Point Cloud Library (PCL)  1.12.0
sac_model_circle.hpp
1 /*
2  * Software License Agreement (BSD License)
3  *
4  * Point Cloud Library (PCL) - www.pointclouds.org
5  * Copyright (c) 2009, Willow Garage, Inc.
6  * Copyright (c) 2012-, Open Perception, Inc.
7  *
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  *
14  * * Redistributions of source code must retain the above copyright
15  * notice, this list of conditions and the following disclaimer.
16  * * Redistributions in binary form must reproduce the above
17  * copyright notice, this list of conditions and the following
18  * disclaimer in the documentation and/or other materials provided
19  * with the distribution.
20  * * Neither the name of the copyright holder(s) nor the names of its
21  * contributors may be used to endorse or promote products derived
22  * from this software without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
27  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
28  * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
29  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
30  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
31  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
32  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
34  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35  * POSSIBILITY OF SUCH DAMAGE.
36  *
37  * $Id$
38  *
39  */
40 
41 #ifndef PCL_SAMPLE_CONSENSUS_IMPL_SAC_MODEL_CIRCLE_H_
42 #define PCL_SAMPLE_CONSENSUS_IMPL_SAC_MODEL_CIRCLE_H_
43 
44 #include <unsupported/Eigen/NonLinearOptimization> // for LevenbergMarquardt
45 #include <pcl/sample_consensus/sac_model_circle.h>
46 #include <pcl/common/concatenate.h>
47 
48 //////////////////////////////////////////////////////////////////////////
49 template <typename PointT> bool
51 {
52  if (samples.size () != sample_size_)
53  {
54  PCL_ERROR ("[pcl::SampleConsensusModelCircle2D::isSampleGood] Wrong number of samples (is %lu, should be %lu)!\n", samples.size (), sample_size_);
55  return (false);
56  }
57  // Get the values at the two points
58  Eigen::Array2d p0 ((*input_)[samples[0]].x, (*input_)[samples[0]].y);
59  Eigen::Array2d p1 ((*input_)[samples[1]].x, (*input_)[samples[1]].y);
60  Eigen::Array2d p2 ((*input_)[samples[2]].x, (*input_)[samples[2]].y);
61 
62  // Compute the segment values (in 2d) between p1 and p0
63  p1 -= p0;
64  // Compute the segment values (in 2d) between p2 and p0
65  p2 -= p0;
66 
67  Eigen::Array2d dy1dy2 = p1 / p2;
68 
69  return (dy1dy2[0] != dy1dy2[1]);
70 }
71 
72 //////////////////////////////////////////////////////////////////////////
73 template <typename PointT> bool
74 pcl::SampleConsensusModelCircle2D<PointT>::computeModelCoefficients (const Indices &samples, Eigen::VectorXf &model_coefficients) const
75 {
76  // Need 3 samples
77  if (samples.size () != sample_size_)
78  {
79  PCL_ERROR ("[pcl::SampleConsensusModelCircle2D::computeModelCoefficients] Invalid set of samples given (%lu)!\n", samples.size ());
80  return (false);
81  }
82 
83  model_coefficients.resize (model_size_);
84 
85  Eigen::Vector2d p0 ((*input_)[samples[0]].x, (*input_)[samples[0]].y);
86  Eigen::Vector2d p1 ((*input_)[samples[1]].x, (*input_)[samples[1]].y);
87  Eigen::Vector2d p2 ((*input_)[samples[2]].x, (*input_)[samples[2]].y);
88 
89  Eigen::Vector2d u = (p0 + p1) / 2.0;
90  Eigen::Vector2d v = (p1 + p2) / 2.0;
91 
92  Eigen::Vector2d p1p0dif = p1 - p0;
