Point Cloud Library (PCL)
1.3.1
|
computeModel(int debug_verbosity_level=0)=0 | pcl::SampleConsensus | [pure virtual] |
ConstPtr typedef | pcl::SampleConsensus | |
getDistanceThreshold() | pcl::SampleConsensus | [inline] |
getInliers(std::vector< int > &inliers) | pcl::SampleConsensus | [inline] |
getMaxIterations() | pcl::SampleConsensus | [inline] |
getModel(std::vector< int > &model) | pcl::SampleConsensus | [inline] |
getModelCoefficients(Eigen::VectorXf &model_coefficients) | pcl::SampleConsensus | [inline] |
getProbability() | pcl::SampleConsensus | [inline] |
getRandomSamples(const boost::shared_ptr< std::vector< int > > &indices, size_t nr_samples, std::set< int > &indices_subset) | pcl::SampleConsensus | [inline] |
Ptr typedef | pcl::SampleConsensus | |
SampleConsensus(const SampleConsensusModelPtr &model) | pcl::SampleConsensus | [inline] |
SampleConsensus(const SampleConsensusModelPtr &model, double threshold) | pcl::SampleConsensus | [inline] |
setDistanceThreshold(double threshold) | pcl::SampleConsensus | [inline] |
setMaxIterations(int max_iterations) | pcl::SampleConsensus | [inline] |
setProbability(double probability) | pcl::SampleConsensus | [inline] |
~SampleConsensus() | pcl::SampleConsensus | [inline, virtual] |