Point Cloud Library (PCL) 1.12.0
Loading...
Searching...
No Matches
sac_model_cylinder.hpp
1/*
2 * Software License Agreement (BSD License)
3 *
4 * Point Cloud Library (PCL) - www.pointclouds.org
5 * Copyright (c) 2009-2010, Willow Garage, Inc.
6 * Copyright (c) 2012-, Open Perception, Inc.
7 *
8 * All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 *
14 * * Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * * Redistributions in binary form must reproduce the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer in the documentation and/or other materials provided
19 * with the distribution.
20 * * Neither the name of the copyright holder(s) nor the names of its
21 * contributors may be used to endorse or promote products derived
22 * from this software without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
27 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
28 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
29 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
30 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
31 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
32 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
34 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 *
37 * $Id$
38 *
39 */
40
41#ifndef PCL_SAMPLE_CONSENSUS_IMPL_SAC_MODEL_CYLINDER_H_
42#define PCL_SAMPLE_CONSENSUS_IMPL_SAC_MODEL_CYLINDER_H_
43
44#include <unsupported/Eigen/NonLinearOptimization> // for LevenbergMarquardt
45#include <pcl/sample_consensus/sac_model_cylinder.h>
46#include <pcl/common/common.h> // for getAngle3D
47#include <pcl/common/concatenate.h>
48
49//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
50template <typename PointT, typename PointNT> bool
52{
53 if (samples.size () != sample_size_)
54 {
55 PCL_ERROR ("[pcl::SampleConsensusModelCylinder::isSampleGood] Wrong number of samples (is %lu, should be %lu)!\n", samples.size (), sample_size_);
56 return (false);
57 }
58 return (true);
59}
60
61//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
62template <typename PointT, typename PointNT> bool
64 const Indices &samples, Eigen::VectorXf &model_coefficients) const
65{
66 // Need 2 samples
67 if (samples.size () != sample_size_)
68 {
69 PCL_ERROR ("[pcl::SampleConsensusModelCylinder::computeModelCoefficients] Invalid set of samples given (%lu)!\n", samples.size ());
70 return (false);
71 }
72
73 if (!normals_)
74 {
75 PCL_ERROR ("[pcl::SampleConsensusModelCylinder::computeModelCoefficients] No input dataset containing normals was given!\n");
76 return (false);
77 }
78
79 if (std::abs ((*input_)[samples[0]].x - (*input_)[samples[1]].x) <= std::numeric_limits<float>::epsilon () &&
80 std::abs ((*input_)[samples[0]].y - (*input_)[samples[1]].y) <= std::numeric_limits<float>::epsilon () &&
81 std::abs ((*input_)[samples[0]].z - (*input_)[samples[1]].z) <= std::numeric_limits<float>::epsilon ())
82 {
83 return (false);
84 }
85
86 Eigen::Vector4f p1 ((*input_)[samples[0]].x, (*input_)[samples[0]].y, (*input_)[samples[0]].z, 0.0f);
87 Eigen::Vector4f p2 ((*input_)[samples[1]].x, (*input_)[samples[1]].y, (*input_)[samples[1]].z, 0.0f);
88
89 Eigen::Vector4f n1 ((*normals_)[samples[0]].normal[0], (*normals_)[samples[0]].normal[1], (*normals_)[samples[0]].normal[2], 0.0f);
90 Eigen::Vector4f n2 ((*normals_)[samples[1]].normal[0], (*normals_)[samples[1]].normal[1], (*normals_)[samples[1]].normal[2], 0.0f);
91 Eigen::Vector4f w = n1 + p1 - p2;
92
93 float a = n1.dot (n1);
94 float b = n1.dot (n2);
95 float c = n2.dot (n2);
96 float d = n1.dot (w);
97 float e = n2.dot (w);
98 float denominator = a*c - b*b;
99 float sc, tc;
