001// License: GPL. For details, see LICENSE file. 002package org.openstreetmap.josm.gui; 003 004import java.awt.Cursor; 005import java.awt.Point; 006import java.awt.Rectangle; 007import java.awt.event.ComponentAdapter; 008import java.awt.event.ComponentEvent; 009import java.awt.event.HierarchyEvent; 010import java.awt.event.HierarchyListener; 011import java.awt.geom.AffineTransform; 012import java.awt.geom.Point2D; 013import java.nio.charset.StandardCharsets; 014import java.text.NumberFormat; 015import java.util.ArrayList; 016import java.util.Collection; 017import java.util.Collections; 018import java.util.Date; 019import java.util.HashSet; 020import java.util.LinkedList; 021import java.util.List; 022import java.util.Map; 023import java.util.Map.Entry; 024import java.util.Set; 025import java.util.Stack; 026import java.util.TreeMap; 027import java.util.concurrent.CopyOnWriteArrayList; 028import java.util.function.Predicate; 029import java.util.zip.CRC32; 030 031import javax.swing.JComponent; 032import javax.swing.SwingUtilities; 033 034import org.openstreetmap.josm.data.Bounds; 035import org.openstreetmap.josm.data.ProjectionBounds; 036import org.openstreetmap.josm.data.SystemOfMeasurement; 037import org.openstreetmap.josm.data.ViewportData; 038import org.openstreetmap.josm.data.coor.EastNorth; 039import org.openstreetmap.josm.data.coor.ILatLon; 040import org.openstreetmap.josm.data.coor.LatLon; 041import org.openstreetmap.josm.data.osm.BBox; 042import org.openstreetmap.josm.data.osm.DataSet; 043import org.openstreetmap.josm.data.osm.Node; 044import org.openstreetmap.josm.data.osm.OsmPrimitive; 045import org.openstreetmap.josm.data.osm.Relation; 046import org.openstreetmap.josm.data.osm.Way; 047import org.openstreetmap.josm.data.osm.WaySegment; 048import org.openstreetmap.josm.data.osm.visitor.BoundingXYVisitor; 049import org.openstreetmap.josm.data.preferences.BooleanProperty; 050import org.openstreetmap.josm.data.preferences.DoubleProperty; 051import org.openstreetmap.josm.data.preferences.IntegerProperty; 052import org.openstreetmap.josm.data.projection.Projection; 053import org.openstreetmap.josm.data.projection.ProjectionChangeListener; 054import org.openstreetmap.josm.data.projection.ProjectionRegistry; 055import org.openstreetmap.josm.gui.help.Helpful; 056import org.openstreetmap.josm.gui.layer.NativeScaleLayer; 057import org.openstreetmap.josm.gui.layer.NativeScaleLayer.Scale; 058import org.openstreetmap.josm.gui.layer.NativeScaleLayer.ScaleList; 059import org.openstreetmap.josm.gui.mappaint.MapPaintStyles; 060import org.openstreetmap.josm.gui.mappaint.mapcss.MapCSSStyleSource; 061import org.openstreetmap.josm.gui.util.CursorManager; 062import org.openstreetmap.josm.gui.util.GuiHelper; 063import org.openstreetmap.josm.spi.preferences.Config; 064import org.openstreetmap.josm.tools.Logging; 065import org.openstreetmap.josm.tools.Utils; 066 067/** 068 * A component that can be navigated by a {@link MapMover}. Used as map view and for the 069 * zoomer in the download dialog. 070 * 071 * @author imi 072 * @since 41 073 */ 074public class NavigatableComponent extends JComponent implements Helpful { 075 076 private static final double ALIGNMENT_EPSILON = 1e-3; 077 078 /** 079 * Interface to notify listeners of the change of the zoom area. 080 * @since 10600 (functional interface) 081 */ 082 @FunctionalInterface 083 public interface ZoomChangeListener { 084 /** 085 * Method called when the zoom area has changed. 086 */ 087 void zoomChanged(); 088 } 089 090 /** 091 * To determine if a primitive is currently selectable. 