001// License: GPL. For details, see LICENSE file. 002package org.openstreetmap.josm.gui; 003 004import java.awt.Cursor; 005import java.awt.Point; 006import java.awt.Rectangle; 007import java.awt.event.ComponentAdapter; 008import java.awt.event.ComponentEvent; 009import java.awt.event.HierarchyEvent; 010import java.awt.event.HierarchyListener; 011import java.awt.geom.AffineTransform; 012import java.awt.geom.Point2D; 013import java.nio.charset.StandardCharsets; 014import java.text.NumberFormat; 015import java.util.ArrayList; 016import java.util.Collection; 017import java.util.Collections; 018import java.util.Date; 019import java.util.HashSet; 020import java.util.LinkedList; 021import java.util.List; 022import java.util.Map; 023import java.util.Map.Entry; 024import java.util.Set; 025import java.util.Stack; 026import java.util.TreeMap; 027import java.util.concurrent.CopyOnWriteArrayList; 028import java.util.function.Predicate; 029import java.util.zip.CRC32; 030 031import javax.swing.JComponent; 032import javax.swing.SwingUtilities; 033 034import org.openstreetmap.josm.data.Bounds; 035import org.openstreetmap.josm.data.ProjectionBounds; 036import org.openstreetmap.josm.data.SystemOfMeasurement; 037import org.openstreetmap.josm.data.ViewportData; 038import org.openstreetmap.josm.data.coor.EastNorth; 039import org.openstreetmap.josm.data.coor.ILatLon; 040import org.openstreetmap.josm.data.coor.LatLon; 041import org.openstreetmap.josm.data.osm.BBox; 042import org.openstreetmap.josm.data.osm.DataSet; 043import org.openstreetmap.josm.data.osm.Node; 044import org.openstreetmap.josm.data.osm.OsmPrimitive; 045import org.openstreetmap.josm.data.osm.Relation; 046import org.openstreetmap.josm.data.osm.Way; 047import org.openstreetmap.josm.data.osm.WaySegment; 048import org.openstreetmap.josm.data.osm.visitor.BoundingXYVisitor; 049import org.openstreetmap.josm.data.preferences.BooleanProperty; 050import org.openstreetmap.josm.data.preferences.DoubleProperty; 051import org.openstreetmap.josm.data.preferences.IntegerProperty; 052import org.openstreetmap.josm.data.projection.Projection; 053import org.openstreetmap.josm.data.projection.ProjectionChangeListener; 054import org.openstreetmap.josm.data.projection.ProjectionRegistry; 055import org.openstreetmap.josm.gui.help.Helpful; 056import org.openstreetmap.josm.gui.layer.NativeScaleLayer; 057import org.openstreetmap.josm.gui.layer.NativeScaleLayer.Scale; 058import org.openstreetmap.josm.gui.layer.NativeScaleLayer.ScaleList; 059import org.openstreetmap.josm.gui.mappaint.MapPaintStyles; 060import org.openstreetmap.josm.gui.mappaint.mapcss.MapCSSStyleSource; 061import org.openstreetmap.josm.gui.util.CursorManager; 062import org.openstreetmap.josm.gui.util.GuiHelper; 063import org.openstreetmap.josm.spi.preferences.Config; 064import org.openstreetmap.josm.tools.Logging; 065import org.openstreetmap.josm.tools.Utils; 066 067/** 068 * A component that can be navigated by a {@link MapMover}. Used as map view and for the 069 * zoomer in the download dialog. 070 * 071 * @author imi 072 * @since 41 073 */ 074public class NavigatableComponent extends JComponent implements Helpful { 075 076 private static final double ALIGNMENT_EPSILON = 1e-3; 077 078 /** 079 * Interface to notify listeners of the change of the zoom area. 080 * @since 10600 (functional interface) 081 */ 082 @FunctionalInterface 083 public interface ZoomChangeListener { 084 /** 085 * Method called when the zoom area has changed. 086 */ 087 void zoomChanged(); 088 } 089 090 /** 091 * To determine if a primitive is currently selectable. 092 */ 093 public transient Predicate<OsmPrimitive> isSelectablePredicate = prim -> { 094 if (!prim.isSelectable()) return false; 095 // if it isn't displayed on screen, you cannot click on it 096 MapCSSStyleSource.STYLE_SOURCE_LOCK.readLock().lock(); 097 try { 098 return !MapPaintStyles.getStyles().get(prim, getDist100Pixel(), this).isEmpty(); 099 } finally { 100 MapCSSStyleSource.STYLE_SOURCE_LOCK.readLock().unlock(); 101 } 102 }; 103 104 /** Snap distance */ 105 public static final IntegerProperty PROP_SNAP_DISTANCE = new IntegerProperty("mappaint.node.snap-distance", 10); 106 /** Zoom steps to get double scale */ 107 public static final DoubleProperty PROP_ZOOM_RATIO = new DoubleProperty("zoom.ratio", 2.0); 108 /** Divide intervals between native resolution levels to smaller steps if they are much larger than zoom ratio */ 109 public static final BooleanProperty PROP_ZOOM_INTERMEDIATE_STEPS = new BooleanProperty("zoom.intermediate-steps", true); 110 /** scale follows native resolution of layer status when layer is created */ 111 public static final BooleanProperty PROP_ZOOM_SCALE_FOLLOW_NATIVE_RES_AT_LOAD = new BooleanProperty( 112 "zoom.scale-follow-native-resolution-at-load", true); 113 114 /** 115 * The layer which scale is set to. 116 */ 117 private transient NativeScaleLayer nativeScaleLayer; 118 119 /** 120 * the zoom listeners 121 */ 122 private static final CopyOnWriteArrayList<ZoomChangeListener> zoomChangeListeners = new CopyOnWriteArrayList<>(); 123 124 /** 125 * Removes a zoom change listener 126 * 127 * @param listener the listener. Ignored if null or already absent 128 */ 129 public static void removeZoomChangeListener(ZoomChangeListener listener) { 130 zoomChangeListeners.remove(listener); 131 } 132 133 /** 134 * Adds a zoom change listener 135 * 136 * @param listener the listener. Ignored if null or already registered. 137 */ 138 public static void addZoomChangeListener(ZoomChangeListener listener) { 139 if (listener != null) { 140 zoomChangeListeners.addIfAbsent(listener); 141 } 142 } 143 144 protected static void fireZoomChanged() { 145 GuiHelper.runInEDTAndWait(() -> { 146 for (ZoomChangeListener l : zoomChangeListeners) { 147 l.zoomChanged(); 148 } 149 }); 150 } 151 152 // The only events that may move/resize this map view are window movements or changes to the map view size. 153 // We can clean this up more by only recalculating the state on repaint. 154 private final transient HierarchyListener hierarchyListener = e -> { 155 long interestingFlags = HierarchyEvent.ANCESTOR_MOVED | HierarchyEvent.SHOWING_CHANGED; 156 if ((e.getChangeFlags() & interestingFlags) != 0) { 157 updateLocationState(); 158 } 159 }; 160 161 private final transient ComponentAdapter componentListener = new ComponentAdapter() { 162 @Override 163 public void componentShown(ComponentEvent e) { 164 updateLocationState(); 165 } 166 167 @Override 168 public void componentResized(ComponentEvent e) { 169 updateLocationState(); 170 } 171 }; 172 173 protected transient ViewportData initialViewport; 174 175 protected final transient CursorManager cursorManager = new CursorManager(this); 176 177 /** 178 * The current state (scale, center, ...) of this map view. 179 */ 180 private transient MapViewState state; 181 182 /** 183 * Main uses weak link to store this, so we need to keep a reference. 184 */ 185 private final ProjectionChangeListener projectionChangeListener = (oldValue, newValue) -> fixProjection(); 186 187 /** 188 * Constructs a new {@code NavigatableComponent}. 189 */ 190 public NavigatableComponent() { 191 setLayout(null); 192 state = MapViewState.createDefaultState(getWidth(), getHeight()); 193 ProjectionRegistry.addProjectionChangeListener(projectionChangeListener); 194 } 195 196 @Override 197 public void addNotify() { 198 updateLocationState(); 199 addHierarchyListener(hierarchyListener); 200 addComponentListener(componentListener); 201 super.addNotify(); 202 } 203 204 @Override 205 public void removeNotify() { 206 removeHierarchyListener(hierarchyListener); 207 removeComponentListener(componentListener); 208 super.removeNotify(); 209 } 210 211 /** 212 * Choose a layer that scale will be snap to its native scales. 