100 // Compute the line parameters of the two closest points
101 if (denominator < 1e-8) // The lines are almost parallel
102 {
103 sc = 0.0f;
104 tc = (b > c ? d / b : e / c); // Use the largest denominator
105 }
106 else
107 {
108 sc = (b*e - c*d) / denominator;
109 tc = (a*e - b*d) / denominator;
110 }
111
112 // point_on_axis, axis_direction
113 Eigen::Vector4f line_pt = p1 + n1 + sc * n1;
114 Eigen::Vector4f line_dir = p2 + tc * n2 - line_pt;
115 line_dir.normalize ();
116
117 model_coefficients.resize (model_size_);
118 // model_coefficients.template head<3> () = line_pt.template head<3> ();
119 model_coefficients[0] = line_pt[0];
120 model_coefficients[1] = line_pt[1];
121 model_coefficients[2] = line_pt[2];
122 // model_coefficients.template segment<3> (3) = line_dir.template head<3> ();
123 model_coefficients[3] = line_dir[0];
124 model_coefficients[4] = line_dir[1];
125 model_coefficients[5] = line_dir[2];
126 // cylinder radius
127 model_coefficients[6] = static_cast<float> (sqrt (pcl::sqrPointToLineDistance (p1, line_pt, line_dir)));
128
129 if (model_coefficients[6] > radius_max_ || model_coefficients[6] < radius_min_)
130 return (false);
131
132 PCL_DEBUG ("[pcl::SampleConsensusModelCylinder::computeModelCoefficients] Model is (%g,%g,%g,%g,%g,%g,%g).\n",
133 model_coefficients[0], model_coefficients[1], model_coefficients[2], model_coefficients[3],
134 model_coefficients[4], model_coefficients[5], model_coefficients[6]);
135 return (true);
136}
137
138//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
139template <typename PointT, typename PointNT> void
141 const Eigen::VectorXf &model_coefficients, std::vector<double> &distances) const
142{
143 // Check if the model is valid given the user constraints
144 if (!isModelValid (model_coefficients))
145 {
146 distances.clear ();
147 return;
148 }
149
150 distances.resize (indices_->size ());
151
152 Eigen::Vector4f line_pt (model_coefficients[0], model_coefficients[1], model_coefficients[2], 0.0f);
153 Eigen::Vector4f line_dir (model_coefficients[3], model_coefficients[4], model_coefficients[5], 0.0f);
154 float ptdotdir = line_pt.dot (line_dir);
155 float dirdotdir = 1.0f / line_dir.dot (line_dir);
156 // Iterate through the 3d points and calculate the distances from them to the sphere
157 for (std::size_t i = 0; i < indices_->size (); ++i)
158 {
159 // Approximate the distance from the point to the cylinder as the difference between
160 // dist(point,cylinder_axis) and cylinder radius
161 // @note need to revise this.
162 Eigen::Vector4f pt ((*input_)[(*indices_)[i]].x, (*input_)[(*indices_)[i]].y, (*input_)[(*indices_)[i]].z, 0.0f);
163
164 const double weighted_euclid_dist = (1.0 - normal_distance_weight_) * std::abs (pointToLineDistance (pt, model_coefficients) - model_coefficients[6]);
165
166 // Calculate the point's projection on the cylinder axis
167 float k = (pt.dot (line_dir) - ptdotdir) * dirdotdir;
168 Eigen::Vector4f pt_proj = line_pt + k * line_dir;
169 Eigen::Vector4f dir = pt - pt_proj;
170 dir.normalize ();
172 // Calculate the angular distance between the point normal and the (dir=pt_proj->pt) vector
173 Eigen::Vector4f n ((*normals_)[(*indices_)[i]].normal[0], (*normals_)[(*indices_)[i]].normal[1], (*normals_)[(*indices_)[i]].normal[2], 0.0f);
174 double d_normal = std::abs (getAngle3D (n, dir));
175 d_normal = (std::min) (d_normal, M_PI - d_normal);
176
177 distances[i] = std::abs (normal_distance_weight_ * d_normal + weighted_euclid_dist);
178 }
180
181//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
182template <typename PointT, typename PointNT> void
184 const Eigen::VectorXf &model_coefficients, const double threshold, Indices &inliers)
