed.

trimarray(ARRAY[1, 2,3,4,5,6], 2) -{1,2,3,4}

unnest (anyarray) - setof anyel enent
Expands an array into a set of rows. The array's elements are read out in storage order.

unnest (ARRAY[1, 2]) -

1
2

unnest (ARRAY[['foo', " bar'],['baz', ' quux']]) -

foo
bar
baz
quux

unnest (anyarray,anyarray|,..]) - setof anyel enment, anyel enent

[, ...]

358

Functions and Operators

Function
Description
Example(s)

Expands multiple arrays (possibly of different datatypes) into aset of rows. If the arrays are
not all the same length then the shorter ones are padded with NULLs. Thisformisonly a-
lowed in aquery's FROM clause; see Section 7.2.1.4.

sel ect * from unnest (ARRAY[1, 2], ARRAY['fo0','bar','baz']) as

x(a, b) -
al|] b
e
1| foo
2 | bar

| baz

Note

There are two differencesin the behavior of st ri ng_t o_ar r ay from pre-9.1 versions of Post-
greSQL . First, it will return an empty (zero-element) array rather than NULL when the input string
isof zerolength. Second, if the delimiter string isNULL, the function splitstheinput into individual
characters, rather than returning NULL as before.

See also Section 9.21 about the aggregate function ar r ay _agg for use with arrays.

9.20. Range/Multirange Functions and Opera-

tors

See Section 8.17 for an overview of range types.

Table 9.53 shows the specialized operators available for range types. Table 9.54 shows the specialized
operators available for multirange types. In addition to those, the usual comparison operators shown in
Table 9.1 are available for range and multirange types. The comparison operators order first by the range
lower bounds, and only if those are equal do they compare the upper bounds. The multirange operators
compare each range until oneis unequal. This does not usually result in a useful overall ordering, but the
operators are provided to allow unique indexes to be constructed on ranges.

Table 9.53. Range Operators

Operator
Description
Example(s)

anyrange @ anyrange — bool ean
Does the first range contain the second?

i nt4range(2,4) @ int4range(2,3) -t

anyrange @ anyel enent - bool ean
Does the range contain the element?

359

Functions and Operators

Operator
Description
Example(s)

'[2011-01-01, 2011-03-01)"'::tsrange @ '2011-01-10"::tinestanp
e t

anyr ange <@anyr ange - bool ean
Isthe first range contained by the second?

i nt4range(2,4) <@int4range(1,7) -t

anyel ement <@anyr ange - bool ean
Is the element contained in the range?

42 <@intd4range(1,7) - f

anyr ange & anyrange — bool ean
Do the ranges overlap, that is, have any el ementsin common?

i nt8range(3,7) && int8range(4,12) -t

anyr ange << anyr ange - bool ean
Isthefirst range strictly left of the second?

i nt8range(1, 10) << int8range(100,110) -t

anyr ange >>anyr ange - bool ean
Isthe first range strictly right of the second?

i nt 8range(50, 60) >> int8range(20,30) -t

anyr ange & anyrange — bool ean
Does the first range not extend to the right of the second?

i nt 8range(1, 20) &< int8range(18,20) -t

anyr ange &> anyr ange - bool ean
Does the first range not extend to the left of the second?

i nt 8range(7,20) &> int8range(5,10) -t

anyrange - | - anyrange - bool ean
Are the ranges adjacent?
nunrange(1.1,2.2) -|- nunrange(2.2,3.3) -t

anyr ange +anyr ange - anyr ange
Computes the union of the ranges. The ranges must overlap or be adjacent, so that the union
isasingle range (but seer ange_ner ge()).
nunr ange(5, 15) + nunrange(10, 20) - [5, 20)

anyrange * anyrange — anyrange
Computes the intersection of the ranges.
i nt 8range(5, 15) * int8range(10,20) - [10,15)

anyrange - anyrange - anyrange
Computes the difference of the ranges. The second range must not be contained in thefirst in
such away that the difference would not be a single range.

i nt 8range(5, 15) - int8range(10,20) - [5, 10)

360

Functions and Operators

Table 9.54. Multirange Operators

Operator
Description
Example(s)

anymul tirange @ anymul tirange - bool ean
Does the first multirange contain the second?

"{[2,4)}" ::intdmultirange @ '{[2,3)} ::intd4nultirange -t

anynul ti range @ anyr ange - bool ean
Does the multirange contain the range?

"{[2,4)}" ::intd4nul tirange @ intd4range(2,3) -t

anynul ti range @ anyel enent - bool ean
Does the multirange contain the element?
"{[2011-01-01, 2011-03-01)}'::tsmultirange @

'2011-01-10"::tinmestanmp -t

anyrange @ anynul ti range — bool ean
Does the range contain the multirange?

"[2,4)" ::intd4range @ '{[2,3)} ::intd4multirange -t

anymul tirange <@anymul ti range - bool ean
Isthe first multirange contained by the second?

"{[2,4)} ::intdmultirange <@' {[1,7)} ::intd4nmultirange -t

anymul tirange <@anyr ange - bool ean
I's the multirange contained by the range?

"{[2,4)} ::intd4mul tirange <@int4range(1,7) -t

anyrange <@anymul ti range - bool ean
I's the range contained by the multirange?

int4range(2,4) <@'{[1,7)} ::intd4multirange -t

anyel enent <@anymnul ti range - bool ean
Is the element contained by the multirange?

42 <@'{[1,7)} ' ::intdmultirange -t

anymul tirange & anymul ti range - bool ean
Do the multiranges overlap, that is, have any elementsin common?

"{[3,7)} ::int8multirange &% '{[4,12)} ' ::int8multirange -t

anymul ti range & anyrange — bool ean
Does the multirange overlap the range?

"{[3,7)} ::int8nultirange && int8range(4,12) -t

anyr ange & anymul ti range - bool ean
Does the range overlap the multirange?

int8range(3,7) && '{[4,12)}'::int8nultirange -t

anynul tirange <<anynul ti range - bool ean
Isthe first multirange strictly left of the second?

361

Functions and Operators

Operator
Description
Example(s)

"{[1,10)}'::int8multirange << '{[100,110)}"'::int8nultirange -t

anymul ti range << anyrange - bool ean
Isthe multirange strictly left of the range?

"{[1,10)}'::int8multirange << int8range(100,110) -t

anyrange <<anynul ti range - bool ean
Isthe range strictly left of the multirange?

i nt8range(1, 10) << '{[100,110)}'::int8multirange -t

anymul ti range >>anymul ti range - bool ean
Isthe first multirange strictly right of the second?

"{[50,60)}" ::int8multirange >> '{[20,30)}'::int8multirange -t

anymul ti range >>anyrange — bool ean
Isthe multirange strictly right of the range?

"{[50,60)}"::int8nultirange >> int8range(20,30) -t

anyrange >>anynul ti range - bool ean
Isthe range strictly right of the multirange?

i nt 8range(50,60) >> '{[20,30)}'::int8multirange -t

anynul tirange & anynul ti range - bool ean
Does the first multirange not extend to the right of the second?

"{[1,20)}' ::int8multirange & '{[18,20)}'::int8nultirange -t

anymul ti range & anyrange - bool ean
Does the multirange not extend to the right of the range?

"{[1,20)}'::int8multirange &< int8range(18,20) -t

anyrange & anynul ti range - bool ean
Does the range not extend to the right of the multirange?

i nt8range(1,20) & '{[18,20)}'::int8nultirange -t

anynul tirange & anynul tirange - bool ean
Does the first multirange not extend to the left of the second?

"{[7,20)}' ::int8multirange & '{[5,10)}' ::int8multirange -t

anymul ti range & anyrange — bool ean
Does the multirange not extend to the left of the range?

"{[7,20)}'::int8multirange & int8range(5,10) -t

anyrange & anynul ti range - bool ean
Does the range not extend to the left of the multirange?

i nt8range(7,20) & '{[5,10)}'::int8multirange -t

anymul tirange-| - anynul tirange — bool ean
Are the multiranges adjacent?