213 * @param nativeScaleLayer layer to which scale will be snapped 214 */ 215 public void setNativeScaleLayer(NativeScaleLayer nativeScaleLayer) { 216 this.nativeScaleLayer = nativeScaleLayer; 217 zoomTo(getCenter(), scaleRound(getScale())); 218 repaint(); 219 } 220 221 /** 222 * Replies the layer which scale is set to. 223 * @return the current scale layer (may be null) 224 */ 225 public NativeScaleLayer getNativeScaleLayer() { 226 return nativeScaleLayer; 227 } 228 229 /** 230 * Get a new scale that is zoomed in from previous scale 231 * and snapped to selected native scale layer. 232 * @return new scale 233 */ 234 public double scaleZoomIn() { 235 return scaleZoomManyTimes(-1); 236 } 237 238 /** 239 * Get a new scale that is zoomed out from previous scale 240 * and snapped to selected native scale layer. 241 * @return new scale 242 */ 243 public double scaleZoomOut() { 244 return scaleZoomManyTimes(1); 245 } 246 247 /** 248 * Get a new scale that is zoomed in/out a number of times 249 * from previous scale and snapped to selected native scale layer. 250 * @param times count of zoom operations, negative means zoom in 251 * @return new scale 252 */ 253 public double scaleZoomManyTimes(int times) { 254 if (nativeScaleLayer != null) { 255 ScaleList scaleList = nativeScaleLayer.getNativeScales(); 256 if (scaleList != null) { 257 if (PROP_ZOOM_INTERMEDIATE_STEPS.get()) { 258 scaleList = scaleList.withIntermediateSteps(PROP_ZOOM_RATIO.get()); 259 } 260 Scale s = scaleList.scaleZoomTimes(getScale(), PROP_ZOOM_RATIO.get(), times); 261 return s != null ? s.getScale() : 0; 262 } 263 } 264 return getScale() * Math.pow(PROP_ZOOM_RATIO.get(), times); 265 } 266 267 /** 268 * Get a scale snapped to native resolutions, use round method. 269 * It gives nearest step from scale list. 270 * Use round method. 271 * @param scale to snap 272 * @return snapped scale 273 */ 274 public double scaleRound(double scale) { 275 return scaleSnap(scale, false); 276 } 277 278 /** 279 * Get a scale snapped to native resolutions. 280 * It gives nearest lower step from scale list, usable to fit objects. 281 * @param scale to snap 282 * @return snapped scale 283 */ 284 public double scaleFloor(double scale) { 285 return scaleSnap(scale, true); 286 } 287 288 /** 289 * Get a scale snapped to native resolutions. 290 * It gives nearest lower step from scale list, usable to fit objects. 291 * @param scale to snap 292 * @param floor use floor instead of round, set true when fitting view to objects 293 * @return new scale 294 */ 295 public double scaleSnap(double scale, boolean floor) { 296 if (nativeScaleLayer != null) { 297 ScaleList scaleList = nativeScaleLayer.getNativeScales(); 298 if (scaleList != null) { 299 if (PROP_ZOOM_INTERMEDIATE_STEPS.get()) { 300 scaleList = scaleList.withIntermediateSteps(PROP_ZOOM_RATIO.get()); 301 } 302 Scale snapscale = scaleList.getSnapScale(scale, PROP_ZOOM_RATIO.get(), floor); 303 return snapscale != null ? snapscale.getScale() : scale; 304 } 305 } 306 return scale; 307 } 308 309 /** 310 * Zoom in current view. Use configured zoom step and scaling settings. 311 */ 312 public void zoomIn() { 313 zoomTo(state.getCenter().getEastNorth(), scaleZoomIn()); 314 } 315 316 /** 317 * Zoom out current view. Use configured zoom step and scaling settings. 318 */ 319 public void zoomOut() { 320 zoomTo(state.getCenter().getEastNorth(), scaleZoomOut()); 321 } 322 323 protected void updateLocationState() { 324 if (isVisibleOnScreen()) { 325 state = state.usingLocation(this); 326 } 327 } 328 329 protected boolean isVisibleOnScreen() { 330 return SwingUtilities.getWindowAncestor(this) != null && isShowing(); 331 } 332 333 /** 334 * Changes the projection settings used for this map view. 335 * <p> 336 * Made public temporarily, will be made private later. 337 */ 338 public void fixProjection() { 339 state = state.usingProjection(ProjectionRegistry.getProjection()); 340 repaint(); 341 } 342 343 /** 344 * Gets the current view state. This includes the scale, the current view area and the position. 345 * @return The current state. 346 */ 347 public MapViewState getState() { 348 return state; 349 } 350 351 /** 352 * Returns the text describing the given distance in the current system of measurement. 353 * @param dist The distance in metres. 354 * @return the text describing the given distance in the current system of measurement. 355 * @since 3406 356 */ 357 public static String getDistText(double dist) { 358 return SystemOfMeasurement.getSystemOfMeasurement().getDistText(dist); 359 } 360 361 /** 362 * Returns the text describing the given distance in the current system of measurement. 363 * @param dist The distance in metres 364 * @param format A {@link NumberFormat} to format the area value 365 * @param threshold Values lower than this {@code threshold} are displayed as {@code "< [threshold]"} 366 * @return the text describing the given distance in the current system of measurement. 367 * @since 7135 368 */ 369 public static String getDistText(final double dist, final NumberFormat format, final double threshold) { 370 return SystemOfMeasurement.getSystemOfMeasurement().getDistText(dist, format, threshold); 371 } 372 373 /** 374 * Returns the text describing the distance in meter that correspond to 100 px on screen. 375 * @return the text describing the distance in meter that correspond to 100 px on screen 376 */ 377 public String getDist100PixelText() { 378 return getDistText(getDist100Pixel()); 379 } 380 381 /** 382 * Get the distance in meter that correspond to 100 px on screen. 383 * 384 * @return the distance in meter that correspond to 100 px on screen 385 */ 386 public double getDist100Pixel() { 387 return getDist100Pixel(true); 388 } 389 390 /** 391 * Get the distance in meter that correspond to 100 px on screen. 392 * 393 * @param alwaysPositive if true, makes sure the return value is always 394 * > 0. (Two points 100 px apart can appear to be identical if the user 395 * has zoomed out a lot and the projection code does something funny.) 396 * @return the distance in meter that correspond to 100 px on screen 397 */ 398 public double getDist100Pixel(boolean alwaysPositive) { 399 int w = getWidth()/2; 400 int h = getHeight()/2; 401 LatLon ll1 = getLatLon(w-50, h); 402 LatLon ll2 = getLatLon(w+50, h); 403 double gcd = ll1.greatCircleDistance(ll2); 404 if (alwaysPositive && gcd <= 0) 405 return 0.1; 406 return gcd; 407 } 408 409 /** 410 * Returns the current center of the viewport. 411 * 412 * (Use {@link #zoomTo(EastNorth)} to the change the center.) 413 * 414 * @return the current center of the viewport 415 */ 416 public EastNorth getCenter() { 417 return state.getCenter().getEastNorth(); 418 } 419 420 /** 421 * Returns the current scale. 422 * 423 * In east/north units per pixel. 424 * 425 * @return the current scale 426 */ 427 public double getScale() { 428 return state.getScale(); 429 } 430 431 /** 432 * @param x X-Pixelposition to get coordinate from 433 * @param y Y-Pixelposition to get coordinate from 434 * 435 * @return Geographic coordinates from a specific pixel coordination on the screen. 