93  Eigen::Vector2d p2p1dif = p2 - p1;
94  Eigen::Vector2d uvdif = u - v;
95 
96  Eigen::Vector2d m (- p1p0dif[0] / p1p0dif[1], - p2p1dif[0] / p2p1dif[1]);
97 
98  // Center (x, y)
99  model_coefficients[0] = static_cast<float> ((m[0] * u[0] - m[1] * v[0] - uvdif[1] ) / (m[0] - m[1]));
100  model_coefficients[1] = static_cast<float> ((m[0] * m[1] * uvdif[0] + m[0] * v[1] - m[1] * u[1]) / (m[0] - m[1]));
101 
102  // Radius
103  model_coefficients[2] = static_cast<float> (sqrt ((model_coefficients[0] - p0[0]) * (model_coefficients[0] - p0[0]) +
104  (model_coefficients[1] - p0[1]) * (model_coefficients[1] - p0[1])));
105  PCL_DEBUG ("[pcl::SampleConsensusModelCircle2D::computeModelCoefficients] Model is (%g,%g,%g).\n",
106  model_coefficients[0], model_coefficients[1], model_coefficients[2]);
107  return (true);
108 }
109 
110 #define AT(POS) ((*input_)[(*indices_)[(POS)]])
111 
112 #ifdef __AVX__
113 // This function computes the squared distances (i.e. the distances without the square root) of 8 points to the center of the circle
114 template <typename PointT> inline __m256 pcl::SampleConsensusModelCircle2D<PointT>::sqr_dist8 (const std::size_t i, const __m256 a_vec, const __m256 b_vec) const
115 {
116  const __m256 tmp1 = _mm256_sub_ps (_mm256_set_ps (AT(i ).x, AT(i+1).x, AT(i+2).x, AT(i+3).x, AT(i+4).x, AT(i+5).x, AT(i+6).x, AT(i+7).x), a_vec);
117  const __m256 tmp2 = _mm256_sub_ps (_mm256_set_ps (AT(i ).y, AT(i+1).y, AT(i+2).y, AT(i+3).y, AT(i+4).y, AT(i+5).y, AT(i+6).y, AT(i+7).y), b_vec);
118  return _mm256_add_ps (_mm256_mul_ps (tmp1, tmp1), _mm256_mul_ps (tmp2, tmp2));
119 }
120 #endif // ifdef __AVX__
121 
122 #ifdef __SSE__
123 // This function computes the squared distances (i.e. the distances without the square root) of 4 points to the center of the circle
124 template <typename PointT> inline __m128 pcl::SampleConsensusModelCircle2D<PointT>::sqr_dist4 (const std::size_t i, const __m128 a_vec, const __m128 b_vec) const
125 {
126  const __m128 tmp1 = _mm_sub_ps (_mm_set_ps (AT(i ).x, AT(i+1).x, AT(i+2).x, AT(i+3).x), a_vec);
127  const __m128 tmp2 = _mm_sub_ps (_mm_set_ps (AT(i ).y, AT(i+1).y, AT(i+2).y, AT(i+3).y), b_vec);
128  return _mm_add_ps (_mm_mul_ps (tmp1, tmp1), _mm_mul_ps (tmp2, tmp2));
129 }
130 #endif // ifdef __SSE__
131 
132 #undef AT
133 
134 //////////////////////////////////////////////////////////////////////////
135 template <typename PointT> void
136 pcl::SampleConsensusModelCircle2D<PointT>::getDistancesToModel (const Eigen::VectorXf &model_coefficients, std::vector<double> &distances) const
137 {
138  // Check if the model is valid given the user constraints
139  if (!isModelValid (model_coefficients))
140  {
141  distances.clear ();
142  return;
143  }
144  distances.resize (indices_->size ());
145 
146  // Iterate through the 3d points and calculate the distances from them to the circle
147  for (std::size_t i = 0; i < indices_->size (); ++i)
148  // Calculate the distance from the point to the circle as the difference between
149  // dist(point,circle_origin) and circle_radius
150  distances[i] = std::abs (std::sqrt (
151  ( (*input_)[(*indices_)[i]].x - model_coefficients[0] ) *
152  ( (*input_)[(*indices_)[i]].x - model_coefficients[0] ) +
153 
154  ( (*input_)[(*indices_)[i]].y - model_coefficients[1] ) *
155  ( (*input_)[(*indices_)[i]].y - model_coefficients[1] )
156  ) - model_coefficients[2]);