362

Functions and Operators

Operator
Description
Example(s)
"{[1.1,2.2)}' ::nunmul tirange -|- '"{[2.2,3.3)}'::numul tirange
>t
anynul tirange-| - anyrange - bool ean
I's the multirange adjacent to the range?
"{[1.1,2.2)}' ::nummul tirange -|- nunrange(2.2,3.3) -t
anyrange -| - anynul ti range - bool ean
Is the range adjacent to the multirange?
nunrange(1.1,2.2) -|- '{[2.2,3.3)} ::nunmul tirange -t

anynul tirange +anynul tirange - anymul tirange
Computes the union of the multiranges. The multiranges need not overlap or be adjacent.
"{[5,10)}' ::numul tirange + '{[15,20)}"'::nunmultirange -
{[5 10), [15,20)}

anynul tirange* anynul tirange - anymul tirange
Computes the intersection of the multiranges.
"{[5,15)}'::int8multirange * '{[10,20)}'::int8nultirange -
{[10,15)}

anymul tirange - anymul tirange - anynul tirange
Computes the difference of the multiranges.
"{[5,20)}"::int8multirange - '{[10,15)}'::int8nultirange -
{[5,10), [15,20)}

The left-of/right-of /adjacent operators always return fal se when an empty range or multirange isinvolved;
that is, an empty rangeis not considered to be either before or after any other range.

Elsewhere empty ranges and multiranges are treated as the additive identity: anything unioned with an
empty valueisitself. Anything minus an empty valueisitself. An empty multirange has exactly the same
points asan empty range. Every range containsthe empty range. Every multirange contains as many empty
ranges asyou like.

The range union and difference operatorswill fail if the resulting range would need to contain two disjoint
sub-ranges, as such a range cannot be represented. There are separate operators for union and difference
that take multirange parameters and return a multirange, and they do not fail even if their arguments are
digoint. So if you need a union or difference operation for ranges that may be digoint, you can avoid
errors by first casting your ranges to multiranges.

Table 9.55 showsthe functions avail ablefor use with range types. Table 9.56 showsthefunctionsavailable
for use with multirange types.

Table 9.55. Range Functions

Function
Description
Example(s)

| ower (anyrange) - anyel enent

363

Functions and Operators

Function

Description
Example(s)

Extracts the lower bound of the range (NULL if the range is empty or the lower bound isinfi-
nite).
[ower (nunrange(1.1,2.2)) - 1.1

upper

(anyrange) - anyel enent

Extracts the upper bound of the range (NULL if the range is empty or the upper bound isinfi-
nite).

upper (nunrange(1.1,2.2)) - 2.2

i senpty (anyrange) - bool ean

Is the range empty?
i sempty(nunrange(1.1,2.2)) - f

| ower i nc (anyrange) - bool ean

Isthe range's lower bound inclusive?

| ower _i nc(nunrange(1.1,2.2)) -t
upper _i nc (anyrange) - bool ean

Is the range's upper bound inclusive?
upper _inc(nunrange(1.1,2.2)) - f

| ower _i nf (anyrange) - bool ean
Isthe range's lower bound infinite?
lower _inf('(,)'::daterange) -t
upper _i nf (anyrange) - bool ean

Is the range's upper bound infinite?
upper_inf('(,)'::daterange) -t

range_mer ge (anyr ange, anyr ange) — anyr ange

Computes the smallest range that includes both of the given ranges.
range_nerge('[1,2)'::int4range, '[3,4)'::int4range) - [1,4)

Table 9.56. Multirange Functions

Function

Description
Example(s)

| oner

(anymul tirange) — anyel enent
Extracts the lower bound of the multirange (NULL if the multirange is empty or the lower
bound isinfinite).

lower('{[1.1,2.2)}' ::nunmul tirange) - 1.1

upper

(anymul tirange) — anyel enent
Extracts the upper bound of the multirange (NULL if the multirange is empty or the upper
bound isinfinite).

upper (' {[21.1,2.2)}' ::nunmul tirange) - 2.2

i senpty (anynul tirange) - bool ean

364

Functions and Operators

9.21.

Function
Description
Example(s)
I's the multirange empty?
isenpty('{[1.1,2.2)} ::nummultirange) - f

| ower _inc (anynul tirange) - bool ean
Is the multirange's lower bound inclusive?

lower inc('{[1.1,2.2)} ::numultirange) -t

upper _i nc (anynul ti range) - bool ean
Is the multirange's upper bound inclusive?

upper _inc('{[1.1,2.2)}" ::numul tirange) - f

| ower _i nf (anynul tirange) - bool ean
Is the multirange's lower bound infinite?

lower _inf('{(,)} ::datenultirange) -t

upper _i nf (anynul tirange) - bool ean
Is the multirange's upper bound infinite?

upper _inf('{(,)} ::datenultirange) -t

range_nerge (anymul tirange) - anyrange
Computes the smallest range that includes the entire multirange.
range_merge('{[1,2), [3,4)} ::intd4nmultirange) - [1,4)

mul ti range (anyrange) - anynul tirange
Returns a multirange containing just the given range.
mul tirange('[1,2)'::intd4range) - {[1,2)}

unnest (anymul tirange) — setof anyrange
Expands a multirange into a set of ranges. The ranges are read out in storage order (ascend-
ing).
unnest (' {[1,2), [3,4)} ::intd4nultirange) -

[1,2)
[3.4)

Thel ower _i nc, upper _i nc, | ower _i nf, and upper _i nf functionsall return false for an empty
range or multirange.

Aggregate Functions

Aggregate functions compute a single result from a set of input values. The built-in general -purpose ag-
gregate functions are listed in Table 9.57 while statistical aggregates are in Table 9.58. The built-in with-
in-group ordered-set aggregate functions are listed in Table 9.59 while the built-in within-group hypothet-
ical-set ones are in Table 9.60. Grouping operations, which are closely related to aggregate functions,
are listed in Table 9.61. The special syntax considerations for aggregate functions are explained in Sec-
tion 4.2.7. Consult Section 2.7 for additional introductory information.

Aggregate functions that support Partial Mode are €eligible to participate in various optimizations, such
as parallel aggregation.

365

Functions and Operators

Table 9.57. General-Purpose Aggregate Functions

Function
Description

Partial
Mode

array_agg (anynonarray) - anyarray
Coallects al theinput values, including nulls, into an array.

No

array_agg (anyarray) — anyarray
Concatenates all the input arraysinto an array of one higher dimension. (The inputs
must all have the same dimensionality, and cannot be empty or null.)

No

avg (smal lint) - numeric

avg (i nteger) - nuneric

avg (bigint) - nuneric

avg (numeric) - nuneric

avg (real) - doubl e precision

avg (doubl e precision) - doubl e precision

avg (interval) - interval
Computes the average (arithmetic mean) of all the non-null input values.

Yes

bit_and(smallint) - smallint
bit _and (i nteger) - i nteger
bit _and (bi gi nt) - bigint

bit_and(bit) - bit
Computes the bitwise AND of al non-null input values.

Yes

bit or (smallint) - smallint
bit _or (integer) - integer
bit_or (bigint) - bigint
bit _or (bit)-bit
Computes the bitwise OR of al non-null input values.

Yes

bit xor (smallint) - smallint

bit xor (integer) - integer

bi t _xor (bigint) - bigint

bit_xor (bit) - bit
Computes the bitwise exclusive OR of al non-null input values. Can be useful asa
checksum for an unordered set of values.

Yes

bool _and (bool ean) - bool ean
Returnstrueif all non-null input values are true, otherwise false.

Yes

bool _or (bool ean) - bool ean
Returnstrue if any non-null input value is true, otherwise false.

Yes

count (*) - bigint
Computes the number of input rows.

Yes

count ("any") - bi gint
Computes the number of input rows in which the input valueis not null.

Yes

366

Functions and Operators

Function Partial
Description Mode
every (bool ean) - bool ean Yes

Thisisthe SQL standard's equivalent to bool _and.

j son_agg (anyel ement) - j son No

j sonb_agg (anyel enent) - j sonb
Collects al the input values, including nulls, into a JSON array. Values are convert-
edto JSON aspert o_j sonorto_j sonb.

j son_obj ect _agg (key "any",val ue "any") - json No

j sonb_obj ect _agg (key "any",val ue "any") - j sonb
Collects al the key/vaue pairsinto a JSON object. Key arguments are coerced to
text; value arguments are converted aspert o_j son ort o_j sonb. Values can be
null, but not keys.

max (see text) -~ same as input type Yes
Computes the maximum of the non-null input values. Available for any numer-
ic, string, date/time, or enum type, aswell asi net , i nt er val , noney, oi d,
pg_Il sn,ti d, and arrays of any of these types.

mn(see text) - sanme as input type Yes
Computes the minimum of the non-null input values. Available for any numer-
ic, string, date/time, or enum type, aswell asi net ,i nt er val , noney, oi d,
pg_Il sn,ti d, and arrays of any of these types.

range_agg (val ue anyrange) - anynul ti range No
Computes the union of the non-null input values.

range_i ntersect _agg (val ue anyrange) - anynul tirange No
Computes the intersection of the non-null input values.

string_agg (valuetext,delimter text) - text No

string_agg (val uebytea,delimter bytea) - bytea
Concatenates the non-null input values into a string. Each value after the first is pre-
ceded by the corresponding del i mi t er (if it'snot null).

sum(smal | int) - bigint Yes
sum(i nt eger) - bi gi nt

sum(bigint) - nuneric

sum(nuneric) - nuneric

sum(real) - real

sum(doubl e precision) - doubl e precision
sum(interval) - interval

sum(noney) - noney
Computes the sum of the non-null input values.

xm agg (xm) - xm No
Concatenates the non-null XML input values (see Section 9.15.1.7).

