Point Cloud Library (PCL)
1.3.1
|
Surface normal estimation on dense data using integral images. More...
#include <pcl/features/integral_image_normal.h>
Public Types | |
enum | NormalEstimationMethod { COVARIANCE_MATRIX, AVERAGE_3D_GRADIENT, AVERAGE_DEPTH_CHANGE } |
typedef Feature< PointInT, PointOutT >::PointCloudIn | PointCloudIn |
typedef Feature< PointInT, PointOutT >::PointCloudOut | PointCloudOut |
typedef PCLBase< PointInT > | BaseClass |
typedef boost::shared_ptr < Feature< PointInT, PointOutT > > | Ptr |
typedef boost::shared_ptr < const Feature< PointInT, PointOutT > > | ConstPtr |
typedef pcl::search::Search < PointInT > | KdTree |
typedef pcl::search::Search < PointInT >::Ptr | KdTreePtr |
typedef PointCloudIn::Ptr | PointCloudInPtr |
typedef PointCloudIn::ConstPtr | PointCloudInConstPtr |
typedef boost::function< int(size_t, double, std::vector< int > &, std::vector< float > &)> | SearchMethod |
typedef boost::function< int(const PointCloudIn &cloud, size_t index, double, std::vector < int > &, std::vector< float > &)> | SearchMethodSurface |
Public Member Functions | |
IntegralImageNormalEstimation () | |
Constructor. | |
virtual | ~IntegralImageNormalEstimation () |
Destructor. | |
void | setRectSize (const int width, const int height) |
Set the regions size which is considered for normal estimation. | |
void | computePointNormal (const int pos_x, const int pos_y, PointOutT &normal) |
Computes the normal at the specified position. | |
void | setMaxDepthChangeFactor (float max_depth_change_factor) |
The depth change threshold for computing object borders. | |
void | setNormalSmoothingSize (float normal_smoothing_size) |
Set the normal smoothing size. | |
void | setNormalEstimationMethod (NormalEstimationMethod normal_estimation_method) |
Set the normal estimation method. | |
void | setDepthDependentSmoothing (bool use_depth_dependent_smoothing) |
Set whether to use depth depending smoothing or not. | |
virtual void | setInputCloud (const typename PointCloudIn::ConstPtr &cloud) |
Provide a pointer to the input dataset (overwrites the PCLBase::setInputCloud method) | |
void | setSearchSurface (const PointCloudInConstPtr &cloud) |
Provide a pointer to a dataset to add additional information to estimate the features for every point in the input dataset. | |
PointCloudInConstPtr | getSearchSurface () |
Get a pointer to the surface point cloud dataset. | |
void | setSearchMethod (const KdTreePtr &tree) |
Provide a pointer to the search object. | |
KdTreePtr | getSearchMethod () |
Get a pointer to the search method used. | |
double | getSearchParameter () |
Get the internal search parameter. | |
void | setKSearch (int k) |
Set the number of k nearest neighbors to use for the feature estimation. | |
int | getKSearch () |
get the number of k nearest neighbors used for the feature estimation. | |
void | setRadiusSearch (double radius) |
Set the sphere radius that is to be used for determining the nearest neighbors used for the feature estimation. | |
double | getRadiusSearch () |
Get the sphere radius used for determining the neighbors. | |
void | compute (PointCloudOut &output) |
Base method for feature estimation for all points given in <setInputCloud (), setIndices ()> using the surface in setSearchSurface () and the spatial locator in setSearchMethod () | |
int | searchForNeighbors (size_t index, double parameter, std::vector< int > &indices, std::vector< float > &distances) const |
Search for k-nearest neighbors using the spatial locator from setSearchmethod, and the given surface from setSearchSurface. | |
int | searchForNeighbors (const PointCloudIn &cloud, size_t index, double parameter, std::vector< int > &indices, std::vector< float > &distances) const |
Search for k-nearest neighbors using the spatial locator from setSearchmethod, and the given surface from setSearchSurface. |
Surface normal estimation on dense data using integral images.
typedef PCLBase<PointInT> pcl::Feature::BaseClass [inherited] |
typedef boost::shared_ptr< const Feature<PointInT, PointOutT> > pcl::Feature::ConstPtr [inherited] |
Reimplemented in pcl::FeatureFromNormals.
typedef pcl::search::Search<PointInT> pcl::Feature::KdTree [inherited] |
typedef pcl::search::Search<PointInT>::Ptr pcl::Feature::KdTreePtr [inherited] |
typedef Feature<PointInT, PointOutT>::PointCloudIn pcl::IntegralImageNormalEstimation::PointCloudIn |
Reimplemented from pcl::Feature< PointInT, PointOutT >.
Definition at line 70 of file integral_image_normal.h.
typedef PointCloudIn::ConstPtr pcl::Feature::PointCloudInConstPtr [inherited] |
typedef PointCloudIn::Ptr pcl::Feature::PointCloudInPtr [inherited] |
typedef Feature<PointInT, PointOutT>::PointCloudOut pcl::IntegralImageNormalEstimation::PointCloudOut |
Reimplemented from pcl::Feature< PointInT, PointOutT >.
Definition at line 71 of file integral_image_normal.h.
typedef boost::shared_ptr< Feature<PointInT, PointOutT> > pcl::Feature::Ptr [inherited] |
Reimplemented in pcl::FeatureFromNormals.
typedef boost::function<int (size_t, double, std::vector<int> &, std::vector<float> &)> pcl::Feature::SearchMethod [inherited] |
typedef boost::function<int (const PointCloudIn &cloud, size_t index, double, std::vector<int> &, std::vector<float> &)> pcl::Feature::SearchMethodSurface [inherited] |
Definition at line 63 of file integral_image_normal.h.
pcl::IntegralImageNormalEstimation::IntegralImageNormalEstimation | ( | ) | [inline] |
Constructor.