157 }
158 
159 //////////////////////////////////////////////////////////////////////////
160 template <typename PointT> void
162  const Eigen::VectorXf &model_coefficients, const double threshold,
163  Indices &inliers)
164 {
165  // Check if the model is valid given the user constraints
166  if (!isModelValid (model_coefficients))
167  {
168  inliers.clear ();
169  return;
170  }
171  inliers.clear ();
172  error_sqr_dists_.clear ();
173  inliers.reserve (indices_->size ());
174  error_sqr_dists_.reserve (indices_->size ());
175 
176  const float sqr_inner_radius = (model_coefficients[2] <= threshold ? 0.0f : (model_coefficients[2] - threshold) * (model_coefficients[2] - threshold));
177  const float sqr_outer_radius = (model_coefficients[2] + threshold) * (model_coefficients[2] + threshold);
178  // Iterate through the 3d points and calculate the distances from them to the circle
179  for (std::size_t i = 0; i < indices_->size (); ++i)
180  {
181  // To avoid sqrt computation: consider one larger circle (radius + threshold) and one smaller circle (radius - threshold).
182  // Valid if point is in larger circle, but not in smaller circle.
183  const float sqr_dist = ( (*input_)[(*indices_)[i]].x - model_coefficients[0] ) *
184  ( (*input_)[(*indices_)[i]].x - model_coefficients[0] ) +
185  ( (*input_)[(*indices_)[i]].y - model_coefficients[1] ) *
186  ( (*input_)[(*indices_)[i]].y - model_coefficients[1] );
187  if ((sqr_dist <= sqr_outer_radius) && (sqr_dist >= sqr_inner_radius))
188  {
189  // Returns the indices of the points whose distances are smaller than the threshold
190  inliers.push_back ((*indices_)[i]);
191  // Only compute exact distance if necessary (if point is inlier)
192  error_sqr_dists_.push_back (static_cast<double> (std::abs (std::sqrt (sqr_dist) - model_coefficients[2])));
193  }
194  }
195 }
196 
197 //////////////////////////////////////////////////////////////////////////
198 template <typename PointT> std::size_t
200  const Eigen::VectorXf &model_coefficients, const double threshold) const
201 {
202  // Check if the model is valid given the user constraints
203  if (!isModelValid (model_coefficients))
204  return (0);
205 
206 #if defined (__AVX__) && defined (__AVX2__)
207  return countWithinDistanceAVX (model_coefficients, threshold);
208 #elif defined (__SSE__) && defined (__SSE2__) && defined (__SSE4_1__)
209  return countWithinDistanceSSE (model_coefficients, threshold);
210 #else
211  return countWithinDistanceStandard (model_coefficients, threshold);
212 #endif
213 }
214 
215 //////////////////////////////////////////////////////////////////////////
216 template <typename PointT> std::size_t
218  const Eigen::VectorXf &model_coefficients, const double threshold, std::size_t i) const
219 {
220  std::size_t nr_p = 0;
221  const float sqr_inner_radius = (model_coefficients[2] <= threshold ? 0.0f : (model_coefficients[2] - threshold) * (model_coefficients[2] - threshold));
222  const float sqr_outer_radius = (model_coefficients[2] + threshold) * (model_coefficients[2] + threshold);
223  // Iterate through the 3d points and calculate the distances from them to the circle
224  for (; i < indices_->size (); ++i)
225  {
226  // To avoid sqrt computation: consider one larger circle (radius + threshold) and one smaller circle (radius - threshold).
227  // Valid if point is in larger circle, but not in smaller circle.