It should be noted that except for count , these functions return anull value when no rows are selected. In
particular, sumof no rowsreturns null, not zero as one might expect, and ar r ay _agg returns null rather

367

Functions and Operators

than an empty array when there are no input rows. The coal esce function can be used to substitute zero
or an empty array for null when necessary.

The aggregate functionsar r ay_agg, j son_agg, j sonb_agg,j son_obj ect _agg,j sonb_ob-
j ect _agg, string_agg, and xm agg, aswell as similar user-defined aggregate functions, produce
meaningfully different result values depending on the order of the input values. This ordering is unspeci-
fied by default, but can be controlled by writing an ORDER BY clause within the aggregate call, as shown
in Section 4.2.7. Alternatively, supplying the input values from a sorted subquery will usually work. For
example:

SELECT xm agg(x) FROM (SELECT x FROM test ORDER BY y DESC) AS tab;

Beware that this approach can fail if the outer query level contains additional processing, such asajoin,
because that might cause the subquery's output to be reordered before the aggregate is computed.

Note

The boolean aggregates bool _and and bool _or correspond to the standard SQL aggregates
every and any or sone. PostgreSQL supports ever y, but not any or sone, because thereis
an ambiguity built into the standard syntax:

SELECT bl = ANY((SELECT b2 FROMt2 ...)) FROMt1 ...;

Here ANY can be considered either as introducing a subquery, or as being an aggregate function,
if the subquery returns one row with a Boolean value. Thus the standard name cannot be given
to these aggregates.

Note
Users accustomed to working with other SQL database management systems might be disappoint-
ed by the performance of the count aggregate when it is applied to the entire table. A query like:

SELECT count (*) FROM sonet abl e;

will require effort proportional to the size of the table: PostgreSQL will need to scan either the
entire table or the entirety of an index that includes all rowsin the table.

Table 9.58 shows aggregate functions typically used in statistical analysis. (These are separated out mere-
ly to avoid cluttering the listing of more-commonly-used aggregates.) Functions shown as accepting nu-
nmeri c_t ype are available for all thetypessmal | i nt, i nt eger, bi gi nt, nuneric, real, and
doubl e preci si on. Where the description mentions N, it means the number of input rows for which
all the input expressions are non-null. In all cases, null is returned if the computation is meaningless, for
example when Nis zero.

Table 9.58. Aggregate Functionsfor Statistics

Function Partial
Description Mode

corr (Ydoubl e precision,Xdoubl e precision) - doubl e precision Yes

368

Functions and Operators

Function Partial
Description Mode
Computes the correlation coefficient.

covar _pop (Ydoubl e precision,Xdoubl e precision) - doubl e pre- Yes
ci sion
Computes the popul ation covariance.

covar_sanp (Ydoubl e precision,Xdoubl e precision) - doubl e Yes
preci sion
Computes the sample covariance.

regr_avgx (Ydoubl e precision,Xdoubl e precision) - doubl e pre- Yes
ci sion
Computes the average of the independent variable, sun{ X) / N.

regr_avgy (Ydoubl e precision,Xdoubl e precision) - doubl e pre- Yes
ci sion
Computes the average of the dependent variable, sun(Y) / N.

regr_count (Ydoubl e precision, Xdoubl e precision) - bigint Yes
Computes the number of rows in which both inputs are non-null.

regr_intercept (Ydoubl e precision,Xdouble precision) - double Yes
preci sion
Computes the y-intercept of the least-squares-fit linear equation determined by the
(X, Y) pairs.

regr_r2(Ydoubl e precision,Xdoubl e precision) - double preci- Yes
sion
Computes the square of the correlation coefficient.

regr_sl ope (Ydoubl e precision,Xdoubl e precision) - double Yes
preci sion
Computes the slope of the least-squaresfit linear equation determined by the (X, Y)
pairs.

regr_sxx (Ydoubl e precision,Xdoubl e precision) - double preci- Yes
sion
Computes the “ sum of squares’ of the independent variable, sun{ X*2) -
sun(X) *2/ N.

regr_sxy (Ydoubl e precision,Xdoubl e precision) - doubl e preci- |Y&
sion
Computes the “ sum of products’ of independent times dependent variables,
sum(X*Y) - sum(X) * sunm(Y)/N

regr_syy (Ydoubl e precision,Xdoubl e precision) - doubl e preci- |Y&S
sion
Computes the “sum of squares’ of the dependent variable, sunm(Y*2) -
sum(Y)~2/ N.

Yes

stddev (nuneric_type) —» doubl e precisionforreal ordoubl e pre-
ci si on, otherwisenuneri c
Thisisahistorical aliasfor st ddev_sanp.

369

Functions and Operators

Function Partial
Description Mode
st ddev_pop (nuneric_type) - doubl e precisionforreal ordouble Yes

pr eci si on, otherwisenuneri c
Computes the population standard deviation of the input values.

stddev_sanp (nuneric_type) - doubl e precisionforreal ordoubl e Yes
preci si on, otherwisenureri c
Computes the sample standard deviation of the input values.

vari ance (nuneric_type) —» doubl e precisionforreal ordoubl e pre- Yes
ci si on, otherwisenuneri c
Thisisahistorical dliasfor var _sanp.

var _pop (numeric_type) » doubl e precisionforreal ordoubl e pre- Yes
ci si on, otherwisenuneri c
Computes the population variance of the input values (square of the population
standard deviation).

var_sanp (nureric_type) —» doubl e precisionforreal ordoubl e Yes
pr eci si on, otherwisenuneri c
Computes the sample variance of the input values (square of the sample standard
deviation).

Table 9.59 shows some aggregate functions that use the ordered-set aggregate syntax. These functionsare
sometimes referred to as " inverse distribution” functions. Their aggregated input isintroduced by ORDER
BY, and they may also take a direct argument that is not aggregated, but is computed only once. All these
functions ignore null values in their aggregated input. For those that take af r act i on parameter, the
fraction value must be between 0 and 1; an error isthrown if not. However, anull f r act i on valuesimply
produces a null result.

Table 9.59. Ordered-Set Aggregate Functions

Function Partial
Description Mode
nmode () W THI N GROUP (ORDER BY anyel enent) - anyel enment No

Computes the mode, the most frequent value of the aggregated argument (arbitrarily
choosing the first oneif there are multiple equally-frequent values). The aggregated
argument must be of a sortable type.

percentile_cont (fracti ondouble precision)WTH N GROUP (ORDER |No
BY doubl e precision) - doubl e precision

percentil e _cont (fracti ondouble precision)WTH N GROUP (ORDER
BYinterval) - interval
Computes the continuous percentile, avalue corresponding to the specified f r ac-
t i on within the ordered set of aggregated argument values. Thiswill interpolate
between adjacent input items if needed.

percentil e_cont (fractions double precision[])WTH N GROUP(OR- |No
DER BY doubl e precision) - doubl e precision[]

percentil e_cont (fractions double precision[])WTH N GROUP (OR-

DER BYinterval) -~ interval[]

370

Functions and Operators

Function Partial
Description Mode
Computes multiple continuous percentiles. The result is an array of the same di-
mensions asthef r act i ons parameter, with each non-null element replaced by
the (possibly interpolated) value corresponding to that percentile.

percentil e_disc (fractiondouble precision)WTH N GROUP(ORDER |No

BY anyel enent) - anyel enent

Computes the discrete percentile, the first value within the ordered set of aggregat-
ed argument values whose position in the ordering equals or exceeds the specified
fracti on. The aggregated argument must be of a sortable type.

percentil e_disc(fractionsdouble precision[])WTH N GROUP(OR- |No

DER BY anyel enent) - anyarray

Computes multiple discrete percentiles. The result is an array of the same dimen-
sionsasthef ract i ons parameter, with each non-null element replaced by thein-
put value corresponding to that percentile. The aggregated argument must be of a
sortable type.