436 */ 437 public EastNorth getEastNorth(int x, int y) { 438 return state.getForView(x, y).getEastNorth(); 439 } 440 441 /** 442 * Determines the projection bounds of view area. 443 * @return the projection bounds of view area 444 */ 445 public ProjectionBounds getProjectionBounds() { 446 return getState().getViewArea().getProjectionBounds(); 447 } 448 449 /* FIXME: replace with better method - used by MapSlider */ 450 public ProjectionBounds getMaxProjectionBounds() { 451 Bounds b = getProjection().getWorldBoundsLatLon(); 452 return new ProjectionBounds(getProjection().latlon2eastNorth(b.getMin()), 453 getProjection().latlon2eastNorth(b.getMax())); 454 } 455 456 /* FIXME: replace with better method - used by Main to reset Bounds when projection changes, don't use otherwise */ 457 public Bounds getRealBounds() { 458 return getState().getViewArea().getCornerBounds(); 459 } 460 461 /** 462 * Returns unprojected geographic coordinates for a specific pixel position on the screen. 463 * @param x X-Pixelposition to get coordinate from 464 * @param y Y-Pixelposition to get coordinate from 465 * 466 * @return Geographic unprojected coordinates from a specific pixel position on the screen. 467 */ 468 public LatLon getLatLon(int x, int y) { 469 return getProjection().eastNorth2latlon(getEastNorth(x, y)); 470 } 471 472 /** 473 * Returns unprojected geographic coordinates for a specific pixel position on the screen. 474 * @param x X-Pixelposition to get coordinate from 475 * @param y Y-Pixelposition to get coordinate from 476 * 477 * @return Geographic unprojected coordinates from a specific pixel position on the screen. 478 */ 479 public LatLon getLatLon(double x, double y) { 480 return getLatLon((int) x, (int) y); 481 } 482 483 /** 484 * Determines the projection bounds of given rectangle. 485 * @param r rectangle 486 * @return the projection bounds of {@code r} 487 */ 488 public ProjectionBounds getProjectionBounds(Rectangle r) { 489 return getState().getViewArea(r).getProjectionBounds(); 490 } 491 492 /** 493 * @param r rectangle 494 * @return Minimum bounds that will cover rectangle 495 */ 496 public Bounds getLatLonBounds(Rectangle r) { 497 return ProjectionRegistry.getProjection().getLatLonBoundsBox(getProjectionBounds(r)); 498 } 499 500 /** 501 * Creates an affine transform that is used to convert the east/north coordinates to view coordinates. 502 * @return The affine transform. 503 */ 504 public AffineTransform getAffineTransform() { 505 return getState().getAffineTransform(); 506 } 507 508 /** 509 * Return the point on the screen where this Coordinate would be. 510 * @param p The point, where this geopoint would be drawn. 511 * @return The point on screen where "point" would be drawn, relative to the own top/left. 512 */ 513 public Point2D getPoint2D(EastNorth p) { 514 if (null == p) 515 return new Point(); 516 return getState().getPointFor(p).getInView(); 517 } 518 519 /** 520 * Return the point on the screen where this Coordinate would be. 521 * 522 * Alternative: {@link #getState()}, then {@link MapViewState#getPointFor(ILatLon)} 523 * @param latlon The point, where this geopoint would be drawn. 524 * @return The point on screen where "point" would be drawn, relative to the own top/left. 525 */ 526 public Point2D getPoint2D(ILatLon latlon) { 527 if (latlon == null) { 528 return new Point(); 529 } else { 530 return getPoint2D(latlon.getEastNorth(ProjectionRegistry.getProjection())); 531 } 532 } 533 534 /** 535 * Return the point on the screen where this Coordinate would be. 536 * 537 * Alternative: {@link #getState()}, then {@link MapViewState#getPointFor(ILatLon)} 538 * @param latlon The point, where this geopoint would be drawn. 539 * @return The point on screen where "point" would be drawn, relative to the own top/left. 540 */ 541 public Point2D getPoint2D(LatLon latlon) { 542 return getPoint2D((ILatLon) latlon); 543 } 544 545 /** 546 * Return the point on the screen where this Node would be. 547 * 548 * Alternative: {@link #getState()}, then {@link MapViewState#getPointFor(ILatLon)} 549 * @param n The node, where this geopoint would be drawn. 550 * @return The point on screen where "node" would be drawn, relative to the own top/left. 551 */ 552 public Point2D getPoint2D(Node n) { 553 return getPoint2D(n.getEastNorth()); 554 } 555 556 /** 557 * looses precision, may overflow (depends on p and current scale) 558 * @param p east/north 559 * @return point 560 * @see #getPoint2D(EastNorth) 561 */ 562 public Point getPoint(EastNorth p) { 563 Point2D d = getPoint2D(p); 564 return new Point((int) d.getX(), (int) d.getY()); 565 } 566 567 /** 568 * looses precision, may overflow (depends on p and current scale) 569 * @param latlon lat/lon 570 * @return point 571 * @see #getPoint2D(LatLon) 572 * @since 12725 573 */ 574 public Point getPoint(ILatLon latlon) { 575 Point2D d = getPoint2D(latlon); 576 return new Point((int) d.getX(), (int) d.getY()); 577 } 578 579 /** 580 * looses precision, may overflow (depends on p and current scale) 581 * @param latlon lat/lon 582 * @return point 583 * @see #getPoint2D(LatLon) 584 */ 585 public Point getPoint(LatLon latlon) { 586 return getPoint((ILatLon) latlon); 587 } 588 589 /** 590 * looses precision, may overflow (depends on p and current scale) 591 * @param n node 592 * @return point 593 * @see #getPoint2D(Node) 594 */ 595 public Point getPoint(Node n) { 596 Point2D d = getPoint2D(n); 597 return new Point((int) d.getX(), (int) d.getY()); 598 } 599 600 /** 601 * Zoom to the given coordinate and scale. 602 * 603 * @param newCenter The center x-value (easting) to zoom to. 604 * @param newScale The scale to use. 605 */ 606 public void zoomTo(EastNorth newCenter, double newScale) { 607 zoomTo(newCenter, newScale, false); 608 } 609 610 /** 611 * Zoom to the given coordinate and scale. 612 * 613 * @param center The center x-value (easting) to zoom to. 614 * @param scale The scale to use. 615 * @param initial true if this call initializes the viewport. 616 */ 617 public void zoomTo(EastNorth center, double scale, boolean initial) { 618 Bounds b = getProjection().getWorldBoundsLatLon(); 619 ProjectionBounds pb = getProjection().getWorldBoundsBoxEastNorth(); 620 double newScale = scale; 621 int width = getWidth(); 622 int height = getHeight(); 623 624 // make sure, the center of the screen is within projection bounds 625 double east = center.east(); 626 double north = center.north(); 627 east = Math.max(east, pb.minEast); 628 east = Math.min(east, pb.maxEast); 629 north = Math.max(north, pb.minNorth); 630 north = Math.min(north, pb.maxNorth); 631 EastNorth newCenter = new EastNorth(east, north); 632 633 // don't zoom out too much, the world bounds should be at least 634 // half the size of the screen 635 double pbHeight = pb.maxNorth - pb.minNorth; 636 if (height > 0 && 2 * pbHeight < height * newScale) { 637 double newScaleH = 2 * pbHeight / height; 638 double pbWidth = pb.maxEast - pb.minEast; 639 if (width > 0 && 2 * pbWidth < width * newScale) { 640 double newScaleW = 2 * pbWidth / width; 641 newScale = Math.max(newScaleH, newScaleW); 642 } 643 } 644 645 // don't zoom in too much, minimum: 100 px = 1 cm 646 LatLon ll1 = getLatLon(width / 2 - 50, height / 2); 647 LatLon ll2 = getLatLon(width / 2 + 50, height / 2); 648 if (ll1.isValid() && ll2.isValid() && b.contains(ll1) && b.contains(ll2)) { 649 double dm = ll1.greatCircleDistance(ll2); 650 double den = 100 * getScale(); 651 double scaleMin = 0.01 * den / dm / 100; 652 if (newScale < scaleMin && !Double.isInfinite(scaleMin)) { 653 newScale = scaleMin; 654 } 655 } 656 657 // snap scale to imagery if needed 658 newScale = scaleRound(newScale); 659 660 // Align to the pixel grid: 661 // This is a sub-pixel correction to ensure consistent drawing at a certain scale. 662 // For example take 2 nodes, that have a distance of exactly 2.6 pixels. 