228  const float sqr_dist = ( (*input_)[(*indices_)[i]].x - model_coefficients[0] ) *
229  ( (*input_)[(*indices_)[i]].x - model_coefficients[0] ) +
230  ( (*input_)[(*indices_)[i]].y - model_coefficients[1] ) *
231  ( (*input_)[(*indices_)[i]].y - model_coefficients[1] );
232  if ((sqr_dist <= sqr_outer_radius) && (sqr_dist >= sqr_inner_radius))
233  nr_p++;
234  }
235  return (nr_p);
236 }
237 
238 //////////////////////////////////////////////////////////////////////////
239 #if defined (__SSE__) && defined (__SSE2__) && defined (__SSE4_1__)
240 template <typename PointT> std::size_t
242  const Eigen::VectorXf &model_coefficients, const double threshold, std::size_t i) const
243 {
244  std::size_t nr_p = 0;
245  const __m128 a_vec = _mm_set1_ps (model_coefficients[0]);
246  const __m128 b_vec = _mm_set1_ps (model_coefficients[1]);
247  // To avoid sqrt computation: consider one larger circle (radius + threshold) and one smaller circle (radius - threshold). Valid if point is in larger circle, but not in smaller circle.
248  const __m128 sqr_inner_radius = _mm_set1_ps ((model_coefficients[2] <= threshold ? 0.0 : (model_coefficients[2]-threshold)*(model_coefficients[2]-threshold)));
249  const __m128 sqr_outer_radius = _mm_set1_ps ((model_coefficients[2]+threshold)*(model_coefficients[2]+threshold));
250  __m128i res = _mm_set1_epi32(0); // This corresponds to nr_p: 4 32bit integers that, summed together, hold the number of inliers
251  for (; (i + 4) <= indices_->size (); i += 4)
252  {
253  const __m128 sqr_dist = sqr_dist4 (i, a_vec, b_vec);
254  const __m128 mask = _mm_and_ps (_mm_cmplt_ps (sqr_inner_radius, sqr_dist), _mm_cmplt_ps (sqr_dist, sqr_outer_radius)); // The mask contains 1 bits if the corresponding points are inliers, else 0 bits
255  res = _mm_add_epi32 (res, _mm_and_si128 (_mm_set1_epi32 (1), _mm_castps_si128 (mask))); // The latter part creates a vector with ones (as 32bit integers) where the points are inliers
256  //const int res = _mm_movemask_ps (mask);
257  //if (res & 1) nr_p++;
258  //if (res & 2) nr_p++;
259  //if (res & 4) nr_p++;
260  //if (res & 8) nr_p++;
261  }
262  nr_p += _mm_extract_epi32 (res, 0);
263  nr_p += _mm_extract_epi32 (res, 1);
264  nr_p += _mm_extract_epi32 (res, 2);
265  nr_p += _mm_extract_epi32 (res, 3);
266 
267  // Process the remaining points (at most 3)
268  nr_p += countWithinDistanceStandard (model_coefficients, threshold, i);
269  return (nr_p);
270 }
271 #endif
272 
273 //////////////////////////////////////////////////////////////////////////
274 #if defined (__AVX__) && defined (__AVX2__)
275 template <typename PointT> std::size_t
277  const Eigen::VectorXf &model_coefficients, const double threshold, std::size_t i) const
278 {
279  std::size_t nr_p = 0;
280  const __m256 a_vec = _mm256_set1_ps (model_coefficients[0]);
281  const __m256 b_vec = _mm256_set1_ps (model_coefficients[1]);
282  // To avoid sqrt computation: consider one larger circle (radius + threshold) and one smaller circle (radius - threshold). Valid if point is in larger circle, but not in smaller circle.