Each of the “ hypothetical-set” aggregates listed in Table 9.60 is associated with awindow function of the
same name defined in Section 9.22. In each case, the aggregate's result is the value that the associated
window function would have returned for the“ hypothetical” row constructed fromar gs, if such arow had
been added to the sorted group of rowsrepresented by thesor t ed_ar gs. For each of these functions, the
list of direct argumentsgiveninar gs must match the number and types of the aggregated argumentsgiven
insort ed_ar gs. Unlikemost built-in aggregates, these aggregates are not strict, that isthey do not drop
input rows containing nulls. Null values sort according to the rule specified in the ORDER BY clause.

Table 9.60. Hypothetical-Set Aggregate Functions

Function Partial
Description Mode
rank (args)W THI N GROUP (ORDER BY sorted_args) — bi gint No

Computes the rank of the hypothetical row, with gaps; that is, the row number of
the first row inits peer group.

dense_rank (args)W THI N GROUP (ORDER BY sorted_args) - bi gi nt No
Computes the rank of the hypothetical row, without gaps; this function effectively
counts peer groups.

percent _rank (args)W THI N GROUP (ORDER BYsorted_args) — doubl e No
preci sion
Computes the relative rank of the hypothetical row, that is (r ank - 1) / (total rows -
1). The value thus ranges from 0 to 1 inclusive.

cunme_di st (args)W THI N GROUP (ORDER BY sorted_args) — doubl e No
preci sion
Computes the cumulative distribution, that is (number of rows preceding or peers
with hypothetical row) / (total rows). The value thus ranges from 1/Nto 1.

371

Functions and Operators

9.22.

Table 9.61. Grouping Operations

Function
Description

GROUPI NG (group_by_expression(s)) - integer
Returns a bit mask indicating which GROUP BY expressions are not included in the current
grouping set. Bits are assigned with the rightmost argument corresponding to the least-signif-
icant bit; each bit is 0 if the corresponding expression is included in the grouping criteria of
the grouping set generating the current result row, and 1 if it is not included.

Thegrouping operations shownin Table 9.61 are used in conjunction with grouping sets (see Section 7.2.4)
to distinguish result rows. The arguments to the GROUPI NG function are not actually evaluated, but they
must exactly match expressionsgiveninthe GROUP BY clause of the associated query level. For example:

=> SELECT * FROM itens_sol d;

make | nodel | sales
_______ .
Foo | GI | 10
Foo | Tour | 20
Bar | Gty | 15
Bar | Sport | 5
(4 rows)

=> SELECT make, nodel, GROUPI NG rmake, nodel), sum(sal es) FROM
items_sold GROUP BY ROLLUP(make, nodel) ;

make | nodel | grouping | sum
------- T JE Sy
Foo | Gr | 0] 10
Foo | Tour | 0] 20
Bar | Gty | 0| 15
Bar | Sport | 0] 5
Foo | | 1| 30
Bar | | 1] 20
| | 3] 50
(7 rows)

Here, the gr oupi ng value 0 in the first four rows shows that those have been grouped normally, over
both the grouping columns. The value 1 indicates that model was not grouped by in the next-to-last two
rows, and the value 3 indicates that neither nake nor nodel was grouped by in the last row (which
therefore is an aggregate over al the input rows).

Window Functions

Window functions provide the ability to perform calculations across sets of rows that are related to the
current query row. See Section 3.5 for an introduction to this feature, and Section 4.2.8 for syntax details.

The built-in window functions are listed in Table 9.62. Note that these functions must be invoked using
window function syntax, i.e., an OVER clause is required.

In addition to these functions, any built-in or user-defined ordinary aggregate (i.e., not ordered-set or
hypothetical-set aggregates) can be used as a window function; see Section 9.21 for a list of the built-

372

Functions and Operators

in aggregates. Aggregate functions act as window functions only when an OVER clause follows the call;
otherwise they act as plain aggregates and return a single row for the entire set.

Table 9.62. General-Pur pose Window Functions

Function
Description

row_nunber () - bi gi nt
Returns the number of the current row within its partition, counting from 1.

rank () - bi gi nt
Returns the rank of the current row, with gaps; that is, ther ow_numnber of thefirst row in
its peer group.

dense_rank () - bi gi nt
Returns the rank of the current row, without gaps; this function effectively counts peer
groups.

percent _rank () - doubl e precision
Returns the relative rank of the current row, that is (r ank - 1) / (total partition rows - 1). The
value thus ranges from 0 to 1 inclusive.

cunme_di st () - doubl e precision
Returns the cumulative distribution, that is (number of partition rows preceding or peers with
current row) / (total partition rows). The value thus ranges from 1/Nto 1.

ntile(numbucketsinteger) - integer
Returns an integer ranging from 1 to the argument value, dividing the partition as equally as
possible.

| ag (val ue anyconpati bl e [,of f set i nt eger [,defaul t anyconpatiblel]]) -
anyconpati bl e
Returnsval ue evaluated at therow that is of f set rows before the current row within the
partition; if thereis no such row, instead returnsdef aul t (which must be of atype com-
patible with val ue). Both of f set and def aul t are evaluated with respect to the current
row. If omitted, of f set defaultsto 1 and def aul t to NULL.

| ead (val ue anyconpati bl e[, of fset i nteger [,default anyconpatible]]) -
anyconpati bl e
Returnsval ue evaluated at therow that is of f set rows after the current row within the
partition; if thereis no such row, instead returnsdef aul t (which must be of atype com-
patible with val ue). Both of f set and def aul t are evaluated with respect to the current
row. If omitted, of f set defaultsto 1 and def aul t to NULL.

first_val ue (val ue anyel enent) - anyel enent
Returnsval ue evaluated at the row that is the first row of the window frame.

| ast _val ue (val ue anyel enent) - anyel enment
Returnsval ue evaluated at the row that is the last row of the window frame.

nt h_val ue (val ue anyel enent ,n i nt eger) — anyel enment
Returnsval ue evaluated at the row that is the n'th row of the window frame (counting from
1); returns NULL if thereis no such row.

All of the functions listed in Table 9.62 depend on the sort ordering specified by the ORDER BY clause
of the associated window definition. Rows that are not distinct when considering only the ORDER BY

373

Functions and Operators

columns are said to be peers. The four ranking functions (including cune_di st) are defined so that they
give the same answer for all rows of a peer group.

Notethatfi rst_val ue,l ast _val ue,andnt h_val ue consider only the rows within the “window
frame”, which by default containsthe rowsfrom the start of the partition through the last peer of the current
row. This is likely to give unhelpful results for | ast _val ue and sometimes also nt h_val ue. You
can redefine the frame by adding a suitable frame specification (RANGE, ROA5 or GROUPS) to the OVER
clause. See Section 4.2.8 for more information about frame specifications.

When an aggregate function is used as awindow function, it aggregates over the rows within the current
row's window frame. An aggregate used with ORDER BY and the default window frame definition pro-
duces a“running sum” type of behavior, which may or may not be what's wanted. To obtain aggregation
over the whole partition, omit ORDER BY or use ROA5 BETWEEN UNBOUNDED PRECEDI NG AND
UNBOUNDED FOLLOW NG. Other frame specifications can be used to obtain other effects.

Note

The SQL standard defines a RESPECT NULLS or | GNORE NULLS option for | ead, | ag,
first_val ue,l ast_val ue,andnt h_val ue. Thisis not implemented in PostgreSQL : the
behavior is always the same as the standard's default, namely RESPECT NULLS. Likewise, the
standard's FROM FI RST or FROM LAST option for nt h_val ue is not implemented: only the
default FROM FI RST behavior is supported. (You can achieve the result of FROM LAST by
reversing the ORDER BY ordering.)

9.23. Subquery Expressions

This section describes the SQL -compliant subquery expressions available in PostgreSQL. All of the ex-
pression forms documented in this section return Boolean (true/false) results.

9.23.1. EXI STS

EXI STS (subquery)

The argument of EXI STS is an arbitrary SELECT statement, or subquery. The subquery is evaluated to
determine whether it returns any rows. If it returns at least one row, the result of EXI STSis“true’; if the
subquery returns no rows, the result of EXI STS is“false’.

The subquery can refer to variables from the surrounding query, which will act as constants during any
one evaluation of the subquery.