663 // Depending on the offset, the distance in rounded or truncated integer 664 // pixels will be 2 or 3. It is preferable to have a consistent distance 665 // and not switch back and forth as the viewport moves. This can be achieved by 666 // locking an arbitrary point to integer pixel coordinates. (Here the EastNorth 667 // origin is used as reference point.) 668 // Note that the normal right mouse button drag moves the map by integer pixel 669 // values, so it is not an issue in this case. It only shows when zooming 670 // in & back out, etc. 671 MapViewState mvs = getState().usingScale(newScale); 672 mvs = mvs.movedTo(mvs.getCenter(), newCenter); 673 Point2D enOrigin = mvs.getPointFor(new EastNorth(0, 0)).getInView(); 674 // as a result of the alignment, it is common to round "half integer" values 675 // like 1.49999, which is numerically unstable; add small epsilon to resolve this 676 Point2D enOriginAligned = new Point2D.Double( 677 Math.round(enOrigin.getX()) + ALIGNMENT_EPSILON, 678 Math.round(enOrigin.getY()) + ALIGNMENT_EPSILON); 679 EastNorth enShift = mvs.getForView(enOriginAligned.getX(), enOriginAligned.getY()).getEastNorth(); 680 newCenter = newCenter.subtract(enShift); 681 682 EastNorth oldCenter = getCenter(); 683 if (!newCenter.equals(oldCenter) || !Utils.equalsEpsilon(getScale(), newScale)) { 684 if (!initial) { 685 pushZoomUndo(oldCenter, getScale()); 686 } 687 zoomNoUndoTo(newCenter, newScale, initial); 688 } 689 } 690 691 /** 692 * Zoom to the given coordinate without adding to the zoom undo buffer. 693 * 694 * @param newCenter The center x-value (easting) to zoom to. 695 * @param newScale The scale to use. 696 * @param initial true if this call initializes the viewport. 697 */ 698 private void zoomNoUndoTo(EastNorth newCenter, double newScale, boolean initial) { 699 if (!Utils.equalsEpsilon(getScale(), newScale)) { 700 state = state.usingScale(newScale); 701 } 702 if (!newCenter.equals(getCenter())) { 703 state = state.movedTo(state.getCenter(), newCenter); 704 } 705 if (!initial) { 706 repaint(); 707 fireZoomChanged(); 708 } 709 } 710 711 /** 712 * Zoom to given east/north. 713 * @param newCenter new center coordinates 714 */ 715 public void zoomTo(EastNorth newCenter) { 716 zoomTo(newCenter, getScale()); 717 } 718 719 /** 720 * Zoom to given lat/lon. 721 * @param newCenter new center coordinates 722 * @since 12725 723 */ 724 public void zoomTo(ILatLon newCenter) { 725 zoomTo(getProjection().latlon2eastNorth(newCenter)); 726 } 727 728 /** 729 * Zoom to given lat/lon. 730 * @param newCenter new center coordinates 731 */ 732 public void zoomTo(LatLon newCenter) { 733 zoomTo((ILatLon) newCenter); 734 } 735 736 /** 737 * Thread class for smooth scrolling. Made a separate class, so we can safely terminate it. 738 */ 739 private class SmoothScrollThread extends Thread { 740 private boolean doStop; 741 private final EastNorth oldCenter = getCenter(); 742 private final EastNorth finalNewCenter; 743 private final long frames; 744 private final long sleepTime; 745 746 SmoothScrollThread(EastNorth newCenter, long frameNum, int fps) { 747 super("smooth-scroller"); 748 finalNewCenter = newCenter; 749 frames = frameNum; 750 sleepTime = 1000L / fps; 751 } 752 753 @Override 754 public void run() { 755 try { 756 for (int i = 0; i < frames && !doStop; i++) { 757 zoomTo(oldCenter.interpolate(finalNewCenter, (1.0+i) / frames)); 758 Thread.sleep(sleepTime); 759 } 760 } catch (InterruptedException ex) { 761 Logging.warn("Interruption during smooth scrolling"); 762 } 763 } 764 765 public void stopIt() { 766 doStop = true; 767 } 768 } 769 770 /** 771 * Create a thread that moves the viewport to the given center in an animated fashion. 772 * @param newCenter new east/north center 773 */ 774 public void smoothScrollTo(EastNorth newCenter) { 775 final EastNorth oldCenter = getCenter(); 776 if (!newCenter.equals(oldCenter)) { 777 final int fps = Config.getPref().getInt("smooth.scroll.fps", 20); // animation frames per second 778 final int speed = Config.getPref().getInt("smooth.scroll.speed", 1500); // milliseconds for full-screen-width pan 779 final int maxtime = Config.getPref().getInt("smooth.scroll.maxtime", 5000); // milliseconds maximum scroll time 780 final double distance = newCenter.distance(oldCenter) / getScale(); 781 double milliseconds = distance / getWidth() * speed; 782 if (milliseconds > maxtime) { // prevent overlong scroll time, speed up if necessary 783 milliseconds = maxtime; 784 } 785 786 ThreadGroup group = Thread.currentThread().getThreadGroup(); 787 Thread[] threads = new Thread[group.activeCount()]; 788 group.enumerate(threads, true); 789 boolean stopped = false; 790 for (Thread t : threads) { 791 if (t instanceof SmoothScrollThread) { 792 ((SmoothScrollThread) t).stopIt(); 793 /* handle this case outside in case there is more than one smooth thread */ 794 stopped = true; 795 } 796 } 797 if (stopped && milliseconds > maxtime/2.0) { /* we aren't fast enough, skip smooth */ 798 Logging.warn("Skip smooth scrolling"); 799 zoomTo(newCenter); 800 } else { 801 long frames = Math.round(milliseconds * fps / 1000); 802 if (frames <= 1) 803 zoomTo(newCenter); 804 else 805 new SmoothScrollThread(newCenter, frames, fps).start(); 806 } 807 } 808 } 809 810 public void zoomManyTimes(double x, double y, int times) { 811 double oldScale = getScale(); 812 double newScale = scaleZoomManyTimes(times); 813 zoomToFactor(x, y, newScale / oldScale); 814 } 815 816 public void zoomToFactor(double x, double y, double factor) { 817 double newScale = getScale()*factor; 818 EastNorth oldUnderMouse = getState().getForView(x, y).getEastNorth(); 819 MapViewState newState = getState().usingScale(newScale); 820 newState = newState.movedTo(newState.getForView(x, y), oldUnderMouse); 821 zoomTo(newState.getCenter().getEastNorth(), newScale); 822 } 823 824 public void zoomToFactor(EastNorth newCenter, double factor) { 825 zoomTo(newCenter, getScale()*factor); 826 } 827 828 public void zoomToFactor(double factor) { 829 zoomTo(getCenter(), getScale()*factor); 830 } 831 832 /** 833 * Zoom to given projection bounds. 834 * @param box new projection bounds 835 */ 836 public void zoomTo(ProjectionBounds box) { 837 double newScale = box.getScale(getWidth(), getHeight()); 838 newScale = scaleFloor(newScale); 839 zoomTo(box.getCenter(), newScale); 840 } 841 842 /** 843 * Zoom to given bounds. 844 * @param box new bounds 845 */ 846 public void zoomTo(Bounds box) { 847 zoomTo(new ProjectionBounds(getProjection().latlon2eastNorth(box.getMin()), 848 getProjection().latlon2eastNorth(box.getMax()))); 849 } 850 851 /** 852 * Zoom to given viewport data. 853 * @param viewport new viewport data 854 */ 855 public void zoomTo(ViewportData viewport) { 856 if (viewport == null) return; 857 if (viewport.getBounds() != null) { 858 zoomTo(viewport.getBounds()); 859 } else { 860 zoomTo(viewport.getCenter(), viewport.getScale(), true); 861 } 862 } 863 864 /** 865 * Set the new dimension to the view. 866 * @param v box to zoom to 867 */ 868 public void zoomTo(BoundingXYVisitor v) { 869 if (v == null) { 870 v = new BoundingXYVisitor(); 871 } 872 if (v.getBounds() == null) { 873 v.visit(getProjection().getWorldBoundsLatLon()); 874 } 875 876 // increase bbox. This is required 877 // especially if the bbox contains one single node, but helpful 878 // in most other cases as well. 879 // Do not zoom if the current scale covers the selection, #16706 880 final MapView mapView = MainApplication.getMap().mapView; 881 final double mapScale = mapView.getScale(); 882 final double minScale = v.getBounds().getScale(mapView.getWidth(), mapView.getHeight()); 883 v.enlargeBoundingBoxLogarithmically(); 884 final double maxScale = v.getBounds().getScale(mapView.getWidth(), mapView.getHeight()); 