185{
186 // Check if the model is valid given the user constraints
187 if (!isModelValid (model_coefficients))
189 inliers.clear ();
190 return;
191 }
192
193 inliers.clear ();
194 error_sqr_dists_.clear ();
195 inliers.reserve (indices_->size ());
196 error_sqr_dists_.reserve (indices_->size ());
197
198 Eigen::Vector4f line_pt (model_coefficients[0], model_coefficients[1], model_coefficients[2], 0.0f);
199 Eigen::Vector4f line_dir (model_coefficients[3], model_coefficients[4], model_coefficients[5], 0.0f);
200 float ptdotdir = line_pt.dot (line_dir);
201 float dirdotdir = 1.0f / line_dir.dot (line_dir);
202 // Iterate through the 3d points and calculate the distances from them to the sphere
203 for (std::size_t i = 0; i < indices_->size (); ++i)
204 {
205 // Approximate the distance from the point to the cylinder as the difference between
206 // dist(point,cylinder_axis) and cylinder radius
207 Eigen::Vector4f pt ((*input_)[(*indices_)[i]].x, (*input_)[(*indices_)[i]].y, (*input_)[(*indices_)[i]].z, 0.0f);
208 const double weighted_euclid_dist = (1.0 - normal_distance_weight_) * std::abs (pointToLineDistance (pt, model_coefficients) - model_coefficients[6]);
209 if (weighted_euclid_dist > threshold) // Early termination: cannot be an inlier
210 continue;
211
212 // Calculate the point's projection on the cylinder axis
213 float k = (pt.dot (line_dir) - ptdotdir) * dirdotdir;
214 Eigen::Vector4f pt_proj = line_pt + k * line_dir;
215 Eigen::Vector4f dir = pt - pt_proj;
216 dir.normalize ();
217
218 // Calculate the angular distance between the point normal and the (dir=pt_proj->pt) vector
219 Eigen::Vector4f n ((*normals_)[(*indices_)[i]].normal[0], (*normals_)[(*indices_)[i]].normal[1], (*normals_)[(*indices_)[i]].normal[2], 0.0f);
220 double d_normal = std::abs (getAngle3D (n, dir));
221 d_normal = (std::min) (d_normal, M_PI - d_normal);
222
223 double distance = std::abs (normal_distance_weight_ * d_normal + weighted_euclid_dist);
224 if (distance < threshold)
225 {
226 // Returns the indices of the points whose distances are smaller than the threshold
227 inliers.push_back ((*indices_)[i]);
228 error_sqr_dists_.push_back (distance);
229 }
230 }
231}
233//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
234template <typename PointT, typename PointNT> std::size_t
236 const Eigen::VectorXf &model_coefficients, const double threshold) const
237{
238 // Check if the model is valid given the user constraints
239 if (!isModelValid (model_coefficients))
240 return (0);
241
242 std::size_t nr_p = 0;
243
244 Eigen::Vector4f line_pt (model_coefficients[0], model_coefficients[1], model_coefficients[2], 0);
245 Eigen::Vector4f line_dir (model_coefficients[3], model_coefficients[4], model_coefficients[5], 0);
246 float ptdotdir = line_pt.dot (line_dir);
247 float dirdotdir = 1.0f / line_dir.dot (line_dir);
248 // Iterate through the 3d points and calculate the distances from them to the sphere
249 for (std::size_t i = 0; i < indices_->size (); ++i)
250 {
251 // Approximate the distance from the point to the cylinder as the difference between
252 // dist(point,cylinder_axis) and cylinder radius
253 Eigen::Vector4f pt ((*input_)[(*indices_)[i]].x, (*input_)[(*indices_)[i]].y, (*input_)[(*indices_)[i]].z, 0.0f);
254 const double weighted_euclid_dist = (1.0 - normal_distance_weight_) * std::abs (pointToLineDistance (pt, model_coefficients) - model_coefficients[6]);
255 if (weighted_euclid_dist > threshold) // Early termination: cannot be an inlier
256 continue;
257
258 // Calculate the point's projection on the cylinder axis
259 float k = (pt.dot (line_dir) - ptdotdir) * dirdotdir;