Definition at line 74 of file integral_image_normal.h.
pcl::IntegralImageNormalEstimation::~IntegralImageNormalEstimation | ( | ) | [virtual] |
Destructor.
Definition at line 44 of file integral_image_normal.hpp.
void pcl::Feature::compute | ( | PointCloudOut & | output | ) | [inherited] |
Base method for feature estimation for all points given in <setInputCloud (), setIndices ()> using the surface in setSearchSurface () and the spatial locator in setSearchMethod ()
output | the resultant point cloud model dataset containing the estimated features |
void pcl::IntegralImageNormalEstimation::computePointNormal | ( | const int | pos_x, |
const int | pos_y, | ||
PointOutT & | normal | ||
) |
Computes the normal at the specified position.
pos_x | x position (pixel) |
pos_y | y position (pixel) |
normal | the output estimated normal |
Definition at line 181 of file integral_image_normal.hpp.
int pcl::Feature::getKSearch | ( | ) | [inline, inherited] |
double pcl::Feature::getRadiusSearch | ( | ) | [inline, inherited] |
KdTreePtr pcl::Feature::getSearchMethod | ( | ) | [inline, inherited] |
double pcl::Feature::getSearchParameter | ( | ) | [inline, inherited] |
PointCloudInConstPtr pcl::Feature::getSearchSurface | ( | ) | [inline, inherited] |
int pcl::Feature::searchForNeighbors | ( | size_t | index, |
double | parameter, | ||
std::vector< int > & | indices, | ||
std::vector< float > & | distances | ||
) | const [inline, inherited] |
Search for k-nearest neighbors using the spatial locator from setSearchmethod, and the given surface from setSearchSurface.
index | the index of the query point |
parameter | the search parameter (either k or radius) |
indices | the resultant vector of indices representing the k-nearest neighbors |
distances | the resultant vector of distances representing the distances from the query point to the k-nearest neighbors |
int pcl::Feature::searchForNeighbors | ( | const PointCloudIn & | cloud, |
size_t | index, | ||
double | parameter, | ||
std::vector< int > & | indices, | ||
std::vector< float > & | distances | ||
) | const [inline, inherited] |
Search for k-nearest neighbors using the spatial locator from setSearchmethod, and the given surface from setSearchSurface.
cloud | the query point cloud |
index | the index of the query point in cloud |
parameter | the search parameter (either k or radius) |
indices | the resultant vector of indices representing the k-nearest neighbors |
distances | the resultant vector of distances representing the distances from the query point to the k-nearest neighbors |
void pcl::IntegralImageNormalEstimation::setDepthDependentSmoothing | ( | bool | use_depth_dependent_smoothing | ) | [inline] |
Set whether to use depth depending smoothing or not.
use_depth_dependent_smoothing | decides whether the smoothing is depth dependent |
Definition at line 151 of file integral_image_normal.h.
virtual void pcl::IntegralImageNormalEstimation::setInputCloud | ( | const typename PointCloudIn::ConstPtr & | cloud | ) | [inline, virtual] |
Provide a pointer to the input dataset (overwrites the PCLBase::setInputCloud method)
cloud | the const boost shared pointer to a PointCloud message |
Definition at line 160 of file integral_image_normal.h.
void pcl::Feature::setKSearch | ( | int | k | ) | [inline, inherited] |
void pcl::IntegralImageNormalEstimation::setMaxDepthChangeFactor | ( | float | max_depth_change_factor | ) | [inline] |
The depth change threshold for computing object borders.
max_depth_change_factor | the depth change threshold for computing object borders based on depth changes |
Definition at line 114 of file integral_image_normal.h.
void pcl::IntegralImageNormalEstimation::setNormalEstimationMethod | ( | NormalEstimationMethod | normal_estimation_method | ) | [inline] |
Set the normal estimation method.
The current implemented algorithms are:
normal_estimation_method | the method used for normal estimation |
Definition at line 142 of file integral_image_normal.h.
void pcl::IntegralImageNormalEstimation::setNormalSmoothingSize | ( | float | normal_smoothing_size | ) | [inline] |
Set the normal smoothing size.
normal_smoothing_size | factor which influences the size of the area used to smooth normals (depth dependent if useDepthDependentSmoothing is true) |
Definition at line 124 of file integral_image_normal.h.
void pcl::Feature::setRadiusSearch | ( | double | radius | ) | [inline, inherited] |
void pcl::IntegralImageNormalEstimation::setRectSize | ( | const int | width, |
const int | height | ||
) |
Set the regions size which is considered for normal estimation.
width | the width of the search rectangle |
height | the height of the search rectangle |
Definition at line 79 of file integral_image_normal.hpp.
void pcl::Feature::setSearchMethod | ( | const KdTreePtr & | tree | ) | [inline, inherited] |
void pcl::Feature::setSearchSurface | ( | const PointCloudInConstPtr & | cloud | ) | [inline, inherited] |
Provide a pointer to a dataset to add additional information to estimate the features for every point in the input dataset.
This is optional, if this is not set, it will only use the data in the input cloud to estimate the features. This is useful when you only need to compute the features for a downsampled cloud.
cloud | a pointer to a PointCloud message |