Point Cloud Library (PCL)
1.3.1
|
00001 /* 00002 * Software License Agreement (BSD License) 00003 * 00004 * Copyright (c) 2010, Willow Garage, Inc. 00005 * All rights reserved. 00006 * 00007 * Redistribution and use in source and binary forms, with or without 00008 * modification, are permitted provided that the following conditions 00009 * are met: 00010 * 00011 * * Redistributions of source code must retain the above copyright 00012 * notice, this list of conditions and the following disclaimer. 00013 * * Redistributions in binary form must reproduce the above 00014 * copyright notice, this list of conditions and the following 00015 * disclaimer in the documentation and/or other materials provided 00016 * with the distribution. 00017 * * Neither the name of Willow Garage, Inc. nor the names of its 00018 * contributors may be used to endorse or promote products derived 00019 * from this software without specific prior written permission. 00020 * 00021 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 00022 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 00023 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 00024 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 00025 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 00026 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 00027 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 00028 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 00029 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 00030 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 00031 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 00032 * POSSIBILITY OF SUCH DAMAGE. 00033 * 00034 */ 00035 00036 #ifndef PCL_STANFORD_GICP_H_ 00037 #define PCL_STANFORD_GICP_H_ 00038 00039 #include <pcl/io/pcd_io.h> 00040 // PCL includes 00041 #include <pcl/registration/registration.h> 00042 #include <pcl/features/feature.h> 00043 #include <pcl/sample_consensus/ransac.h> 00044 #include <pcl/sample_consensus/sac_model_registration.h> 00045 00046 #include <pcl/registration/stanford_gicp/gicp.h> 00047 00048 #include <Eigen/SVD> 00049 00050 namespace pcl 00051 { 00052 00053 00054 00058 00061 template <typename PointSource, typename PointTarget> 00062 class GeneralizedIterativeClosestPoint : public Registration<PointSource, PointTarget> 00063 { 00064 using Registration<PointSource, PointTarget>::reg_name_; 00065 using Registration<PointSource, PointTarget>::getClassName; 00066 using Registration<PointSource, PointTarget>::input_; 00067 using Registration<PointSource, PointTarget>::indices_; 00068 using Registration<PointSource, PointTarget>::target_; 00069 using Registration<PointSource, PointTarget>::nr_iterations_; 00070 using Registration<PointSource, PointTarget>::max_iterations_; 00071 using Registration<PointSource, PointTarget>::previous_transformation_; 00072 using Registration<PointSource, PointTarget>::final_transformation_; 00073 using Registration<PointSource, PointTarget>::transformation_; 00074 using Registration<PointSource, PointTarget>::transformation_epsilon_; 00075 using Registration<PointSource, PointTarget>::converged_; 00076 using Registration<PointSource, PointTarget>::corr_dist_threshold_; 00077 using Registration<PointSource, PointTarget>::inlier_threshold_; 00078 using Registration<PointSource, PointTarget>::min_number_correspondences_; 00079 00080 typedef typename Registration<PointSource, PointTarget>::PointCloudSource PointCloudSource; 00081 typedef typename PointCloudSource::Ptr PointCloudSourcePtr; 00082 typedef typename PointCloudSource::ConstPtr PointCloudSourceConstPtr; 00083 00084 typedef typename Registration<PointSource, PointTarget>::PointCloudTarget PointCloudTarget; 00085 00086 typedef PointIndices::Ptr PointIndicesPtr; 00087 typedef PointIndices::ConstPtr PointIndicesConstPtr; 00088 00089 public: 00091 00092 GeneralizedIterativeClosestPoint () 00093 { 00094 reg_name_ = "GeneralizedIterativeClosestPoint"; 00095 max_distance_ = 0.2; 00096 }; 00097 00098 void setMaxDistance(double max_distance) { this->max_distance_ = max_distance; }; 00099 00100 protected: 00102 00105 virtual void computeTransformation (PointCloudSource &output); 00106 00107 double max_distance_; 00108 }; 00109 00111 00117 template <typename PointSource, typename PointTarget> inline void estimateRigidTransformationGICP (const pcl::PointCloud<PointSource> &cloud_src, const pcl::PointCloud<PointTarget> &cloud_tgt, Eigen::Matrix4f &transformation_matrix); 00118 00120 00127 template <typename PointSource, typename PointTarget> inline void estimateRigidTransformationGICP (const pcl::PointCloud<PointSource> &cloud_src, const std::vector<int> &indices_src, const pcl::PointCloud<PointTarget> &cloud_tgt, Eigen::Matrix4f &transformation_matrix); 00128 00130 00138 template <typename PointSource, typename PointTarget> inline void estimateRigidTransformationGICP (const pcl::PointCloud<PointSource> &cloud_src, const std::vector<int> &indices_src, const pcl::PointCloud<PointTarget> &cloud_tgt, const std::vector<int> &indices_tgt, Eigen::Matrix4f &transformation_matrix); 00139 00140 } 00141 00142 #include "pcl/registration/impl/stanford_gicp.hpp" 00143 00144 #endif //#ifndef PCL_ICP_H_