Point Cloud Library (PCL) 1.12.0
statistical_multiscale_interest_region_extraction.h
1/*
2 * Software License Agreement (BSD License)
3 *
4 * Point Cloud Library (PCL) - www.pointclouds.org
5 * Copyright (c) 2011, Alexandru-Eugen Ichim
6 * Copyright (c) 2012-, Open Perception, Inc.
7 *
8 * All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 *
14 * * Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * * Redistributions in binary form must reproduce the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer in the documentation and/or other materials provided
19 * with the distribution.
20 * * Neither the name of the copyright holder(s) nor the names of its
21 * contributors may be used to endorse or promote products derived
22 * from this software without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
27 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
28 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
29 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
30 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
31 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
32 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
34 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 *
37 * $Id$
38 */
39
40#pragma once
41
42#include <pcl/pcl_base.h>
43#include <list>
44
45namespace pcl
46{
47 /** \brief Class for extracting interest regions from unstructured point clouds, based on a multi scale
48 * statistical approach.
49 * Please refer to the following publications for more details:
50 * Ranjith Unnikrishnan and Martial Hebert
51 * Multi-Scale Interest Regions from Unorganized Point Clouds
52 * Workshop on Search in 3D (S3D), IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)
53 * June, 2008
54 *
55 * Statistical Approaches to Multi-scale Point Cloud Processing
56 * Ranjith Unnikrishnan
57 * PhD Thesis
58 * The Robotics Institute Carnegie Mellon University
59 * May, 2008
60 *
61 * \author Alexandru-Eugen Ichim
62 */
63 template <typename PointT>
65 {
66 public:
67 using IndicesPtr = shared_ptr<pcl::Indices >;
68 using Ptr = shared_ptr<StatisticalMultiscaleInterestRegionExtraction<PointT> >;
69 using ConstPtr = shared_ptr<const StatisticalMultiscaleInterestRegionExtraction<PointT> >;
70
71
72 /** \brief Empty constructor */
74 {};
75
76 /** \brief Method that generates the underlying nearest neighbor graph based on the
77 * input point cloud
78 */
79 void
81
82 /** \brief The method to be called in order to run the algorithm and produce the resulting
83 * set of regions of interest
84 */
85 void
86 computeRegionsOfInterest (std::list<IndicesPtr>& rois);
87
88 /** \brief Method for setting the scale parameters for the algorithm
89 * \param scale_values vector of scales to determine the size of each scaling step
90 */
91 inline void
92 setScalesVector (std::vector<float> &scale_values) { scale_values_ = scale_values; }
93
94 /** \brief Method for getting the scale parameters vector */
95 inline std::vector<float>
96 getScalesVector () { return scale_values_; }
97
98
99 private:
100 /** \brief Checks if all the necessary input was given and the computations can successfully start */
101 bool
102 initCompute ();
103
104 void
105 geodesicFixedRadiusSearch (std::size_t &query_index,
106 float &radius,
107 std::vector<int> &result_indices);
108
109 void
110 computeF ();
111
112 void
113 extractExtrema (std::list<IndicesPtr>& rois);
114
117 std::vector<float> scale_values_;
118 std::vector<std::vector<float> > geodesic_distances_;
119 std::vector<std::vector<float> > F_scales_;
120 };
121}
122
123
124#ifdef PCL_NO_PRECOMPILE
125#include <pcl/features/impl/statistical_multiscale_interest_region_extraction.hpp>
126#endif
PCL base class.
Definition: pcl_base.h:70
Class for extracting interest regions from unstructured point clouds, based on a multi scale statisti...
void computeRegionsOfInterest(std::list< IndicesPtr > &rois)
The method to be called in order to run the algorithm and produce the resulting set of regions of int...
shared_ptr< StatisticalMultiscaleInterestRegionExtraction< PointT > > Ptr
void generateCloudGraph()
Method that generates the underlying nearest neighbor graph based on the input point cloud.
std::vector< float > getScalesVector()
Method for getting the scale parameters vector.
void setScalesVector(std::vector< float > &scale_values)
Method for setting the scale parameters for the algorithm.
shared_ptr< const StatisticalMultiscaleInterestRegionExtraction< PointT > > ConstPtr