885 if (minScale <= mapScale && mapScale < maxScale) { 886 mapView.zoomTo(v.getBounds().getCenter()); 887 } else { 888 zoomTo(v.getBounds()); 889 } 890 } 891 892 private static class ZoomData { 893 private final EastNorth center; 894 private final double scale; 895 896 ZoomData(EastNorth center, double scale) { 897 this.center = center; 898 this.scale = scale; 899 } 900 901 public EastNorth getCenterEastNorth() { 902 return center; 903 } 904 905 public double getScale() { 906 return scale; 907 } 908 } 909 910 private final transient Stack<ZoomData> zoomUndoBuffer = new Stack<>(); 911 private final transient Stack<ZoomData> zoomRedoBuffer = new Stack<>(); 912 private Date zoomTimestamp = new Date(); 913 914 private void pushZoomUndo(EastNorth center, double scale) { 915 Date now = new Date(); 916 if ((now.getTime() - zoomTimestamp.getTime()) > (Config.getPref().getDouble("zoom.undo.delay", 1.0) * 1000)) { 917 zoomUndoBuffer.push(new ZoomData(center, scale)); 918 if (zoomUndoBuffer.size() > Config.getPref().getInt("zoom.undo.max", 50)) { 919 zoomUndoBuffer.remove(0); 920 } 921 zoomRedoBuffer.clear(); 922 } 923 zoomTimestamp = now; 924 } 925 926 /** 927 * Zoom to previous location. 928 */ 929 public void zoomPrevious() { 930 if (!zoomUndoBuffer.isEmpty()) { 931 ZoomData zoom = zoomUndoBuffer.pop(); 932 zoomRedoBuffer.push(new ZoomData(getCenter(), getScale())); 933 zoomNoUndoTo(zoom.getCenterEastNorth(), zoom.getScale(), false); 934 } 935 } 936 937 /** 938 * Zoom to next location. 939 */ 940 public void zoomNext() { 941 if (!zoomRedoBuffer.isEmpty()) { 942 ZoomData zoom = zoomRedoBuffer.pop(); 943 zoomUndoBuffer.push(new ZoomData(getCenter(), getScale())); 944 zoomNoUndoTo(zoom.getCenterEastNorth(), zoom.getScale(), false); 945 } 946 } 947 948 /** 949 * Determines if zoom history contains "undo" entries. 950 * @return {@code true} if zoom history contains "undo" entries 951 */ 952 public boolean hasZoomUndoEntries() { 953 return !zoomUndoBuffer.isEmpty(); 954 } 955 956 /** 957 * Determines if zoom history contains "redo" entries. 958 * @return {@code true} if zoom history contains "redo" entries 959 */ 960 public boolean hasZoomRedoEntries() { 961 return !zoomRedoBuffer.isEmpty(); 962 } 963 964 private BBox getBBox(Point p, int snapDistance) { 965 return new BBox(getLatLon(p.x - snapDistance, p.y - snapDistance), 966 getLatLon(p.x + snapDistance, p.y + snapDistance)); 967 } 968 969 /** 970 * The *result* does not depend on the current map selection state, neither does the result *order*. 971 * It solely depends on the distance to point p. 972 * @param p point 973 * @param predicate predicate to match 974 * 975 * @return a sorted map with the keys representing the distance of their associated nodes to point p. 976 */ 977 private Map<Double, List<Node>> getNearestNodesImpl(Point p, Predicate<OsmPrimitive> predicate) { 978 Map<Double, List<Node>> nearestMap = new TreeMap<>(); 979 DataSet ds = MainApplication.getLayerManager().getActiveDataSet(); 980 981 if (ds != null) { 982 double dist, snapDistanceSq = PROP_SNAP_DISTANCE.get(); 983 snapDistanceSq *= snapDistanceSq; 984 985 for (Node n : ds.searchNodes(getBBox(p, PROP_SNAP_DISTANCE.get()))) { 986 if (predicate.test(n) 987 && (dist = getPoint2D(n).distanceSq(p)) < snapDistanceSq) { 988 nearestMap.computeIfAbsent(dist, k -> new LinkedList<>()).add(n); 989 } 990 } 991 } 992 993 return nearestMap; 994 } 995 996 /** 997 * The *result* does not depend on the current map selection state, 998 * neither does the result *order*. 999 * It solely depends on the distance to point p. 1000 * 1001 * @param p the point for which to search the nearest segment. 1002 * @param ignore a collection of nodes which are not to be returned. 1003 * @param predicate the returned objects have to fulfill certain properties. 1004 * 1005 * @return All nodes nearest to point p that are in a belt from 1006 * dist(nearest) to dist(nearest)+4px around p and 1007 * that are not in ignore. 1008 */ 1009 public final List<Node> getNearestNodes(Point p, 1010 Collection<Node> ignore, Predicate<OsmPrimitive> predicate) { 1011 List<Node> nearestList = Collections.emptyList(); 1012 1013 if (ignore == null) { 1014 ignore = Collections.emptySet(); 1015 } 1016 1017 Map<Double, List<Node>> nlists = getNearestNodesImpl(p, predicate); 1018 if (!nlists.isEmpty()) { 1019 Double minDistSq = null; 1020 for (Entry<Double, List<Node>> entry : nlists.entrySet()) { 1021 Double distSq = entry.getKey(); 1022 List<Node> nlist = entry.getValue(); 1023 1024 // filter nodes to be ignored before determining minDistSq.. 1025 nlist.removeAll(ignore); 1026 if (minDistSq == null) { 1027 if (!nlist.isEmpty()) { 1028 minDistSq = distSq; 1029 nearestList = new ArrayList<>(); 1030 nearestList.addAll(nlist); 1031 } 1032 } else { 1033 if (distSq-minDistSq < (4)*(4)) { 1034 nearestList.addAll(nlist); 1035 } 1036 } 1037 } 1038 } 1039 1040 return nearestList; 1041 } 1042 1043 /** 1044 * The *result* does not depend on the current map selection state, 1045 * neither does the result *order*. 1046 * It solely depends on the distance to point p. 1047 * 1048 * @param p the point for which to search the nearest segment. 1049 * @param predicate the returned objects have to fulfill certain properties. 1050 * 1051 * @return All nodes nearest to point p that are in a belt from 1052 * dist(nearest) to dist(nearest)+4px around p. 1053 * @see #getNearestNodes(Point, Collection, Predicate) 1054 */ 1055 public final List<Node> getNearestNodes(Point p, Predicate<OsmPrimitive> predicate) { 1056 return getNearestNodes(p, null, predicate); 1057 } 1058 1059 /** 1060 * The *result* depends on the current map selection state IF use_selected is true. 1061 * 1062 * If more than one node within node.snap-distance pixels is found, 1063 * the nearest node selected is returned IF use_selected is true. 1064 * 1065 * Else the nearest new/id=0 node within about the same distance 1066 * as the true nearest node is returned. 1067 * 1068 * If no such node is found either, the true nearest node to p is returned. 1069 * 1070 * Finally, if a node is not found at all, null is returned. 1071 * 1072 * @param p the screen point 1073 * @param predicate this parameter imposes a condition on the returned object, e.g. 1074 * give the nearest node that is tagged. 1075 * @param useSelected make search depend on selection 1076 * 1077 * @return A node within snap-distance to point p, that is chosen by the algorithm described. 1078 */ 1079 public final Node getNearestNode(Point p, Predicate<OsmPrimitive> predicate, boolean useSelected) { 1080 return getNearestNode(p, predicate, useSelected, null); 1081 } 1082 1083 /** 1084 * The *result* depends on the current map selection state IF use_selected is true 1085 * 1086 * If more than one node within node.snap-distance pixels is found, 1087 * the nearest node selected is returned IF use_selected is true. 1088 * 1089 * If there are no selected nodes near that point, the node that is related to some of the preferredRefs 1090 * 1091 * Else the nearest new/id=0 node within about the same distance 1092 * as the true nearest node is returned. 1093 * 1094 * If no such node is found either, the true nearest node to p is returned. 1095 * 1096 * Finally, if a node is not found at all, null is returned. 1097 * 1098 * @param p the screen point 1099 * @param predicate this parameter imposes a condition on the returned object, e.g. 1100 * give the nearest node that is tagged. 1101 * @param useSelected make search depend on selection 1102 * @param preferredRefs primitives, whose nodes we prefer 1103 * 1104 * @return A node within snap-distance to point p, that is chosen by the algorithm described. 