Point Cloud Library (PCL) 1.12.0
ppf.hpp
1/*
2 * Software License Agreement (BSD License)
3 *
4 * Point Cloud Library (PCL) - www.pointclouds.org
5 * Copyright (c) 2011, Alexandru-Eugen Ichim
6 * Copyright (c) 2012-, Open Perception, Inc.
7 *
8 * All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 *
14 * * Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * * Redistributions in binary form must reproduce the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer in the documentation and/or other materials provided
19 * with the distribution.
20 * * Neither the name of the copyright holder(s) nor the names of its
21 * contributors may be used to endorse or promote products derived
22 * from this software without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
27 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
28 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
29 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
30 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
31 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
32 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
34 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 *
37 * $Id$
38 */
39
40#ifndef PCL_FEATURES_IMPL_PPF_H_
41#define PCL_FEATURES_IMPL_PPF_H_
42
43#include <pcl/features/ppf.h>
44#include <pcl/features/pfh.h>
45#include <pcl/features/pfh_tools.h> // for computePairFeatures
46
47//////////////////////////////////////////////////////////////////////////////////////////////
48template <typename PointInT, typename PointNT, typename PointOutT>
50 : FeatureFromNormals <PointInT, PointNT, PointOutT> ()
51{
52 feature_name_ = "PPFEstimation";
53 // Slight hack in order to pass the check for the presence of a search method in Feature::initCompute ()
56}
57
58
59//////////////////////////////////////////////////////////////////////////////////////////////
60template <typename PointInT, typename PointNT, typename PointOutT> void
62{
63 // Initialize output container - overwrite the sizes done by Feature::initCompute ()
64 output.resize (indices_->size () * input_->size ());
65 output.height = 1;
66 output.width = output.size ();
67 output.is_dense = true;
68
69 // Compute point pair features for every pair of points in the cloud
70 for (std::size_t index_i = 0; index_i < indices_->size (); ++index_i)
71 {
72 std::size_t i = (*indices_)[index_i];
73 for (std::size_t j = 0 ; j < input_->size (); ++j)
74 {
75 PointOutT p;
76 if (i != j)
77 {
78 if (//pcl::computePPFPairFeature
79 pcl::computePairFeatures ((*input_)[i].getVector4fMap (),
80 (*normals_)[i].getNormalVector4fMap (),
81 (*input_)[j].getVector4fMap (),
82 (*normals_)[j].getNormalVector4fMap (),
83 p.f1, p.f2, p.f3, p.f4))
84 {
85 // Calculate alpha_m angle
86 Eigen::Vector3f model_reference_point = (*input_)[i].getVector3fMap (),
87 model_reference_normal = (*normals_)[i].getNormalVector3fMap (),
88 model_point = (*input_)[j].getVector3fMap ();
89 float rotation_angle = std::acos (model_reference_normal.dot (Eigen::Vector3f::UnitX ()));
90 bool parallel_to_x = (model_reference_normal.y() == 0.0f && model_reference_normal.z() == 0.0f);
91 Eigen::Vector3f rotation_axis = (parallel_to_x)?(Eigen::Vector3f::UnitY ()):(model_reference_normal.cross (Eigen::Vector3f::UnitX ()). normalized());
92 Eigen::AngleAxisf rotation_mg (rotation_angle, rotation_axis);
93 Eigen::Affine3f transform_mg (Eigen::Translation3f ( rotation_mg * ((-1) * model_reference_point)) * rotation_mg);
94
95 Eigen::Vector3f model_point_transformed = transform_mg * model_point;
96 float angle = std::atan2 ( -model_point_transformed(2), model_point_transformed(1));
97 if (std::sin (angle) * model_point_transformed(2) < 0.0f)
98 angle *= (-1);
99 p.alpha_m = -angle;
100 }
101 else
102 {
103 PCL_ERROR ("[pcl::%s::computeFeature] Computing pair feature vector between points %u and %u went wrong.\n", getClassName ().c_str (), i, j);
104 p.f1 = p.f2 = p.f3 = p.f4 = p.alpha_m = std::numeric_limits<float>::quiet_NaN ();
105 output.is_dense = false;
106 }
107 }
108 // Do not calculate the feature for identity pairs (i, i) as they are not used
109 // in the following computations
110 else
111 {
112 p.f1 = p.f2 = p.f3 = p.f4 = p.alpha_m = std::numeric_limits<float>::quiet_NaN ();
113 output.is_dense = false;
114 }
115
116 output[index_i*input_->size () + j] = p;
117 }
118 }
119}
120
121#define PCL_INSTANTIATE_PPFEstimation(T,NT,OutT) template class PCL_EXPORTS pcl::PPFEstimation<T,NT,OutT>;
122
123
124#endif // PCL_FEATURES_IMPL_PPF_H_
Feature represents the base feature class.
Definition: feature.h:107
std::string feature_name_
The feature name.
Definition: feature.h:223
Class that calculates the "surflet" features for each pair in the given pointcloud.
Definition: ppf.h:76
PPFEstimation()
Empty Constructor.
Definition: ppf.hpp:49
search::KdTree is a wrapper class which inherits the pcl::KdTree class for performing search function...
Definition: kdtree.h:62
PCL_EXPORTS bool computePairFeatures(const Eigen::Vector4f &p1, const Eigen::Vector4f &n1, const Eigen::Vector4f &p2, const Eigen::Vector4f &n2, float &f1, float &f2, float &f3, float &f4)
Compute the 4-tuple representation containing the three angles and one distance between two points re...