Point Cloud Library (PCL)  1.3.1
Public Types | Public Member Functions
pcl::FPFHEstimation Class Reference

FPFHEstimation estimates the Fast Point Feature Histogram (FPFH) descriptor for a given point cloud dataset containing points and normals. More...

#include <pcl/features/fpfh.h>

Inheritance diagram for pcl::FPFHEstimation:
Inheritance graph
[legend]
Collaboration diagram for pcl::FPFHEstimation:
Collaboration graph
[legend]

List of all members.

Public Types

typedef Feature< PointInT,
PointOutT >::PointCloudOut 
PointCloudOut
typedef pcl::PointCloud< PointNT > PointCloudN
typedef PointCloudN::Ptr PointCloudNPtr
typedef PointCloudN::ConstPtr PointCloudNConstPtr
typedef boost::shared_ptr
< FeatureFromNormals< PointInT,
PointNT, PointOutT > > 
Ptr
typedef boost::shared_ptr
< const FeatureFromNormals
< PointInT, PointNT, PointOutT > > 
ConstPtr

Public Member Functions

 FPFHEstimation ()
 Empty constructor.
bool computePairFeatures (const pcl::PointCloud< PointInT > &cloud, const pcl::PointCloud< PointNT > &normals, int p_idx, int q_idx, float &f1, float &f2, float &f3, float &f4)
 Compute the 4-tuple representation containing the three angles and one distance between two points represented by Cartesian coordinates and normals.
void computePointSPFHSignature (const pcl::PointCloud< PointInT > &cloud, const pcl::PointCloud< PointNT > &normals, int p_idx, int row, const std::vector< int > &indices, Eigen::MatrixXf &hist_f1, Eigen::MatrixXf &hist_f2, Eigen::MatrixXf &hist_f3)
 Estimate the SPFH (Simple Point Feature Histograms) individual signatures of the three angular (f1, f2, f3) features for a given point based on its spatial neighborhood of 3D points with normals.
void weightPointSPFHSignature (const Eigen::MatrixXf &hist_f1, const Eigen::MatrixXf &hist_f2, const Eigen::MatrixXf &hist_f3, const std::vector< int > &indices, const std::vector< float > &dists, Eigen::VectorXf &fpfh_histogram)
 Weight the SPFH (Simple Point Feature Histograms) individual histograms to create the final FPFH (Fast Point Feature Histogram) for a given point based on its 3D spatial neighborhood.
void setNrSubdivisions (int nr_bins_f1, int nr_bins_f2, int nr_bins_f3)
 Set the number of subdivisions for each angular feature interval.
void getNrSubdivisions (int &nr_bins_f1, int &nr_bins_f2, int &nr_bins_f3)
 Get the number of subdivisions for each angular feature interval.
void setInputNormals (const PointCloudNConstPtr &normals)
 Provide a pointer to the input dataset that contains the point normals of the XYZ dataset.
PointCloudNConstPtr getInputNormals ()
 Get a pointer to the normals of the input XYZ point cloud dataset.

Detailed Description

FPFHEstimation estimates the Fast Point Feature Histogram (FPFH) descriptor for a given point cloud dataset containing points and normals.

Note:
If you use this code in any academic work, please cite:
Note:
The code is stateful as we do not expect this class to be multicore parallelized. Please look at FPFHEstimationOMP for examples on parallel implementations of the FPFH (Fast Point Feature Histogram).
Author:
Radu Bogdan Rusu

Member Typedef Documentation

typedef boost::shared_ptr< const FeatureFromNormals<PointInT, PointNT, PointOutT> > pcl::FeatureFromNormals::ConstPtr [inherited]

Definition at line 290 of file feature.h.

Reimplemented in pcl::SpinImageEstimation.

Definition at line 285 of file feature.h.

Reimplemented in pcl::SpinImageEstimation.

Definition at line 287 of file feature.h.

Reimplemented in pcl::SpinImageEstimation.

Definition at line 286 of file feature.h.

Reimplemented from pcl::FeatureFromNormals< PointInT, PointNT, PointOutT >.

Reimplemented in pcl::FPFHEstimationOMP.

Definition at line 83 of file fpfh.h.

typedef boost::shared_ptr< FeatureFromNormals<PointInT, PointNT, PointOutT> > pcl::FeatureFromNormals::Ptr [inherited]

Definition at line 289 of file feature.h.


Constructor & Destructor Documentation

pcl::FPFHEstimation::FPFHEstimation ( ) [inline]

Empty constructor.

Definition at line 86 of file fpfh.h.