1105 * @since 6065 1106 */ 1107 public final Node getNearestNode(Point p, Predicate<OsmPrimitive> predicate, 1108 boolean useSelected, Collection<OsmPrimitive> preferredRefs) { 1109 1110 Map<Double, List<Node>> nlists = getNearestNodesImpl(p, predicate); 1111 if (nlists.isEmpty()) return null; 1112 1113 if (preferredRefs != null && preferredRefs.isEmpty()) preferredRefs = null; 1114 Node ntsel = null, ntnew = null, ntref = null; 1115 boolean useNtsel = useSelected; 1116 double minDistSq = nlists.keySet().iterator().next(); 1117 1118 for (Entry<Double, List<Node>> entry : nlists.entrySet()) { 1119 Double distSq = entry.getKey(); 1120 for (Node nd : entry.getValue()) { 1121 // find the nearest selected node 1122 if (ntsel == null && nd.isSelected()) { 1123 ntsel = nd; 1124 // if there are multiple nearest nodes, prefer the one 1125 // that is selected. This is required in order to drag 1126 // the selected node if multiple nodes have the same 1127 // coordinates (e.g. after unglue) 1128 useNtsel |= Utils.equalsEpsilon(distSq, minDistSq); 1129 } 1130 if (ntref == null && preferredRefs != null && Utils.equalsEpsilon(distSq, minDistSq)) { 1131 List<OsmPrimitive> ndRefs = nd.getReferrers(); 1132 for (OsmPrimitive ref: preferredRefs) { 1133 if (ndRefs.contains(ref)) { 1134 ntref = nd; 1135 break; 1136 } 1137 } 1138 } 1139 // find the nearest newest node that is within about the same 1140 // distance as the true nearest node 1141 if (ntnew == null && nd.isNew() && (distSq-minDistSq < 1)) { 1142 ntnew = nd; 1143 } 1144 } 1145 } 1146 1147 // take nearest selected, nearest new or true nearest node to p, in that order 1148 if (ntsel != null && useNtsel) 1149 return ntsel; 1150 if (ntref != null) 1151 return ntref; 1152 if (ntnew != null) 1153 return ntnew; 1154 return nlists.values().iterator().next().get(0); 1155 } 1156 1157 /** 1158 * Convenience method to {@link #getNearestNode(Point, Predicate, boolean)}. 1159 * @param p the screen point 1160 * @param predicate this parameter imposes a condition on the returned object, e.g. 1161 * give the nearest node that is tagged. 1162 * 1163 * @return The nearest node to point p. 1164 */ 1165 public final Node getNearestNode(Point p, Predicate<OsmPrimitive> predicate) { 1166 return getNearestNode(p, predicate, true); 1167 } 1168 1169 /** 1170 * The *result* does not depend on the current map selection state, neither does the result *order*. 1171 * It solely depends on the distance to point p. 1172 * @param p the screen point 1173 * @param predicate this parameter imposes a condition on the returned object, e.g. 1174 * give the nearest node that is tagged. 1175 * 1176 * @return a sorted map with the keys representing the perpendicular 1177 * distance of their associated way segments to point p. 1178 */ 1179 private Map<Double, List<WaySegment>> getNearestWaySegmentsImpl(Point p, Predicate<OsmPrimitive> predicate) { 1180 Map<Double, List<WaySegment>> nearestMap = new TreeMap<>(); 1181 DataSet ds = MainApplication.getLayerManager().getActiveDataSet(); 1182 1183 if (ds != null) { 1184 double snapDistanceSq = Config.getPref().getInt("mappaint.segment.snap-distance", 10); 1185 snapDistanceSq *= snapDistanceSq; 1186 1187 for (Way w : ds.searchWays(getBBox(p, Config.getPref().getInt("mappaint.segment.snap-distance", 10)))) { 1188 if (!predicate.test(w)) { 1189 continue; 1190 } 1191 Node lastN = null; 1192 int i = -2; 1193 for (Node n : w.getNodes()) { 1194 i++; 1195 if (n.isDeleted() || n.isIncomplete()) { //FIXME: This shouldn't happen, raise exception? 1196 continue; 1197 } 1198 if (lastN == null) { 1199 lastN = n; 1200 continue; 1201 } 1202 1203 Point2D pA = getPoint2D(lastN); 1204 Point2D pB = getPoint2D(n); 1205 double c = pA.distanceSq(pB); 1206 double a = p.distanceSq(pB); 1207 double b = p.distanceSq(pA); 1208 1209 /* perpendicular distance squared 1210 * loose some precision to account for possible deviations in the calculation above 1211 * e.g. if identical (A and B) come about reversed in another way, values may differ 1212 * -- zero out least significant 32 dual digits of mantissa.. 1213 */ 1214 double perDistSq = Double.longBitsToDouble( 1215 Double.doubleToLongBits(a - (a - b + c) * (a - b + c) / 4 / c) 1216 >> 32 << 32); // resolution in numbers with large exponent not needed here.. 1217 1218 if (perDistSq < snapDistanceSq && a < c + snapDistanceSq && b < c + snapDistanceSq) { 1219 nearestMap.computeIfAbsent(perDistSq, k -> new LinkedList<>()).add(new WaySegment(w, i)); 1220 } 1221 1222 lastN = n; 1223 } 1224 } 1225 } 1226 1227 return nearestMap; 1228 } 1229 1230 /** 1231 * The result *order* depends on the current map selection state. 1232 * Segments within 10px of p are searched and sorted by their distance to @param p, 1233 * then, within groups of equally distant segments, prefer those that are selected. 1234 * 1235 * @param p the point for which to search the nearest segments. 1236 * @param ignore a collection of segments which are not to be returned. 1237 * @param predicate the returned objects have to fulfill certain properties. 1238 * 1239 * @return all segments within 10px of p that are not in ignore, 1240 * sorted by their perpendicular distance. 1241 */ 1242 public final List<WaySegment> getNearestWaySegments(Point p, 1243 Collection<WaySegment> ignore, Predicate<OsmPrimitive> predicate) { 1244 List<WaySegment> nearestList = new ArrayList<>(); 1245 List<WaySegment> unselected = new LinkedList<>(); 1246 1247 for (List<WaySegment> wss : getNearestWaySegmentsImpl(p, predicate).values()) { 1248 // put selected waysegs within each distance group first 1249 // makes the order of nearestList dependent on current selection state 1250 for (WaySegment ws : wss) { 1251 (ws.way.isSelected() ? nearestList : unselected).add(ws); 1252 } 1253 nearestList.addAll(unselected); 1254 unselected.clear(); 1255 } 1256 if (ignore != null) { 1257 nearestList.removeAll(ignore); 1258 } 1259 1260 return nearestList; 1261 } 1262 1263 /** 1264 * The result *order* depends on the current map selection state. 1265 * 1266 * @param p the point for which to search the nearest segments. 1267 * @param predicate the returned objects have to fulfill certain properties. 1268 * 1269 * @return all segments within 10px of p, sorted by their perpendicular distance. 1270 * @see #getNearestWaySegments(Point, Collection, Predicate) 1271 */ 1272 public final List<WaySegment> getNearestWaySegments(Point p, Predicate<OsmPrimitive> predicate) { 1273 return getNearestWaySegments(p, null, predicate); 1274 } 1275 1276 /** 1277 * The *result* depends on the current map selection state IF use_selected is true. 1278 * 1279 * @param p the point for which to search the nearest segment. 1280 * @param predicate the returned object has to fulfill certain properties. 1281 * @param useSelected whether selected way segments should be preferred. 1282 * 1283 * @return The nearest way segment to point p, 1284 * and, depending on use_selected, prefers a selected way segment, if found. 1285 * @see #getNearestWaySegments(Point, Collection, Predicate) 1286 */ 1287 public final WaySegment getNearestWaySegment(Point p, Predicate<OsmPrimitive> predicate, boolean useSelected) { 1288 WaySegment wayseg = null; 1289 WaySegment ntsel = null; 1290 1291 for (List<WaySegment> wslist : getNearestWaySegmentsImpl(p, predicate).values()) { 1292 if (wayseg != null && ntsel != null) { 1293 break; 1294 } 1295 for (WaySegment ws : wslist) { 1296 if (wayseg == null) { 1297 wayseg = ws; 1298 } 1299 if (ntsel == null && ws.way.isSelected()) { 1300 ntsel = ws; 1301 } 1302 } 1303 } 1304 1305 return (ntsel != null && useSelected) ? ntsel : wayseg; 1306 } 1307 1308 /** 1309 * The *result* depends on the current map selection state IF use_selected is true. 1310 * 1311 * @param p the point for which to search the nearest segment. 