The subquery will generally only be executed long enough to determine whether at least one row is re-
turned, not all the way to completion. It is unwise to write a subquery that has side effects (such as calling
seguence functions); whether the side effects occur might be unpredictable.

Since the result depends only on whether any rows are returned, and not on the contents of those rows, the
output list of the subquery is hormally unimportant. A common coding convention isto writeal EXI STS
testsin the form EXI STS(SELECT 1 WHERE ...). There are exceptionsto this rule however, such
as subqueriesthat use | NTERSECT.

Thissimple exampleislikean inner joinon col 2, but it produces at most one output row for eacht abl
row, even if there are several matchingt ab2 rows:

374

Functions and Operators

SELECT col 1
FROM t abl
WHERE EXI STS (SELECT 1 FROM tab2 WHERE col 2 = tabl. col 2);

9.23.2. I N

expression I N (subquery)

The right-hand side is a parenthesized subquery, which must return exactly one column. The left-hand
expression is evaluated and compared to each row of the subquery result. Theresult of | Nis“true” if any
equal subquery row isfound. Theresult is“false” if no equal row is found (including the case where the
subquery returns no rows).

Note that if the left-hand expression yields null, or if there are no equal right-hand values and at least one
right-hand row yields null, the result of the | N construct will be null, not false. Thisisin accordance with
SQL's normal rules for Boolean combinations of null values.

Aswith EXI STS, it's unwise to assume that the subquery will be evaluated compl etely.

row_constructor I N (subquery)

The left-hand side of thisform of | Nisarow constructor, as described in Section 4.2.13. The right-hand
side is a parenthesized subquery, which must return exactly as many columns as there are expressions
in the left-hand row. The left-hand expressions are evaluated and compared row-wise to each row of the
subquery result. Theresult of | Nis“true” if any equal subquery row isfound. The result is“false” if no
equal row isfound (including the case where the subquery returns no rows).

As usual, null values in the rows are combined per the normal rules of SQL Boolean expressions. Two
rows are considered equal if all their corresponding members are non-null and equal; the rows are unequal
if any corresponding members are non-null and unequal; otherwise the result of that row comparison is
unknown (null). If al the per-row results are either unequal or null, with at least one null, then the result
of | Nisnull.

9.23.3. NOT I N

expression NOT I N (subquery)

The right-hand side is a parenthesized subquery, which must return exactly one column. The left-hand
expression is evaluated and compared to each row of the subquery result. The result of NOT | Nis*“true”
if only unequal subquery rows are found (including the case where the subquery returns no rows). The
result is“false” if any equal row isfound.

Note that if the left-hand expression yields null, or if there are no equal right-hand values and at least one
right-hand row yields null, the result of the NOT | N construct will be null, not true. Thisisin accordance
with SQL's normal rules for Boolean combinations of null values.

Aswith EXI STS, it's unwise to assume that the subquery will be evaluated compl etely.

row_constructor NOT IN (subquery)

375

Functions and Operators

Theleft-hand side of thisform of NOT | Nisarow constructor, as described in Section 4.2.13. Theright-
hand side is a parenthesized subquery, which must return exactly as many columns asthere are expressions
in the left-hand row. The left-hand expressions are evaluated and compared row-wise to each row of the
subquery result. The result of NOT | Nis“true” if only unequal subquery rows are found (including the
case where the subquery returns no rows). Theresult is“false” if any equal row is found.

As usual, null values in the rows are combined per the normal rules of SQL Boolean expressions. Two
rows are considered equal if al their corresponding members are non-null and equal; the rows are unequal
if any corresponding members are non-null and unequal; otherwise the result of that row comparison is
unknown (null). If all the per-row results are either unequal or null, with at least one null, then the result
of NOT | Nisnull.

9.23.4. ANY/SOME

expressi on operator ANY (subquery)
expr essi on operator SOVE (subquery)

The right-hand side is a parenthesized subquery, which must return exactly one column. The left-hand
expression is evaluated and compared to each row of the subquery result using the given oper at or,
which must yield a Boolean result. The result of ANY is“true” if any true result is obtained. The result is
“false” if no true result is found (including the case where the subquery returns no rows).

SOVE isasynonym for ANY. | Nisequivalentto = ANY.

Note that if there are no successes and at least one right-hand row yields null for the operator's result,
the result of the ANY construct will be null, not false. Thisisin accordance with SQL's normal rules for
Boolean combinations of null values.

Aswith EXI STS, it's unwise to assume that the subquery will be evaluated compl etely.

row constructor operator ANY (subquery)
row _constructor operator SOVE (subquery)

The left-hand side of thisform of ANY isarow constructor, as described in Section 4.2.13. Theright-hand
side is a parenthesized subquery, which must return exactly as many columns as there are expressions
in the left-hand row. The left-hand expressions are evaluated and compared row-wise to each row of the
subquery result, using the given oper at or . Theresult of ANY is“true” if the comparison returnstrue for
any subquery row. Theresult is“false” if the comparison returns false for every subquery row (including
the case where the subguery returns no rows). The result is NULL if no comparison with a subquery row
returns true, and at least one comparison returns NULL.

See Section 9.24.5 for details about the meaning of arow constructor comparison.

9.23.5. ALL

expression operator ALL (subquery)

The right-hand side is a parenthesized subquery, which must return exactly one column. The left-hand
expression is evaluated and compared to each row of the subquery result using the given oper at or,
which must yield a Boolean result. The result of ALL is“true’ if all rows yield true (including the case
where the subquery returns no rows). Theresult is “false” if any falseresult isfound. The result isNULL
if no comparison with a subquery row returns false, and at least one comparison returns NULL.

376

Functions and Operators

NOT | Nisequivalentto<> ALL.

Aswith EXI STS, it's unwise to assume that the subquery will be evaluated compl etely.

row_constructor operator ALL (subquery)

The left-hand side of thisform of ALL isarow constructor, as described in Section 4.2.13. The right-hand
side is a parenthesized subquery, which must return exactly as many columns as there are expressions
in the left-hand row. The left-hand expressions are evaluated and compared row-wise to each row of the
subquery result, using the given oper at or . The result of ALL is“true” if the comparison returns true
for al subquery rows (including the case where the subquery returns no rows). Theresult is“false” if the
comparison returns false for any subquery row. TheresultisNULL if no comparison with asubquery row
returns false, and at |east one comparison returns NULL.

See Section 9.24.5 for details about the meaning of arow constructor comparison.

9.23.6. Single-Row Comparison

row _constructor operator (subquery)

The left-hand side is arow constructor, as described in Section 4.2.13. The right-hand side is a parenthe-
sized subquery, which must return exactly as many columns as there are expressionsin the left-hand row.
Furthermore, the subquery cannot return more than one row. (If it returns zero rows, the result is taken to
be null.) The left-hand side is evaluated and compared row-wise to the single subquery result row.

See Section 9.24.5 for details about the meaning of arow constructor comparison.

9.24. Row and Array Comparisons

This section describes several specialized constructs for making multiple comparisons between groups of
values. These forms are syntactically related to the subquery forms of the previous section, but do not
involve subqgueries. The forms involving array subexpressions are PostgreSQL extensions; the rest are
SQL-compliant. All of the expression forms documented in this section return Boolean (true/fal se) results.

9.241.1N

expression IN (value [, ...])

The right-hand side is a parenthesized list of scalar expressions. The result is “true” if the left-hand ex-
pression’s result is equal to any of the right-hand expressions. Thisis a shorthand notation for

expression = val uel
oR
expr essi on
oR

val ue2

Note that if the left-hand expression yields null, or if there are no equal right-hand values and at least one
right-hand expression yields null, theresult of thel Nconstruct will be null, not false. Thisisin accordance
with SQL's normal rules for Boolean combinations of null values.

377

Functions and Operators

9.24.2. NOT I N

expression NOT IN (value [, ...])

The right-hand side is a parenthesized list of scalar expressions. The result is “true” if the left-hand ex-
pression's result is unequal to al of the right-hand expressions. Thisis a shorthand notation for

expression <> val uel
AND
expressi on <> val ue2
AND

Note that if the left-hand expression yields null, or if there are no equal right-hand values and at least one
right-hand expression yields null, the result of the NOT | N construct will be null, not true as one might
naively expect. Thisisin accordance with SQL's normal rules for Boolean combinations of null values.

Tip
X NOT IN yisequivalentto NOT (x | N y) inall cases. However, null values are much

more likely to trip up the novice when working with NOT | N than when working with | N. It is
best to express your condition positively if possible.