283  const __m256 sqr_inner_radius = _mm256_set1_ps ((model_coefficients[2] <= threshold ? 0.0 : (model_coefficients[2]-threshold)*(model_coefficients[2]-threshold)));
284  const __m256 sqr_outer_radius = _mm256_set1_ps ((model_coefficients[2]+threshold)*(model_coefficients[2]+threshold));
285  __m256i res = _mm256_set1_epi32(0); // This corresponds to nr_p: 8 32bit integers that, summed together, hold the number of inliers
286  for (; (i + 8) <= indices_->size (); i += 8)
287  {
288  const __m256 sqr_dist = sqr_dist8 (i, a_vec, b_vec);
289  const __m256 mask = _mm256_and_ps (_mm256_cmp_ps (sqr_inner_radius, sqr_dist, _CMP_LT_OQ), _mm256_cmp_ps (sqr_dist, sqr_outer_radius, _CMP_LT_OQ)); // The mask contains 1 bits if the corresponding points are inliers, else 0 bits
290  res = _mm256_add_epi32 (res, _mm256_and_si256 (_mm256_set1_epi32 (1), _mm256_castps_si256 (mask))); // The latter part creates a vector with ones (as 32bit integers) where the points are inliers
291  //const int res = _mm256_movemask_ps (mask);
292  //if (res & 1) nr_p++;
293  //if (res & 2) nr_p++;
294  //if (res & 4) nr_p++;
295  //if (res & 8) nr_p++;
296  //if (res & 16) nr_p++;
297  //if (res & 32) nr_p++;
298  //if (res & 64) nr_p++;
299  //if (res & 128) nr_p++;
300  }
301  nr_p += _mm256_extract_epi32 (res, 0);
302  nr_p += _mm256_extract_epi32 (res, 1);
303  nr_p += _mm256_extract_epi32 (res, 2);
304  nr_p += _mm256_extract_epi32 (res, 3);
305  nr_p += _mm256_extract_epi32 (res, 4);
306  nr_p += _mm256_extract_epi32 (res, 5);
307  nr_p += _mm256_extract_epi32 (res, 6);
308  nr_p += _mm256_extract_epi32 (res, 7);
309 
310  // Process the remaining points (at most 7)
311  nr_p += countWithinDistanceStandard (model_coefficients, threshold, i);
312  return (nr_p);
313 }
314 #endif
315 
316 //////////////////////////////////////////////////////////////////////////
317 template <typename PointT> void
319  const Indices &inliers, const Eigen::VectorXf &model_coefficients, Eigen::VectorXf &optimized_coefficients) const
320 {
321  optimized_coefficients = model_coefficients;
322 
323  // Needs a set of valid model coefficients
324  if (!isModelValid (model_coefficients))
325  {
326  PCL_ERROR ("[pcl::SampleConsensusModelCircle2D::optimizeModelCoefficients] Given model is invalid!\n");
327  return;
328  }
329 
330  // Need more than the minimum sample size to make a difference
331  if (inliers.size () <= sample_size_)
332  {
333  PCL_ERROR ("[pcl::SampleConsensusModelCircle2D::optimizeModelCoefficients] Not enough inliers to refine/optimize the model's coefficients (%lu)! Returning the same coefficients.\n", inliers.size ());
334  return;
335  }
336 
337  OptimizationFunctor functor (this, inliers);
338  Eigen::NumericalDiff<OptimizationFunctor> num_diff (functor);
339  Eigen::LevenbergMarquardt<Eigen::NumericalDiff<OptimizationFunctor>, float> lm (num_diff);
340  int info = lm.minimize (optimized_coefficients);
341 
342  // Compute the L2 norm of the residuals
343  PCL_DEBUG ("[pcl::SampleConsensusModelCircle2D::optimizeModelCoefficients] LM solver finished with exit code %i, having a residual norm of %g. \nInitial solution: %g %g %g \nFinal solution: %g %g %g\n",
344  info, lm.fvec.norm (), model_coefficients[0], model_coefficients[1], model_coefficients[2], optimized_coefficients[0], optimized_coefficients[1], optimized_coefficients[2]);
345 }
346 
347 //////////////////////////////////////////////////////////////////////////
348 template <typename PointT> void
350  const Indices &inliers, const Eigen::VectorXf &model_coefficients,
351  PointCloud &projected_points, bool copy_data_fields) const
352 {
353  // Needs a valid set of model coefficients
354  if (!isModelValid (model_coefficients))
355  {
356  PCL_ERROR ("[pcl::SampleConsensusModelCircle2D::projectPoints] Given model is invalid!\n");
357  return;
358  }
359 
360  projected_points.header = input_->header;
361  projected_points.is_dense = input_->is_dense;
362 
363  // Copy all the data fields from the input cloud to the projected one?