Member Function Documentation

bool pcl::FPFHEstimation::computePairFeatures ( const pcl::PointCloud< PointInT > &  cloud,
const pcl::PointCloud< PointNT > &  normals,
int  p_idx,
int  q_idx,
float &  f1,
float &  f2,
float &  f3,
float &  f4 
)

Compute the 4-tuple representation containing the three angles and one distance between two points represented by Cartesian coordinates and normals.

Note:
For explanations about the features, please see the literature mentioned above (the order of the features might be different).
Parameters:
cloudthe dataset containing the XYZ Cartesian coordinates of the two points
normalsthe dataset containing the surface normals (assuming normalized vectors) at each point in cloud
p_idxthe index of the first point (source)
q_idxthe index of the second point (target)
f1the first angular feature (angle between the projection of nq_idx and u)
f2the second angular feature (angle between nq_idx and v)
f3the third angular feature (angle between np_idx and |p_idx - q_idx|)
f4the distance feature (p_idx - q_idx)

Definition at line 46 of file fpfh.hpp.

void pcl::FPFHEstimation::computePointSPFHSignature ( const pcl::PointCloud< PointInT > &  cloud,
const pcl::PointCloud< PointNT > &  normals,
int  p_idx,
int  row,
const std::vector< int > &  indices,
Eigen::MatrixXf &  hist_f1,
Eigen::MatrixXf &  hist_f2,
Eigen::MatrixXf &  hist_f3 
)

Estimate the SPFH (Simple Point Feature Histograms) individual signatures of the three angular (f1, f2, f3) features for a given point based on its spatial neighborhood of 3D points with normals.

Parameters:
cloudthe dataset containing the XYZ Cartesian coordinates of the two points
normalsthe dataset containing the surface normals at each point in cloud
p_idxthe index of the query point (source)
rowthe index row in feature histogramms
indicesthe k-neighborhood point indices in the dataset
hist_f1the resultant SPFH histogram for feature f1
hist_f2the resultant SPFH histogram for feature f2
hist_f3the resultant SPFH histogram for feature f3

Definition at line 59 of file fpfh.hpp.

PointCloudNConstPtr pcl::FeatureFromNormals::getInputNormals ( ) [inline, inherited]

Get a pointer to the normals of the input XYZ point cloud dataset.

Definition at line 312 of file feature.h.

void pcl::FPFHEstimation::getNrSubdivisions ( int &  nr_bins_f1,
int &  nr_bins_f2,
int &  nr_bins_f3 
) [inline]

Get the number of subdivisions for each angular feature interval.

Definition at line 157 of file fpfh.h.

void pcl::FeatureFromNormals::setInputNormals ( const PointCloudNConstPtr normals) [inline, inherited]

Provide a pointer to the input dataset that contains the point normals of the XYZ dataset.

In case of search surface is set to be different from the input cloud, normals should correspond to the search surface, not the input cloud!

Parameters:
normalsthe const boost shared pointer to a PointCloud of normals. By convention, L2 norm of each normal should be 1.

Definition at line 308 of file feature.h.

void pcl::FPFHEstimation::setNrSubdivisions ( int  nr_bins_f1,
int  nr_bins_f2,
int  nr_bins_f3 
) [inline]

Set the number of subdivisions for each angular feature interval.

Parameters:
nr_bins_f1number of subdivisions for the first angular feature
nr_bins_f2number of subdivisions for the second angular feature
nr_bins_f3number of subdivisions for the third angular feature

Definition at line 148 of file fpfh.h.

void pcl::FPFHEstimation::weightPointSPFHSignature ( const Eigen::MatrixXf &  hist_f1,
const Eigen::MatrixXf &  hist_f2,
const Eigen::MatrixXf &  hist_f3,
const std::vector< int > &  indices,
const std::vector< float > &  dists,
Eigen::VectorXf &  fpfh_histogram 
)

Weight the SPFH (Simple Point Feature Histograms) individual histograms to create the final FPFH (Fast Point Feature Histogram) for a given point based on its 3D spatial neighborhood.

Parameters:
hist_f1the histogram feature vector of f1 values over the given patch
hist_f2the histogram feature vector of f2 values over the given patch
hist_f3the histogram feature vector of f3 values over the given patch
indicesthe point indices of p_idx's k-neighborhood in the point cloud
diststhe distances from p_idx to all its k-neighbors
fpfh_histogramthe resultant FPFH histogram representing the feature at the query point

Definition at line 103 of file fpfh.hpp.


The documentation for this class was generated from the following files:
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Defines