9.24.3. ANY/SOVE (array)

expression operator ANY (array expression)
expressi on operator SOVE (array expression)

Theright-hand side is a parenthesized expression, which must yield an array value. The left-hand expres-
sion isevaluated and compared to each element of the array using the given oper at or , which must yield
aBoolean result. The result of ANY is“true” if any true result is obtained. The result is “false” if no true
result is found (including the case where the array has zero elements).

If the array expression yields anull array, the result of ANY will be null. If the left-hand expression yields
null, the result of ANY is ordinarily null (though a non-strict comparison operator could possibly yield a
different result). Also, if the right-hand array contains any null el ements and no true comparison result is
obtained, the result of ANY will be null, not false (again, assuming a strict comparison operator). Thisis
in accordance with SQL's normal rules for Boolean combinations of null values.

SOME isasynonym for ANY.

9.24.4. ALL (array)

expression operator ALL (array expression)

Theright-hand side is a parenthesized expression, which must yield an array value. The left-hand expres-
sionisevauated and compared to each element of the array using the given oper at or , which must yield
a Boolean result. The result of ALL is“true” if all comparisons yield true (including the case where the
array has zero elements). Theresult is“false” if any false result is found.

378

Functions and Operators

If the array expression yields anull array, the result of ALL will be null. If the |eft-hand expression yields
null, the result of ALL is ordinarily null (though a non-strict comparison operator could possibly yield a
different result). Also, if the right-hand array contains any null elements and no false comparison result is
obtained, the result of ALL will be null, not true (again, assuming a strict comparison operator). Thisisin
accordance with SQL's normal rules for Boolean combinations of null values.

9.24.5. Row Constructor Comparison

row_constructor operator row_constructor

Each side is a row constructor, as described in Section 4.2.13. The two row values must have the same
number of fields. Each side is evaluated and they are compared row-wise. Row constructor comparisons
are allowed when the oper at or is=, <>, <, <=, > or >=. Every row element must be of atype which
has a default B-tree operator class or the attempted comparison may generate an error.

Note

Errors related to the number or types of elements might not occur if the comparison is resolved
using earlier columns.

The = and <> cases work dightly differently from the others. Two rows are considered equal if all their
corresponding members are non-null and equal; the rows are unequal if any corresponding members are
non-null and unequal; otherwise the result of the row comparison is unknown (null).

For the <, <=, > and >= cases, the row elements are compared |eft-to-right, stopping as soon as an unequal
or null pair of elementsisfound. If either of this pair of elementsis null, the result of the row comparison
is unknown (null); otherwise comparison of this pair of elements determines the result. For example,
ROAN 1, 2, NULL) < ROW 1, 3, 0) yields true, not null, because the third pair of elements are not
considered.

Note

Prior to PostgreSQL 8.2, the <, <=, > and >= cases were not handled per SQL specification. A
comparison likeRON(a, b) < ROWNc, d) wasimplementedasa < ¢ AND b < d whereas
the correct behavior isequivalenttoa < ¢ OR (a = ¢ AND b < d).

row_constructor 1S DI STINCT FROM row_construct or

This construct is similar to a <> row comparison, but it does not yield null for null inputs. Instead, any
null value is considered unequal to (distinct from) any non-null value, and any two nulls are considered
equal (not distinct). Thus the result will either be true or false, never null.

row_constructor IS NOT DI STI NCT FROM row _const ruct or
This construct is similar to a= row comparison, but it does not yield null for null inputs. Instead, any null

value is considered unegual to (distinct from) any non-null value, and any two nulls are considered equal
(not distinct). Thus the result will always be either true or false, never null.

379

Functions and Operators

9.24.6. Composite Type Comparison

9.25

record operator record

The SQL specification requires row-wise comparison to return NULL if the result depends on comparing
two NULL values or aNULL and anon-NULL. PostgreSQL does this only when comparing the results
of two row constructors (asin Section 9.24.5) or comparing arow constructor to the output of a subquery
(asin Section 9.23). In other contexts where two composite-type values are compared, two NULL field
valuesare considered equal, and aNULL isconsidered larger than anon-NULL. Thisisnecessary in order
to have consistent sorting and indexing behavior for composite types.

Each side is evaluated and they are compared row-wise. Composite type comparisons are allowed when
the oper at or is=, <>, <, <=, > or >=, or has semantics similar to one of these. (To be specific, an
operator can be arow comparison operator if it isamember of a B-tree operator class, or is the negator of
the = member of a B-tree operator class.) The default behavior of the above operators is the same as for
IS [NOT] DI STINCT FROMfor row constructors (see Section 9.24.5).

To support matching of rowswhich include elementswithout a default B-tree operator class, the following
operators are defined for composite type comparison: * =, * <>, * <, * <= *> and * >=. These operators
compare the internal binary representation of the two rows. Two rows might have adifferent binary repre-
sentation even though comparisons of the two rows with the equality operator istrue. The ordering of rows
under these comparison operators is deterministic but not otherwise meaningful. These operators are used
internally for materialized views and might be useful for other specialized purposes such as replication
and B-Tree deduplication (see Section 64.4.3). They are not intended to be generally useful for writing
gueries, though.

Set Returning Functions

This section describesfunctions that possibly return more than one row. The most widely used functionsin
this class are series generating functions, as detailed in Table 9.63 and Table 9.64. Other, more specialized
set-returning functions are described elsewhere in this manual. See Section 7.2.1.4 for ways to combine
multiple set-returning functions.

Table 9.63. Series Generating Functions

Function
Description

generate_series(start integer,stopinteger [,stepinteger]) - setof in-
t eger
generate_series (start bigint,stopbigint [,stepbigint]) - setof bigint

generate_series (start numeric,stopnuneric|[,stepnuneric]) - setof nu-
neric
Generates a series of valuesfrom st art to st op, with astep size of st ep. st ep defaults
to 1.

generate_series(start tinmestanp,stoptinmestanp,stepinterval) - setof
ti mestanp

generate_series(start tinmestanp with tinme zone,stoptinestanp with
time zone,stepinterval) - setof timestanp with tinme zone
Generates a series of valuesfrom st art to st op, with astep size of st ep.

380

Functions and Operators

When st ep is positive, zero rows are returned if st ar t isgreater than st op. Conversely, when st ep
is negative, zero rows are returned if st art islessthan st op. Zero rows are also returned if any input
iSNULL. Itisan error for st ep to be zero. Some examples follow:

SELECT * FROM generate_series(2,4);
generate_series

(3 rows)

SELECT * FROM generate_series(5,1,-2);
generate_series

(3 rows)

SELECT * FROM generate_series(4, 3);
generate_series

SELECT generate_series(1.1, 4, 1.3);
generate_series

(3 rows)

-- this exanple relies on the date-plus-integer operator:
SELECT current_date + s.a AS dates FROM generate_series(0,14,7) AS
s(a);
dat es
2004- 02- 05
2004- 02- 12
2004- 02- 19
(3 rows)

SELECT * FROM generate_series('2008-03-01 00: 00" ::ti mestanp,
' 2008-03-04 12:00', '10 hours');
generate_series
2008- 03-01 00: 00: 00
2008- 03-01 10: 00: 00
2008- 03-01 20: 00: 00
2008- 03-02 06: 00: 00
2008- 03-02 16: 00: 00
2008- 03-03 02: 00: 00

381

Functions and Operators

2008- 03-03 12: 00: 00

2008- 03-03 22: 00: 00

2008- 03- 04 08: 00: 00
(9 rows)

Table 9.64. Subscript Generating Functions

Function
Description

gener ate_subscri pts (array anyarray,di mi nt eger) » setof integer
Generates a series comprising the valid subscripts of the di nith dimension of the given array.

gener ate_subscri pts (array anyarray,di mi nt eger,reverse bool ean) -
set of integer
Generates a series comprising the valid subscripts of the di nith dimension of the given array.
Whenr ever se istrue, returns the seriesin reverse order.

gener at e_subscri pt s is a convenience function that generates the set of valid subscripts for the
specified dimension of the given array. Zero rows are returned for arrays that do not have the requested
dimension, or if any input is NULL. Some examples follow:

-- basic usage:
SELECT generate_subscripts(' {NULL, 1, NULL, 2}'::int[], 1) AS s;

-- presenting an array, the subscript and the subscripted
-- value requires a subquery:
SELECT * FROM arrays;

12
{100, 200, 300}
(2 rows)

SELECT a AS array, s AS subscript, a[s] AS val ue
FROM (SELECT generate_subscripts(a, 1) AS s, a FROM arrays) foo;

array | subscript | value
_______________ Fe e e e e e e e e e - -
{-1,-2} | 1] -1
{-1,-2} | 2 | -2
{100, 200, 300} | 1] 100
{100, 200, 300} | 2| 200
{100, 200, 300} | 3| 300

(5 rows)

-- unnest a 2D array:
CREATE OR REPLACE FUNCTI ON unnest 2(anyarray)

382

Functions and Operators

RETURNS SETCF anyel enent AS $$
select $1[i][]]
from generate_subscripts($1,1) gi(i),
gener ate_subscri pts($1,2) g2(j);
$$ LANGUAGE sql | MMUTABLE;
CREATE FUNCTI ON
SELECT * FROM unnest2(ARRAY[[1,2],[3,4]]1);
unnest 2

When afunction in the FROMclause is suffixed by W TH ORDI NALI TY, abi gi nt columnisappended
to the function's output column(s), which starts from 1 and increments by 1 for each row of the function's
output. Thisis most useful in the case of set returning functions such asunnest () .