364  if (copy_data_fields)
365  {
366  // Allocate enough space and copy the basics
367  projected_points.resize (input_->size ());
368  projected_points.width = input_->width;
369  projected_points.height = input_->height;
370 
371  using FieldList = typename pcl::traits::fieldList<PointT>::type;
372  // Iterate over each point
373  for (std::size_t i = 0; i < projected_points.size (); ++i)
374  // Iterate over each dimension
375  pcl::for_each_type <FieldList> (NdConcatenateFunctor <PointT, PointT> ((*input_)[i], projected_points[i]));
376 
377  // Iterate through the points and project them to the circle
378  for (const auto &inlier : inliers)
379  {
380  float dx = (*input_)[inlier].x - model_coefficients[0];
381  float dy = (*input_)[inlier].y - model_coefficients[1];
382  float a = std::sqrt ( (model_coefficients[2] * model_coefficients[2]) / (dx * dx + dy * dy) );
383 
384  projected_points[inlier].x = a * dx + model_coefficients[0];
385  projected_points[inlier].y = a * dy + model_coefficients[1];
386  }
387  }
388  else
389  {
390  // Allocate enough space and copy the basics
391  projected_points.resize (inliers.size ());
392  projected_points.width = inliers.size ();
393  projected_points.height = 1;
394 
395  using FieldList = typename pcl::traits::fieldList<PointT>::type;
396  // Iterate over each point
397  for (std::size_t i = 0; i < inliers.size (); ++i)
398  // Iterate over each dimension
399  pcl::for_each_type <FieldList> (NdConcatenateFunctor <PointT, PointT> ((*input_)[inliers[i]], projected_points[i]));
400 
401  // Iterate through the points and project them to the circle
402  for (std::size_t i = 0; i < inliers.size (); ++i)
403  {
404  float dx = (*input_)[inliers[i]].x - model_coefficients[0];
405  float dy = (*input_)[inliers[i]].y - model_coefficients[1];
406  float a = std::sqrt ( (model_coefficients[2] * model_coefficients[2]) / (dx * dx + dy * dy) );
407 
408  projected_points[i].x = a * dx + model_coefficients[0];
409  projected_points[i].y = a * dy + model_coefficients[1];
410  }
411  }
412 }
413 
414 //////////////////////////////////////////////////////////////////////////
415 template <typename PointT> bool
417  const std::set<index_t> &indices, const Eigen::VectorXf &model_coefficients, const double threshold) const
418 {
419  // Needs a valid model coefficients
420  if (!isModelValid (model_coefficients))
421  {
422  PCL_ERROR ("[pcl::SampleConsensusModelCircle2D::doSamplesVerifyModel] Given model is invalid!\n");
423  return (false);
424  }
425 
426  const float sqr_inner_radius = (model_coefficients[2] <= threshold ? 0.0f : (model_coefficients[2] - threshold) * (model_coefficients[2] - threshold));
427  const float sqr_outer_radius = (model_coefficients[2] + threshold) * (model_coefficients[2] + threshold);
428  for (const auto &index : indices)
429  {
430  // To avoid sqrt computation: consider one larger circle (radius + threshold) and one smaller circle (radius - threshold).
431  // Valid if point is in larger circle, but not in smaller circle.