260 Eigen::Vector4f pt_proj = line_pt + k * line_dir;
261 Eigen::Vector4f dir = pt - pt_proj;
262 dir.normalize ();
263
264 // Calculate the angular distance between the point normal and the (dir=pt_proj->pt) vector
265 Eigen::Vector4f n ((*normals_)[(*indices_)[i]].normal[0], (*normals_)[(*indices_)[i]].normal[1], (*normals_)[(*indices_)[i]].normal[2], 0.0f);
266 double d_normal = std::abs (getAngle3D (n, dir));
267 d_normal = (std::min) (d_normal, M_PI - d_normal);
268
269 if (std::abs (normal_distance_weight_ * d_normal + weighted_euclid_dist) < threshold)
270 nr_p++;
271 }
272 return (nr_p);
273}
274
275//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
276template <typename PointT, typename PointNT> void
278 const Indices &inliers, const Eigen::VectorXf &model_coefficients, Eigen::VectorXf &optimized_coefficients) const
279{
280 optimized_coefficients = model_coefficients;
281
282 // Needs a set of valid model coefficients
283 if (!isModelValid (model_coefficients))
284 {
285 PCL_ERROR ("[pcl::SampleConsensusModelCylinder::optimizeModelCoefficients] Given model is invalid!\n");
286 return;
287 }
288
289 // Need more than the minimum sample size to make a difference
290 if (inliers.size () <= sample_size_)
291 {
292 PCL_ERROR ("[pcl::SampleConsensusModelCylinder:optimizeModelCoefficients] Not enough inliers found to optimize model coefficients (%lu)! Returning the same coefficients.\n", inliers.size ());
293 return;
294 }
295
296 OptimizationFunctor functor (this, inliers);
297 Eigen::NumericalDiff<OptimizationFunctor > num_diff (functor);
298 Eigen::LevenbergMarquardt<Eigen::NumericalDiff<OptimizationFunctor>, float> lm (num_diff);
299 int info = lm.minimize (optimized_coefficients);
300
301 // Compute the L2 norm of the residuals
302 PCL_DEBUG ("[pcl::SampleConsensusModelCylinder::optimizeModelCoefficients] LM solver finished with exit code %i, having a residual norm of %g. \nInitial solution: %g %g %g %g %g %g %g \nFinal solution: %g %g %g %g %g %g %g\n",
303 info, lm.fvec.norm (), model_coefficients[0], model_coefficients[1], model_coefficients[2], model_coefficients[3],
304 model_coefficients[4], model_coefficients[5], model_coefficients[6], optimized_coefficients[0], optimized_coefficients[1], optimized_coefficients[2], optimized_coefficients[3], optimized_coefficients[4], optimized_coefficients[5], optimized_coefficients[6]);
305
306 Eigen::Vector3f line_dir (optimized_coefficients[3], optimized_coefficients[4], optimized_coefficients[5]);
307 line_dir.normalize ();
308 optimized_coefficients[3] = line_dir[0];
309 optimized_coefficients[4] = line_dir[1];
310 optimized_coefficients[5] = line_dir[2];
311}
312
313//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
314template <typename PointT, typename PointNT> void
316 const Indices &inliers, const Eigen::VectorXf &model_coefficients, PointCloud &projected_points, bool copy_data_fields) const
317{
318 // Needs a valid set of model coefficients
319 if (!isModelValid (model_coefficients))
320 {
321 PCL_ERROR ("[pcl::SampleConsensusModelCylinder::projectPoints] Given model is invalid!\n");
322 return;
323 }
324
325 projected_points.header = input_->header;
326 projected_points.is_dense = input_->is_dense;
327
328 Eigen::Vector4f line_pt (model_coefficients[0], model_coefficients[1], model_coefficients[2], 0.0f);
329 Eigen::Vector4f line_dir (model_coefficients[3], model_coefficients[4], model_coefficients[5], 0.0f);
330 float ptdotdir = line_pt.dot (line_dir);
331 float dirdotdir = 1.0f / line_dir.dot (line_dir);
332
333 // Copy all the data fields from the input cloud to the projected one?
