Point Cloud Library (PCL) 1.12.0
Loading...
Searching...
No Matches
transformation_estimation_svd_scale.hpp
1/*
2 * Software License Agreement (BSD License)
3 *
4 * Point Cloud Library (PCL) - www.pointclouds.org
5 * Copyright (c) 2012-, Open Perception, Inc.
6 *
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 *
13 * * Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * * Redistributions in binary form must reproduce the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer in the documentation and/or other materials provided
18 * with the distribution.
19 * * Neither the name of the copyright holder(s) nor the names of its
20 * contributors may be used to endorse or promote products derived
21 * from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
27 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
29 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
31 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
33 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 * POSSIBILITY OF SUCH DAMAGE.
35 *
36 * $Id$
37 *
38 */
39
40#ifndef PCL_REGISTRATION_TRANSFORMATION_ESTIMATION_SVD_SCALE_HPP_
41#define PCL_REGISTRATION_TRANSFORMATION_ESTIMATION_SVD_SCALE_HPP_
42
43namespace pcl {
44
45namespace registration {
46
47template <typename PointSource, typename PointTarget, typename Scalar>
48void
51 const Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic>& cloud_src_demean,
52 const Eigen::Matrix<Scalar, 4, 1>& centroid_src,
53 const Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic>& cloud_tgt_demean,
54 const Eigen::Matrix<Scalar, 4, 1>& centroid_tgt,
55 Matrix4& transformation_matrix) const
56{
57 transformation_matrix.setIdentity();
58
59 // Assemble the correlation matrix H = source * target'
60 Eigen::Matrix<Scalar, 3, 3> H =
61 (cloud_src_demean * cloud_tgt_demean.transpose()).topLeftCorner(3, 3);
62
63 // Compute the Singular Value Decomposition
64 Eigen::JacobiSVD<Eigen::Matrix<Scalar, 3, 3>> svd(
65 H, Eigen::ComputeFullU | Eigen::ComputeFullV);
66 Eigen::Matrix<Scalar, 3, 3> u = svd.matrixU();
67 Eigen::Matrix<Scalar, 3, 3> v = svd.matrixV();
68
69 // Compute R = V * U'
70 if (u.determinant() * v.determinant() < 0) {
71 for (int x = 0; x < 3; ++x)
72 v(x, 2) *= -1;
73 }
74
75 Eigen::Matrix<Scalar, 3, 3> R = v * u.transpose();
76
77 // rotated cloud
78 Eigen::Matrix<Scalar, 4, 4> R4;
79 R4.block(0, 0, 3, 3) = R;
80 R4(0, 3) = 0;
81 R4(1, 3) = 0;
82 R4(2, 3) = 0;
83 R4(3, 3) = 1;
84
85 Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic> src_ = R4 * cloud_src_demean;
86
87 double sum_ss = 0.0f, sum_tt = 0.0f;
88 for (unsigned corrIdx = 0; corrIdx < cloud_src_demean.cols(); ++corrIdx) {
89 sum_ss += cloud_src_demean(0, corrIdx) * cloud_src_demean(0, corrIdx);
90 sum_ss += cloud_src_demean(1, corrIdx) * cloud_src_demean(1, corrIdx);
91 sum_ss += cloud_src_demean(2, corrIdx) * cloud_src_demean(2, corrIdx);
92
93 sum_tt += cloud_tgt_demean(0, corrIdx) * src_(0, corrIdx);
94 sum_tt += cloud_tgt_demean(1, corrIdx) * src_(1, corrIdx);
95 sum_tt += cloud_tgt_demean(2, corrIdx) * src_(2, corrIdx);
96 }
97
98 float scale = sum_tt / sum_ss;
99 transformation_matrix.topLeftCorner(3, 3) = scale * R;
100 const Eigen::Matrix<Scalar, 3, 1> Rc(scale * R * centroid_src.head(3));
101 transformation_matrix.block(0, 3, 3, 1) = centroid_tgt.head(3) - Rc;
102}
103
104} // namespace registration
105} // namespace pcl
106
107//#define PCL_INSTANTIATE_TransformationEstimationSVD(T,U) template class PCL_EXPORTS
108// pcl::registration::TransformationEstimationSVD<T,U>;
109
110#endif /* PCL_REGISTRATION_TRANSFORMATION_ESTIMATION_SVD_SCALE_HPP_ */
void getTransformationFromCorrelation(const Eigen::Matrix< Scalar, Eigen::Dynamic, Eigen::Dynamic > &cloud_src_demean, const Eigen::Matrix< Scalar, 4, 1 > &centroid_src, const Eigen::Matrix< Scalar, Eigen::Dynamic, Eigen::Dynamic > &cloud_tgt_demean, const Eigen::Matrix< Scalar, 4, 1 > &centroid_tgt, Matrix4 &transformation_matrix) const
Obtain a 4x4 rigid transformation matrix from a correlation matrix H = src.
typename TransformationEstimationSVD< PointSource, PointTarget, Scalar >::Matrix4 Matrix4