432  const float sqr_dist = ( (*input_)[index].x - model_coefficients[0] ) *
433  ( (*input_)[index].x - model_coefficients[0] ) +
434  ( (*input_)[index].y - model_coefficients[1] ) *
435  ( (*input_)[index].y - model_coefficients[1] );
436  if ((sqr_dist > sqr_outer_radius) || (sqr_dist < sqr_inner_radius))
437  return (false);
438  }
439  return (true);
440 }
441 
442 //////////////////////////////////////////////////////////////////////////
443 template <typename PointT> bool
444 pcl::SampleConsensusModelCircle2D<PointT>::isModelValid (const Eigen::VectorXf &model_coefficients) const
445 {
446  if (!SampleConsensusModel<PointT>::isModelValid (model_coefficients))
447  return (false);
448 
449  if (radius_min_ != -std::numeric_limits<double>::max() && model_coefficients[2] < radius_min_)
450  {
451  PCL_DEBUG ("[pcl::SampleConsensusModelCircle2D::isModelValid] Radius of circle is too small: should be larger than %g, but is %g.\n",
452  radius_min_, model_coefficients[2]);
453  return (false);
454  }
455  if (radius_max_ != std::numeric_limits<double>::max() && model_coefficients[2] > radius_max_)
456  {
457  PCL_DEBUG ("[pcl::SampleConsensusModelCircle2D::isModelValid] Radius of circle is too big: should be smaller than %g, but is %g.\n",
458  radius_max_, model_coefficients[2]);
459  return (false);
460  }
461 
462  return (true);
463 }
464 
465 #define PCL_INSTANTIATE_SampleConsensusModelCircle2D(T) template class PCL_EXPORTS pcl::SampleConsensusModelCircle2D<T>;
466 
467 #endif // PCL_SAMPLE_CONSENSUS_IMPL_SAC_MODEL_CIRCLE_H_
468 
PointCloud represents the base class in PCL for storing collections of 3D points.
Definition: point_cloud.h:173
bool is_dense
True if no points are invalid (e.g., have NaN or Inf values in any of their floating point fields).
Definition: point_cloud.h:403
void resize(std::size_t count)
Resizes the container to contain count elements.
Definition: point_cloud.h:462
std::uint32_t width
The point cloud width (if organized as an image-structure).
Definition: point_cloud.h:398
pcl::PCLHeader header
The point cloud header.
Definition: point_cloud.h:392
std::uint32_t height
The point cloud height (if organized as an image-structure).
Definition: point_cloud.h:400
std::size_t size() const
Definition: point_cloud.h:443
SampleConsensusModelCircle2D defines a model for 2D circle segmentation on the X-Y plane.
std::size_t countWithinDistance(const Eigen::VectorXf &model_coefficients, const double threshold) const override
Count all the points which respect the given model coefficients as inliers.
bool computeModelCoefficients(const Indices &samples, Eigen::VectorXf &model_coefficients) const override
Check whether the given index samples can form a valid 2D circle model, compute the model coefficient...
void projectPoints(const Indices &inliers, const Eigen::VectorXf &model_coefficients, PointCloud &projected_points, bool copy_data_fields=true) const override
Create a new point cloud with inliers projected onto the 2d circle model.
bool isModelValid(const Eigen::VectorXf &model_coefficients) const override
Check whether a model is valid given the user constraints.
void selectWithinDistance(const Eigen::VectorXf &model_coefficients, const double threshold, Indices &inliers) override
Compute all distances from the cloud data to a given 2D circle model.
void getDistancesToModel(const Eigen::VectorXf &model_coefficients, std::vector< double > &distances) const override
Compute all distances from the cloud data to a given 2D circle model.
void optimizeModelCoefficients(const Indices &inliers, const Eigen::VectorXf &model_coefficients, Eigen::VectorXf &optimized_coefficients) const override
Recompute the 2d circle coefficients using the given inlier set and return them to the user.
std::size_t countWithinDistanceStandard(const Eigen::VectorXf &model_coefficients, const double threshold, std::size_t i=0) const
This implementation uses no SIMD instructions.
bool isSampleGood(const Indices &samples) const override
Check if a sample of indices results in a good sample of points indices.
bool doSamplesVerifyModel(const std::set< index_t > &indices, const Eigen::VectorXf &model_coefficients, const double threshold) const override
Verify whether a subset of indices verifies the given 2d circle model coefficients.
SampleConsensusModel represents the base model class.
Definition: sac_model.h:70
IndicesAllocator<> Indices
Type used for indices in PCL.
Definition: types.h:133
Helper functor structure for concatenate.
Definition: concatenate.h:50