334 if (copy_data_fields)
335 {
336 // Allocate enough space and copy the basics
337 projected_points.resize (input_->size ());
338 projected_points.width = input_->width;
339 projected_points.height = input_->height;
340
341 using FieldList = typename pcl::traits::fieldList<PointT>::type;
342 // Iterate over each point
343 for (std::size_t i = 0; i < projected_points.size (); ++i)
344 // Iterate over each dimension
345 pcl::for_each_type <FieldList> (NdConcatenateFunctor <PointT, PointT> ((*input_)[i], projected_points[i]));
346
347 // Iterate through the 3d points and calculate the distances from them to the cylinder
348 for (const auto &inlier : inliers)
349 {
350 Eigen::Vector4f p ((*input_)[inlier].x,
351 (*input_)[inlier].y,
352 (*input_)[inlier].z,
353 1);
354
355 float k = (p.dot (line_dir) - ptdotdir) * dirdotdir;
356
357 pcl::Vector4fMap pp = projected_points[inlier].getVector4fMap ();
358 pp.matrix () = line_pt + k * line_dir;
359
360 Eigen::Vector4f dir = p - pp;
361 dir.normalize ();
362
363 // Calculate the projection of the point onto the cylinder
364 pp += dir * model_coefficients[6];
365 }
366 }
367 else
368 {
369 // Allocate enough space and copy the basics
370 projected_points.resize (inliers.size ());
371 projected_points.width = inliers.size ();
372 projected_points.height = 1;
373
374 using FieldList = typename pcl::traits::fieldList<PointT>::type;
375 // Iterate over each point
376 for (std::size_t i = 0; i < inliers.size (); ++i)
377 // Iterate over each dimension
378 pcl::for_each_type <FieldList> (NdConcatenateFunctor <PointT, PointT> ((*input_)[inliers[i]], projected_points[i]));
379
380 // Iterate through the 3d points and calculate the distances from them to the cylinder
381 for (std::size_t i = 0; i < inliers.size (); ++i)
382 {
383 pcl::Vector4fMap pp = projected_points[i].getVector4fMap ();
384 pcl::Vector4fMapConst p = (*input_)[inliers[i]].getVector4fMap ();
385
386 float k = (p.dot (line_dir) - ptdotdir) * dirdotdir;
387 // Calculate the projection of the point on the line
388 pp.matrix () = line_pt + k * line_dir;
389
390 Eigen::Vector4f dir = p - pp;
391 dir.normalize ();
392
393 // Calculate the projection of the point onto the cylinder
394 pp += dir * model_coefficients[6];
395 }
396 }
397}
398
399//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
400template <typename PointT, typename PointNT> bool
402 const std::set<index_t> &indices, const Eigen::VectorXf &model_coefficients, const double threshold) const
403{
404 // Needs a valid model coefficients
405 if (!isModelValid (model_coefficients))
406 {
407 PCL_ERROR ("[pcl::SampleConsensusModelCylinder::doSamplesVerifyModel] Given model is invalid!\n");
408 return (false);
409 }
410
411 for (const auto &index : indices)
412 {
413 // Approximate the distance from the point to the cylinder as the difference between
414 // dist(point,cylinder_axis) and cylinder radius
415 // @note need to revise this.
416 Eigen::Vector4f pt ((*input_)[index].x, (*input_)[index].y, (*input_)[index].z, 0.0f);
417 if (std::abs (pointToLineDistance (pt, model_coefficients) - model_coefficients[6]) > threshold)
418 return (false);
419 }
420
421 return (true);
422}
423
424//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
425template <typename PointT, typename PointNT> double
427 const Eigen::Vector4f &pt, const Eigen::VectorXf &model_coefficients) const
428{
429 Eigen::Vector4f line_pt (model_coefficients[0], model_coefficients[1], model_coefficients[2], 0.0f);
430 Eigen::Vector4f line_dir (model_coefficients[3], model_coefficients[4], model_coefficients[5], 0.0f);
431 return sqrt(pcl::sqrPointToLineDistance (pt, line_pt, line_dir));
432}
433
434//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
435template <typename PointT, typename PointNT> void
437 const Eigen::Vector4f &pt, const Eigen::VectorXf &model_coefficients, Eigen::Vector4f &pt_proj) const
438{
439 Eigen::Vector4f line_pt (model_coefficients[0], model_coefficients[1], model_coefficients[2], 0.0f);
440 Eigen::Vector4f line_dir (model_coefficients[3], model_coefficients[4], model_coefficients[5], 0.0f);
441
442 float k = (pt.dot (line_dir) - line_pt.dot (line_dir)) * line_dir.dot (line_dir);
443 pt_proj = line_pt + k * line_dir;
444
445 Eigen::Vector4f dir = pt - pt_proj;
446 dir.normalize ();
447
448 // Calculate the projection of the point onto the cylinder
449 pt_proj += dir * model_coefficients[6];
450}
451
452//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
453template <typename PointT, typename PointNT> bool
454pcl::SampleConsensusModelCylinder<PointT, PointNT>::isModelValid (const Eigen::VectorXf &model_coefficients) const
455{