-- set returning function WTH ORDI NALI TY:
SELECT * FROM pg Is dir('.') WTH ORDINALITY AS t(Ils,n);

I's | n
_________________ - - -
pg_seri al | 1
pg_t wophase | 2
postmaster.opts | 3
pg_notify | 4
postgresqgl.conf | 5
pg_t bl spc | 6
logfile | 7
base | 8
postmaster.pid | 9
pg_i dent . conf | 10
gl obal | 11
pg_xact | 12
pg_snapshot s | 13
pg_mul ti xact | 14
PG_VERSI ON | 15
pg_wal | 16
pg_hba. conf | 17
pg_stat_tnp | 18
pg_subtrans | 19
(19 rows)

9.26. System Information Functions and Opera-

tors

Table 9.65 shows several functions that extract session and system information.

In addition to the functions listed in this section, there are a number of functions related to the statistics
system that also provide system information. See Section 28.2.2 for more information.

383

Functions and Operators

Table 9.65. Session | nformation Functions

Function
Description

current _cat al 0g - nane

current _dat abase () - nane
Returns the name of the current database. (Databases are called “catalogs’ in the SQL stan-
dard, so curr ent _cat al og isthe standard's spelling.)

current _query () - text
Returns the text of the currently executing query, as submitted by the client (which might
contain more than one statement).

current _rol e - nane
Thisisequivalenttocurrent _user.

current _schena - nane

current _schenma () - name
Returns the name of the schemathat isfirst in the search path (or anull valueif the search
path is empty). Thisis the schemathat will be used for any tables or other named objects that
are created without specifying atarget schema.

current _schenas (include_inplicit bool ean) - nang[]
Returns an array of the names of all schemas presently in the effective search path, in their
priority order. (Itemsin the current search_path setting that do not correspond to existing,
searchable schemas are omitted.) If the Boolean argument ist r ue, then implicitly-searched
system schemas such aspg_cat al og areincluded in the result.

current _user - nane
Returns the user name of the current execution context.

inet_client_addr () - inet
Returns the |P address of the current client, or NULL if the current connection isviaaUnix-
domain socket.

inet_client_port () - integer
Returns the | P port number of the current client, or NULL if the current connectionisviaa
Unix-domain socket.

i net _server_addr () - i net
Returns the | P address on which the server accepted the current connection, or NULL if the
current connection is via a Unix-domain socket.

i net _server_port () - i nteger
Returns the | P port number on which the server accepted the current connection, or NULL if
the current connection is viaa Unix-domain socket.

pg_backend_pid () — i nteger
Returns the process ID of the server process attached to the current session.

pg_bl ocki ng_pi ds (i nteger) - integer|[]
Returns an array of the process ID(s) of the sessions that are blocking the server process with
the specified process ID from acquiring alock, or an empty array if there is no such server
process or it is not blocked.
One server process blocks another if it either holds alock that conflicts with the blocked
process's lock request (hard block), or iswaiting for alock that would conflict with the

384

Functions and Operators

Function
Description

blocked process's lock request and is ahead of it in the wait queue (soft block). When using
parallel queriesthe result aways lists client-visible process IDs (that is, pg_backend_pi d
results) even if the actual lock is held or awaited by a child worker process. As aresult of
that, there may be duplicated PIDs in the result. Also note that when a prepared transaction
holds a conflicting lock, it will be represented by a zero process ID.

Frequent calls to this function could have some impact on database performance, because it
needs exclusive access to the lock manager's shared state for a short time.

pg_conf _load_tine() -~ tinmestanp with tine zone
Returns the time when the server configuration files were last loaded. If the current session
was dive at the time, this will be the time when the session itself re-read the configuration
files (so the reading will vary alittle in different sessions). Otherwise it is the time when the
postmaster process re-read the configuration files.

pg_current logfile([text]) - text
Returns the path name of the log file currently in use by the logging collector. The path in-
cludesthelog_directory directory and the individual log file name. The result isNULL if
the logging collector is disabled. When multiple log files exist, each in a different format,
pg_current | ogfi |l e without an argument returns the path of the file having the first
format found in the ordered list: st der r, csvl og. NULL isreturned if no log file has
any of these formats. To request information about a specific log file format, supply either
csvl og or st derr asthevalue of the optional parameter. The resultisNULL if thelog
format requested is not configured in log_destination. The result reflects the contents of the
current | ogfil esfile

pg_mnmy_temp_schema () - oi d
Returns the OID of the current session's temporary schema, or zero if it has none (because it
has not created any temporary tables).

pg_is_other tenp _schema(o0id) - bool ean
Returnstrue if the given OID isthe OID of another session’'s temporary schema. (This can be
useful, for example, to exclude other sessions' temporary tables from a catalog display.)

pg_jit_avail abl e () —» bool ean
Returnstrueif aJIT compiler extension is available (see Chapter 32) and the jit configuration
parameter is set to on.

pg_l i stening_channel s () - setof text
Returns the set of names of asynchronous notification channels that the current sessionislis-
tening to.

pg_notification_queue_usage () - doubl e precision
Returns the fraction (0-1) of the asynchronous notification queue's maximum size that is cur-
rently occupied by notifications that are waiting to be processed. See LISTEN and NOTIFY
for more information.

pg_postmaster _start tinme() -tinmestanp with time zone
Returns the time when the server started.

pg_safe_snapshot bl ocki ng_pids (i nteger) — i nteger[]
Returns an array of the process ID(s) of the sessions that are blocking the server process with
the specified process ID from acquiring a safe snapshot, or an empty array if thereis no such
server process or it is not blocked.

385

Functions and Operators

Function
Description
A session running a SERI ALI ZABLE transaction blocks a SERI ALI ZABLE READ ONLY
DEFERRABLE transaction from acquiring a snapshot until the latter determinesthat it is safe
to avoid taking any predicate locks. See Section 13.2.3 for more information about serializ-
able and deferrable transactions.
Frequent calls to this function could have some impact on database performance, because it
needs access to the predicate lock manager's shared state for a short time.

pg_trigger_depth() - i nteger
Returns the current nesting level of PostgreSQL triggers (O if not called, directly or indirect-
ly, frominside atrigger).

sessi on_user - name
Returns the session user's name.

user - nane
Thisisequivalentto cur r ent _user.

version () - text
Returns a string describing the PostgreSQL server's version. Y ou can also get thisinfor-
mation from server_version, or for amachine-readable version use server_version_num.
Software developers should use ser ver _ver si on_num(available since 8.2) or
PQser ver Ver si on instead of parsing the text version.

Note

current _catal og, current_role, current_schemm, current_user, ses-
si on_user ,anduser havespecial syntactic statusin SQL : they must be called without trailing
parentheses. In PostgreSQL, parentheses can optionally be used with cur r ent _schema, but
not with the others.

Thesessi on_user isnormally the user who initiated the current database connection; but superusers
can change this setting with SET SESSION AUTHORIZATION. Thecur r ent _user isthe user iden-
tifier that is applicable for permission checking. Normally it is equal to the session user, but it can be
changed with SET ROLE. It also changes during the execution of functions with the attribute SECURI TY
DEFI NER. In Unix parlance, the session user isthe “real user” and the current user isthe “ effective user”.
current _rol eanduser aresynonymsfor cur rent _user . (The SQL standard draws adistinction
between current _rol e and current _user, but PostgreSQL does not, since it unifies users and
rolesinto asingle kind of entity.)