1312 * @param predicate the returned object has to fulfill certain properties. 1313 * @param useSelected whether selected way segments should be preferred. 1314 * @param preferredRefs - prefer segments related to these primitives, may be null 1315 * 1316 * @return The nearest way segment to point p, 1317 * and, depending on use_selected, prefers a selected way segment, if found. 1318 * Also prefers segments of ways that are related to one of preferredRefs primitives 1319 * 1320 * @see #getNearestWaySegments(Point, Collection, Predicate) 1321 * @since 6065 1322 */ 1323 public final WaySegment getNearestWaySegment(Point p, Predicate<OsmPrimitive> predicate, 1324 boolean useSelected, Collection<OsmPrimitive> preferredRefs) { 1325 WaySegment wayseg = null; 1326 if (preferredRefs != null && preferredRefs.isEmpty()) 1327 preferredRefs = null; 1328 1329 for (List<WaySegment> wslist : getNearestWaySegmentsImpl(p, predicate).values()) { 1330 for (WaySegment ws : wslist) { 1331 if (wayseg == null) { 1332 wayseg = ws; 1333 } 1334 if (useSelected && ws.way.isSelected()) { 1335 return ws; 1336 } 1337 if (preferredRefs != null && !preferredRefs.isEmpty()) { 1338 // prefer ways containing given nodes 1339 if (preferredRefs.contains(ws.getFirstNode()) || preferredRefs.contains(ws.getSecondNode())) { 1340 return ws; 1341 } 1342 Collection<OsmPrimitive> wayRefs = ws.way.getReferrers(); 1343 // prefer member of the given relations 1344 for (OsmPrimitive ref: preferredRefs) { 1345 if (ref instanceof Relation && wayRefs.contains(ref)) { 1346 return ws; 1347 } 1348 } 1349 } 1350 } 1351 } 1352 return wayseg; 1353 } 1354 1355 /** 1356 * Convenience method to {@link #getNearestWaySegment(Point, Predicate, boolean)}. 1357 * @param p the point for which to search the nearest segment. 1358 * @param predicate the returned object has to fulfill certain properties. 1359 * 1360 * @return The nearest way segment to point p. 1361 */ 1362 public final WaySegment getNearestWaySegment(Point p, Predicate<OsmPrimitive> predicate) { 1363 return getNearestWaySegment(p, predicate, true); 1364 } 1365 1366 /** 1367 * The *result* does not depend on the current map selection state, 1368 * neither does the result *order*. 1369 * It solely depends on the perpendicular distance to point p. 1370 * 1371 * @param p the point for which to search the nearest ways. 1372 * @param ignore a collection of ways which are not to be returned. 1373 * @param predicate the returned object has to fulfill certain properties. 1374 * 1375 * @return all nearest ways to the screen point given that are not in ignore. 1376 * @see #getNearestWaySegments(Point, Collection, Predicate) 1377 */ 1378 public final List<Way> getNearestWays(Point p, 1379 Collection<Way> ignore, Predicate<OsmPrimitive> predicate) { 1380 List<Way> nearestList = new ArrayList<>(); 1381 Set<Way> wset = new HashSet<>(); 1382 1383 for (List<WaySegment> wss : getNearestWaySegmentsImpl(p, predicate).values()) { 1384 for (WaySegment ws : wss) { 1385 if (wset.add(ws.way)) { 1386 nearestList.add(ws.way); 1387 } 1388 } 1389 } 1390 if (ignore != null) { 1391 nearestList.removeAll(ignore); 1392 } 1393 1394 return nearestList; 1395 } 1396 1397 /** 1398 * The *result* does not depend on the current map selection state, 1399 * neither does the result *order*. 1400 * It solely depends on the perpendicular distance to point p. 1401 * 1402 * @param p the point for which to search the nearest ways. 1403 * @param predicate the returned object has to fulfill certain properties. 1404 * 1405 * @return all nearest ways to the screen point given. 1406 * @see #getNearestWays(Point, Collection, Predicate) 1407 */ 1408 public final List<Way> getNearestWays(Point p, Predicate<OsmPrimitive> predicate) { 1409 return getNearestWays(p, null, predicate); 1410 } 1411 1412 /** 1413 * The *result* depends on the current map selection state. 1414 * 1415 * @param p the point for which to search the nearest segment. 1416 * @param predicate the returned object has to fulfill certain properties. 1417 * 1418 * @return The nearest way to point p, prefer a selected way if there are multiple nearest. 1419 * @see #getNearestWaySegment(Point, Predicate) 1420 */ 1421 public final Way getNearestWay(Point p, Predicate<OsmPrimitive> predicate) { 1422 WaySegment nearestWaySeg = getNearestWaySegment(p, predicate); 1423 return (nearestWaySeg == null) ? null : nearestWaySeg.way; 1424 } 1425 1426 /** 1427 * The *result* does not depend on the current map selection state, 1428 * neither does the result *order*. 1429 * It solely depends on the distance to point p. 1430 * 1431 * First, nodes will be searched. If there are nodes within BBox found, 1432 * return a collection of those nodes only. 1433 * 1434 * If no nodes are found, search for nearest ways. If there are ways 1435 * within BBox found, return a collection of those ways only. 1436 * 1437 * If nothing is found, return an empty collection. 1438 * 1439 * @param p The point on screen. 1440 * @param ignore a collection of ways which are not to be returned. 1441 * @param predicate the returned object has to fulfill certain properties. 1442 * 1443 * @return Primitives nearest to the given screen point that are not in ignore. 1444 * @see #getNearestNodes(Point, Collection, Predicate) 1445 * @see #getNearestWays(Point, Collection, Predicate) 1446 */ 1447 public final List<OsmPrimitive> getNearestNodesOrWays(Point p, 1448 Collection<OsmPrimitive> ignore, Predicate<OsmPrimitive> predicate) { 1449 List<OsmPrimitive> nearestList = Collections.emptyList(); 1450 OsmPrimitive osm = getNearestNodeOrWay(p, predicate, false); 1451 1452 if (osm != null) { 1453 if (osm instanceof Node) { 1454 nearestList = new ArrayList<>(getNearestNodes(p, predicate)); 1455 } else if (osm instanceof Way) { 1456 nearestList = new ArrayList<>(getNearestWays(p, predicate)); 1457 } 1458 if (ignore != null) { 1459 nearestList.removeAll(ignore); 1460 } 1461 } 1462 1463 return nearestList; 1464 } 1465 1466 /** 1467 * The *result* does not depend on the current map selection state, 1468 * neither does the result *order*. 1469 * It solely depends on the distance to point p. 1470 * 1471 * @param p The point on screen. 1472 * @param predicate the returned object has to fulfill certain properties. 1473 * @return Primitives nearest to the given screen point. 1474 * @see #getNearestNodesOrWays(Point, Collection, Predicate) 1475 */ 1476 public final List<OsmPrimitive> getNearestNodesOrWays(Point p, Predicate<OsmPrimitive> predicate) { 1477 return getNearestNodesOrWays(p, null, predicate); 1478 } 1479 1480 /** 1481 * This is used as a helper routine to {@link #getNearestNodeOrWay(Point, Predicate, boolean)} 1482 * It decides, whether to yield the node to be tested or look for further (way) candidates. 1483 * 1484 * @param osm node to check 1485 * @param p point clicked 1486 * @param useSelected whether to prefer selected nodes 1487 * @return true, if the node fulfills the properties of the function body 1488 */ 1489 private boolean isPrecedenceNode(Node osm, Point p, boolean useSelected) { 1490 if (osm != null) { 1491 if (p.distanceSq(getPoint2D(osm)) <= (4*4)) return true; 1492 if (osm.isTagged()) return true; 1493 if (useSelected && osm.isSelected()) return true; 1494 } 1495 return false; 1496 } 1497 1498 /** 1499 * The *result* depends on the current map selection state IF use_selected is true. 1500 * 1501 * IF use_selected is true, use {@link #getNearestNode(Point, Predicate)} to find 1502 * the nearest, selected node. If not found, try {@link #getNearestWaySegment(Point, Predicate)} 1503 * to find the nearest selected way. 1504 * 1505 * IF use_selected is false, or if no selected primitive was found, do the following. 