456 if (!SampleConsensusModel<PointT>::isModelValid (model_coefficients))
457 return (false);
458
459 // Check against template, if given
460 if (eps_angle_ > 0.0)
461 {
462 // Obtain the cylinder direction
463 const Eigen::Vector3f coeff(model_coefficients[3], model_coefficients[4], model_coefficients[5]);
464
465 double angle_diff = std::abs (getAngle3D (axis_, coeff));
466 angle_diff = (std::min) (angle_diff, M_PI - angle_diff);
467 // Check whether the current cylinder model satisfies our angle threshold criterion with respect to the given axis
468 if (angle_diff > eps_angle_)
469 {
470 PCL_DEBUG ("[pcl::SampleConsensusModelCylinder::isModelValid] Angle between cylinder direction and given axis is too large.\n");
471 return (false);
472 }
473 }
474
475 if (radius_min_ != -std::numeric_limits<double>::max() && model_coefficients[6] < radius_min_)
476 {
477 PCL_DEBUG ("[pcl::SampleConsensusModelCylinder::isModelValid] Radius is too small: should be larger than %g, but is %g.\n",
478 radius_min_, model_coefficients[6]);
479 return (false);
480 }
481 if (radius_max_ != std::numeric_limits<double>::max() && model_coefficients[6] > radius_max_)
482 {
483 PCL_DEBUG ("[pcl::SampleConsensusModelCylinder::isModelValid] Radius is too big: should be smaller than %g, but is %g.\n",
484 radius_max_, model_coefficients[6]);
485 return (false);
486 }
487
488 return (true);
489}
490
491#define PCL_INSTANTIATE_SampleConsensusModelCylinder(PointT, PointNT) template class PCL_EXPORTS pcl::SampleConsensusModelCylinder<PointT, PointNT>;
492
493#endif // PCL_SAMPLE_CONSENSUS_IMPL_SAC_MODEL_CYLINDER_H_
494
void getDistancesToModel(const Eigen::VectorXf &model_coefficients, std::vector< double > &distances) const override
Compute all distances from the cloud data to a given cylinder model.
void projectPoints(const Indices &inliers, const Eigen::VectorXf &model_coefficients, PointCloud &projected_points, bool copy_data_fields=true) const override
Create a new point cloud with inliers projected onto the cylinder model.
bool isModelValid(const Eigen::VectorXf &model_coefficients) const override
Check whether a model is valid given the user constraints.
void optimizeModelCoefficients(const Indices &inliers, const Eigen::VectorXf &model_coefficients, Eigen::VectorXf &optimized_coefficients) const override
Recompute the cylinder coefficients using the given inlier set and return them to the user.
std::size_t countWithinDistance(const Eigen::VectorXf &model_coefficients, const double threshold) const override
Count all the points which respect the given model coefficients as inliers.
void projectPointToCylinder(const Eigen::Vector4f &pt, const Eigen::VectorXf &model_coefficients, Eigen::Vector4f &pt_proj) const
Project a point onto a cylinder given by its model coefficients (point_on_axis, axis_direction,...
void selectWithinDistance(const Eigen::VectorXf &model_coefficients, const double threshold, Indices &inliers) override
Select all the points which respect the given model coefficients as inliers.
bool isSampleGood(const Indices &samples) const override
Check if a sample of indices results in a good sample of points indices.
typename SampleConsensusModel< PointT >::PointCloud PointCloud
bool doSamplesVerifyModel(const std::set< index_t > &indices, const Eigen::VectorXf &model_coefficients, const double threshold) const override
Verify whether a subset of indices verifies the given cylinder model coefficients.
double pointToLineDistance(const Eigen::Vector4f &pt, const Eigen::VectorXf &model_coefficients) const
Get the distance from a point to a line (represented by a point and a direction)
bool computeModelCoefficients(const Indices &samples, Eigen::VectorXf &model_coefficients) const override
Check whether the given index samples can form a valid cylinder model, compute the model coefficients...
SampleConsensusModel represents the base model class.
Definition sac_model.h:70
Define standard C methods and C++ classes that are common to all methods.
double getAngle3D(const Eigen::Vector4f &v1, const Eigen::Vector4f &v2, const bool in_degree=false)
Compute the smallest angle between two 3D vectors in radians (default) or degree.
Definition common.hpp:47
double sqrPointToLineDistance(const Eigen::Vector4f &pt, const Eigen::Vector4f &line_pt, const Eigen::Vector4f &line_dir)
Get the square distance from a point to a line (represented by a point and a direction)
Definition distances.h:75
Eigen::Map< Eigen::Vector4f, Eigen::Aligned > Vector4fMap
IndicesAllocator<> Indices
Type used for indices in PCL.
Definition types.h:133
const Eigen::Map< const Eigen::Vector4f, Eigen::Aligned > Vector4fMapConst
#define M_PI
Definition pcl_macros.h:201