Table 9.66 lists functions that allow querying object access privileges programmatically. (See Section 5.7
for more information about privileges.) In these functions, the user whose privileges are being inquired
about can be specified by name or by OID (pg_aut hi d.oi d), or if the nameisgiven aspubl i ¢ then
the privileges of the PUBLIC pseudo-role are checked. Also, theuser argument can be omitted entirely,
inwhich casethecur rent _user isassumed. The object that is being inquired about can be specified
either by name or by OID, too. When specifying by name, a schema name can be included if relevant.
The access privilege of interest is specified by atext string, which must evaluate to one of the appropriate
privilege keywords for the object's type (e.g., SELECT). Optionally, W TH GRANT OPTI ON can be
added to a privilege type to test whether the privilege is held with grant option. Also, multiple privilege
types can be listed separated by commas, in which case the result will betrueif any of thelisted privileges
is held. (Case of the privilege string is not significant, and extra whitespace is allowed between but not
within privilege names.) Some examples:

386

Functions and Operators

SELECT has_table_privil ege(' nyschema. nytable', 'select');
SELECT has_table_privilege('joe', 'nytable', 'INSERT, SELECT W TH
GRANT OPTION);

Table 9.66. Access Privilege Inquiry Functions

Function
Description

has_any_col um_privil ege ([user naneoroi d,]tabl etext oroid,privil ege

t ext) - bool ean

Does user have privilege for any column of table? This succeeds either if the privilegeis held
for the whole table, or if thereis a column-level grant of the privilege for at least one column.
Allowable privilege types are SELECT, | NSERT, UPDATE, and REFERENCES.

has_col um_privil ege ([user naneoroi d,]tabl etext oroid,col umtext or

smal lint,privilegetext) - bool ean

Does user have privilege for the specified table column? This succeeds either if the privilege
is held for the whole table, or if there isacolumn-level grant of the privilege for the column.
The column can be specified by hame or by attribute number (pg_at t ri but e.at t num.
Allowable privilege types are SELECT, | NSERT, UPDATE, and REFERENCES.

has_dat abase_privil ege ([user nane or oi d,] dat abase t ext oroi d, privil ege

t ext) - bool ean
Does user have privilege for database? Allowable privilege types are CREATE, CONNECT,
TEMPORARY, and TEMP (which is equivalent to TEMPORARY).

has _forei gn_data w apper _privil ege ([user nane oroi d,] fdwtext oroid,

privil egetext) - bool ean
Does user have privilege for foreign-data wrapper? The only allowable privilege typeis
USAGE.

has_function_privil ege ([user nane oroid,]functiontext oroid,privil ege

t ext) » bool ean

Does user have privilege for function? The only alowable privilege type is EXECUTE.
When specifying afunction by name rather than by OID, the allowed input is the same as for
ther egpr ocedur e datatype (see Section 8.19). An exampleis:

SELECT has_function_privilege('joeuser', '"myfunc(int, text)',
'execute');

has_| anguage_pri vil ege ([user nane oroi d,] | anguage t ext oroi d, pri vil ege

t ext) — bool ean
Does user have privilege for language? The only allowable privilege type is USAGE.

has _schema_privil ege ([user nane oroi d,] schematext oroid,privil egetext

) - bool ean
Does user have privilege for schema? Allowable privilege types are CREATE and USAGE.

has_sequence_privil ege ([user nane oroi d,] sequence t ext oroi d,privil ege

t ext) » bool ean
Does user have privilege for sequence? Allowable privilege types are USAGE, SELECT, and
UPDATE.

387

Functions and Operators

Function
Description

has_server_privil ege([user naneoroi d,] server text oroid,privil egetext
) - bool ean
Does user have privilege for foreign server? The only allowable privilege type is USAGE.
has table privilege ([user nanmeoroid,]tabl etext oroid,privilegetext)
- bool ean
Does user have privilege for table? Allowable privilege types are SELECT, | NSERT, UP-
DATE, DELETE, TRUNCATE, REFERENCES, and TRI GGER.
has_t abl espace_privil ege ([user nane oroi d,]t abl espacetext oroid,priv-
il egetext) - bool ean
Does user have privilege for tablespace? The only allowable privilege type is CREATE.

has_type_privilege ([user naneoroid,]Jtypetext oroid,privilegetext) -
bool ean

Does user have privilege for data type? The only allowable privilege type is USAGE. When

specifying atype by name rather than by OID, the allowed input is the same as for ther eg-
t ype datatype (see Section 8.19).

pg_has role([user naneoroid,]Jroletext oroid,privilegetext) - bool ean
Does user have privilege for role? Allowable privilege types are MEMBER and USAGE. NEM
BER denotes direct or indirect membership in the role (that is, the right to do SET ROLE),
while USAGE denotes whether the privileges of the role are immediately available without
doing SET ROLE. Thisfunction does not allow the special case of setting user to publ i c,
because the PUBLIC pseudo-role can never be amember of real roles.

row security_active (tabletext oroid) - bool ean

Isrow-level security active for the specified table in the context of the current user and cur-
rent environment?

Table 9.67 shows the operators available for the acl i t emtype, which is the catalog representation of
access privileges. See Section 5.7 for information about how to read access privilege values.

Table9.67. acl i t emOperators

Operator
Description
Example(s)

aclitem=aclitem- bool ean

Areacl i t enmsequal? (Noticethat typeacl i t emlacks the usual set of comparison opera-
tors; it has only equality. Inturn, acl i t emarrays can only be compared for equality.)

"cal vi n=r*w hobbes' ::aclitem = 'cal vi n=r*w*/ hobbes'::aclitem-
f

acliten]] @ aclitem- bool ean

Does array contain the specified privileges? (Thisistrueif thereis an array entry that match-
estheacl i t enisgrantee and grantor, and has at |east the specified set of privileges.)
'{cal vi n=r*w hobbes, hobbes=r*w*/ postgres}'::aclitenf] @

"cal vin=r*/hobbes' ::aclitem-t

acliten{] ~aclitem- bool ean
Thisisadeprecated alias for @ .

388

Functions and Operators

Operator
Description
Example(s)
'{cal vi n=r *w/ hobbes, hobbes=r*w*/ postgres}'::aclitenf] ~
"cal vi n=r*/ hobbes' : :aclitem-t

Table 9.68 shows some additional functionsto manage theacl i t emtype.

Table9.68. acl i t emFunctions

Function
Description

acl default (type"char",ownerldoid) - acliten]
Constructsan acl i t emarray holding the default access privileges for an object of type
t ype belonging to the role with OID owner | d. This represents the access privileges that
will be assumed when an object's ACL entry is null. (The default access privileges are de-
scribed in Section 5.7.) Thet ype parameter must be one of 'c' for COLUWN, 'r' for TABLE
and table-like objects, 's for SEQUENCE, 'd' for DATABASE, 'f' for FUNCTI ON or PROCE-
DURE, 'I' for LANGUAGE, 'L' for LARGE OBJECT, 'n' for SCHEMA, 't' for TABLESPACE, 'F
for FOREI GN DATA WRAPPER, 'S for FORElI GN SERVER, or 'T' for TYPE or DOVAI N.

acl expl ode (acliten]]) - setof record (grantor oid,granteeoid,privi-
| ege_typetext,is_grantabl e bool ean)
Returnstheacl i t emarray asaset of rows. If the grantee is the pseudo-role PUBLIC, it
isrepresented by zero in the gr ant ee column. Each granted privilege is represented as
SELECT, | NSERT, etc. Note that each privilege is broken out as a separate row, so only one
keyword appearsinthepri vi | ege_t ype column.

makeacl it em(grantee oid,grantor oid,privilegestext,is_grantable

bool ean) - aclitem
Constructsan acl i t emwith the given properties.

Table 9.69 shows functions that determine whether a certain object isvisible in the current schema search
path. For example, atable is said to be visible if its containing schemais in the search path and no table
of the same name appears earlier in the search path. This is equivalent to the statement that the table can
be referenced by name without explicit schema qualification. Thus, to list the names of al visible tables:

SELECT rel nane FROM pg_cl ass WHERE pg _table_is_visible(oid);
For functions and operators, an object in the search path is said to be visible if there is no object of the

same hame and argument data type(s) earlier in the path. For operator classes and families, both the name
and the associated index access method are considered.

Table 9.69. Schema Visibility Inquiry Functions

Function
Description

pg_collation_is_visible(collationoid) - bool ean
Is collation visible