1506 * 1507 * If the nearest node found is within 4px of p, simply take it. 1508 * Else, find the nearest way segment. Then, if p is closer to its 1509 * middle than to the node, take the way segment, else take the node. 1510 * 1511 * Finally, if no nearest primitive is found at all, return null. 1512 * 1513 * @param p The point on screen. 1514 * @param predicate the returned object has to fulfill certain properties. 1515 * @param useSelected whether to prefer primitives that are currently selected or referred by selected primitives 1516 * 1517 * @return A primitive within snap-distance to point p, 1518 * that is chosen by the algorithm described. 1519 * @see #getNearestNode(Point, Predicate) 1520 * @see #getNearestWay(Point, Predicate) 1521 */ 1522 public final OsmPrimitive getNearestNodeOrWay(Point p, Predicate<OsmPrimitive> predicate, boolean useSelected) { 1523 Collection<OsmPrimitive> sel; 1524 DataSet ds = MainApplication.getLayerManager().getActiveDataSet(); 1525 if (useSelected && ds != null) { 1526 sel = ds.getSelected(); 1527 } else { 1528 sel = null; 1529 } 1530 OsmPrimitive osm = getNearestNode(p, predicate, useSelected, sel); 1531 1532 if (isPrecedenceNode((Node) osm, p, useSelected)) return osm; 1533 WaySegment ws; 1534 if (useSelected) { 1535 ws = getNearestWaySegment(p, predicate, useSelected, sel); 1536 } else { 1537 ws = getNearestWaySegment(p, predicate, useSelected); 1538 } 1539 if (ws == null) return osm; 1540 1541 if ((ws.way.isSelected() && useSelected) || osm == null) { 1542 // either (no _selected_ nearest node found, if desired) or no nearest node was found 1543 osm = ws.way; 1544 } else { 1545 int maxWaySegLenSq = 3*PROP_SNAP_DISTANCE.get(); 1546 maxWaySegLenSq *= maxWaySegLenSq; 1547 1548 Point2D wp1 = getPoint2D(ws.getFirstNode()); 1549 Point2D wp2 = getPoint2D(ws.getSecondNode()); 1550 1551 // is wayseg shorter than maxWaySegLenSq and 1552 // is p closer to the middle of wayseg than to the nearest node? 1553 if (wp1.distanceSq(wp2) < maxWaySegLenSq && 1554 p.distanceSq(project(0.5, wp1, wp2)) < p.distanceSq(getPoint2D((Node) osm))) { 1555 osm = ws.way; 1556 } 1557 } 1558 return osm; 1559 } 1560 1561 /** 1562 * if r = 0 returns a, if r=1 returns b, 1563 * if r = 0.5 returns center between a and b, etc.. 1564 * 1565 * @param r scale value 1566 * @param a root of vector 1567 * @param b vector 1568 * @return new point at a + r*(ab) 1569 */ 1570 public static Point2D project(double r, Point2D a, Point2D b) { 1571 Point2D ret = null; 1572 1573 if (a != null && b != null) { 1574 ret = new Point2D.Double(a.getX() + r*(b.getX()-a.getX()), 1575 a.getY() + r*(b.getY()-a.getY())); 1576 } 1577 return ret; 1578 } 1579 1580 /** 1581 * The *result* does not depend on the current map selection state, neither does the result *order*. 1582 * It solely depends on the distance to point p. 1583 * 1584 * @param p The point on screen. 1585 * @param ignore a collection of ways which are not to be returned. 1586 * @param predicate the returned object has to fulfill certain properties. 1587 * 1588 * @return a list of all objects that are nearest to point p and 1589 * not in ignore or an empty list if nothing was found. 1590 */ 1591 public final List<OsmPrimitive> getAllNearest(Point p, 1592 Collection<OsmPrimitive> ignore, Predicate<OsmPrimitive> predicate) { 1593 List<OsmPrimitive> nearestList = new ArrayList<>(); 1594 Set<Way> wset = new HashSet<>(); 1595 1596 // add nearby ways 1597 for (List<WaySegment> wss : getNearestWaySegmentsImpl(p, predicate).values()) { 1598 for (WaySegment ws : wss) { 1599 if (wset.add(ws.way)) { 1600 nearestList.add(ws.way); 1601 } 1602 } 1603 } 1604 1605 // add nearby nodes 1606 for (List<Node> nlist : getNearestNodesImpl(p, predicate).values()) { 1607 nearestList.addAll(nlist); 1608 } 1609 1610 // add parent relations of nearby nodes and ways 1611 Set<OsmPrimitive> parentRelations = new HashSet<>(); 1612 for (OsmPrimitive o : nearestList) { 1613 for (OsmPrimitive r : o.getReferrers()) { 1614 if (r instanceof Relation && predicate.test(r)) { 1615 parentRelations.add(r); 1616 } 1617 } 1618 } 1619 nearestList.addAll(parentRelations); 1620 1621 if (ignore != null) { 1622 nearestList.removeAll(ignore); 1623 } 1624 1625 return nearestList; 1626 } 1627 1628 /** 1629 * The *result* does not depend on the current map selection state, neither does the result *order*. 1630 * It solely depends on the distance to point p. 1631 * 1632 * @param p The point on screen. 1633 * @param predicate the returned object has to fulfill certain properties. 1634 * 1635 * @return a list of all objects that are nearest to point p 1636 * or an empty list if nothing was found. 1637 * @see #getAllNearest(Point, Collection, Predicate) 1638 */ 1639 public final List<OsmPrimitive> getAllNearest(Point p, Predicate<OsmPrimitive> predicate) { 1640 return getAllNearest(p, null, predicate); 1641 } 1642 1643 /** 1644 * @return The projection to be used in calculating stuff. 1645 */ 1646 public Projection getProjection() { 1647 return state.getProjection(); 1648 } 1649 1650 @Override 1651 public String helpTopic() { 1652 String n = getClass().getName(); 1653 return n.substring(n.lastIndexOf('.')+1); 1654 } 1655 1656 /** 1657 * Return a ID which is unique as long as viewport dimensions are the same 1658 * @return A unique ID, as long as viewport dimensions are the same 1659 */ 1660 public int getViewID() { 1661 EastNorth center = getCenter(); 1662 String x = new StringBuilder().append(center.east()) 1663 .append('_').append(center.north()) 1664 .append('_').append(getScale()) 1665 .append('_').append(getWidth()) 1666 .append('_').append(getHeight()) 1667 .append('_').append(getProjection()).toString(); 1668 CRC32 id = new CRC32(); 1669 id.update(x.getBytes(StandardCharsets.UTF_8)); 1670 return (int) id.getValue(); 1671 } 1672 1673 /** 1674 * Set new cursor. 1675 * @param cursor The new cursor to use. 1676 * @param reference A reference object that can be passed to the next set/reset calls to identify the caller. 1677 */ 1678 public void setNewCursor(Cursor cursor, Object reference) { 1679 cursorManager.setNewCursor(cursor, reference); 1680 } 1681 1682 /** 1683 * Set new cursor. 1684 * @param cursor the type of predefined cursor 1685 * @param reference A reference object that can be passed to the next set/reset calls to identify the caller. 1686 */ 1687 public void setNewCursor(int cursor, Object reference) { 1688 setNewCursor(Cursor.getPredefinedCursor(cursor), reference); 1689 } 1690 1691 /** 1692 * Remove the new cursor and reset to previous 1693 * @param reference Cursor reference 1694 */ 1695 public void resetCursor(Object reference) { 1696 cursorManager.resetCursor(reference); 1697 } 1698 1699 /** 1700 * Gets the cursor manager that is used for this NavigatableComponent. 1701 * @return The cursor manager. 1702 */ 1703 public CursorManager getCursorManager() { 1704 return cursorManager; 1705 } 1706 1707 /** 1708 * Get a max scale for projection that describes world in 1/512 of the projection unit 1709 * @return max scale 1710 */ 1711 public double getMaxScale() { 1712 ProjectionBounds world = getMaxProjectionBounds(); 1713 return Math.max( 1714 world.maxNorth-world.minNorth, 1715 world.maxEast-world.minEast 1716 )/512; 1717 } 1718}