092 */ 093 public transient Predicate<OsmPrimitive> isSelectablePredicate = prim -> { 094 if (!prim.isSelectable()) return false; 095 // if it isn't displayed on screen, you cannot click on it 096 MapCSSStyleSource.STYLE_SOURCE_LOCK.readLock().lock(); 097 try { 098 return !MapPaintStyles.getStyles().get(prim, getDist100Pixel(), this).isEmpty(); 099 } finally { 100 MapCSSStyleSource.STYLE_SOURCE_LOCK.readLock().unlock(); 101 } 102 }; 103 104 /** Snap distance */ 105 public static final IntegerProperty PROP_SNAP_DISTANCE = new IntegerProperty("mappaint.node.snap-distance", 10); 106 /** Zoom steps to get double scale */ 107 public static final DoubleProperty PROP_ZOOM_RATIO = new DoubleProperty("zoom.ratio", 2.0); 108 /** Divide intervals between native resolution levels to smaller steps if they are much larger than zoom ratio */ 109 public static final BooleanProperty PROP_ZOOM_INTERMEDIATE_STEPS = new BooleanProperty("zoom.intermediate-steps", true); 110 /** scale follows native resolution of layer status when layer is created */ 111 public static final BooleanProperty PROP_ZOOM_SCALE_FOLLOW_NATIVE_RES_AT_LOAD = new BooleanProperty( 112 "zoom.scale-follow-native-resolution-at-load", true); 113 114 /** 115 * The layer which scale is set to. 116 */ 117 private transient NativeScaleLayer nativeScaleLayer; 118 119 /** 120 * the zoom listeners 121 */ 122 private static final CopyOnWriteArrayList<ZoomChangeListener> zoomChangeListeners = new CopyOnWriteArrayList<>(); 123 124 /** 125 * Removes a zoom change listener 126 * 127 * @param listener the listener. Ignored if null or already absent 128 */ 129 public static void removeZoomChangeListener(ZoomChangeListener listener) { 130 zoomChangeListeners.remove(listener); 131 } 132 133 /** 134 * Adds a zoom change listener 135 * 136 * @param listener the listener. Ignored if null or already registered. 137 */ 138 public static void addZoomChangeListener(ZoomChangeListener listener) { 139 if (listener != null) { 140 zoomChangeListeners.addIfAbsent(listener); 141 } 142 } 143 144 protected static void fireZoomChanged() { 145 GuiHelper.runInEDTAndWait(() -> { 146 for (ZoomChangeListener l : zoomChangeListeners) { 147 l.zoomChanged(); 148 } 149 }); 150 } 151 152 // The only events that may move/resize this map view are window movements or changes to the map view size. 153 // We can clean this up more by only recalculating the state on repaint. 154 private final transient HierarchyListener hierarchyListener = e -> { 155 long interestingFlags = HierarchyEvent.ANCESTOR_MOVED | HierarchyEvent.SHOWING_CHANGED; 156 if ((e.getChangeFlags() & interestingFlags) != 0) { 157 updateLocationState(); 158 } 159 }; 160 161 private final transient ComponentAdapter componentListener = new ComponentAdapter() { 162 @Override 163 public void componentShown(ComponentEvent e) { 164 updateLocationState(); 165 } 166 167 @Override 168 public void componentResized(ComponentEvent e) { 169 updateLocationState(); 170 } 171 }; 172 173 protected transient ViewportData initialViewport; 174 175 protected final transient CursorManager cursorManager = new CursorManager(this); 176 177 /** 178 * The current state (scale, center, ...) of this map view. 179 */ 180 private transient MapViewState state; 181 182 /** 183 * Main uses weak link to store this, so we need to keep a reference. 184 */ 185 private final ProjectionChangeListener projectionChangeListener = (oldValue, newValue) -> fixProjection(); 186 187 /** 188 * Constructs a new {@code NavigatableComponent}. 189 */ 190 public NavigatableComponent() { 191 setLayout(null); 192 state = MapViewState.createDefaultState(getWidth(), getHeight()); 193 ProjectionRegistry.addProjectionChangeListener(projectionChangeListener); 194 } 195 196 @Override 197 public void addNotify() { 198 updateLocationState(); 199 addHierarchyListener(hierarchyListener); 200 addComponentListener(componentListener); 201 super.addNotify(); 202 } 203 204 @Override 205 public void removeNotify() { 206 removeHierarchyListener(hierarchyListener); 207 removeComponentListener(componentListener); 208 super.removeNotify(); 209 } 210 211 /** 212 * Choose a layer that scale will be snap to its native scales. 213 * @param nativeScaleLayer layer to which scale will be snapped 214 */ 215 public void setNativeScaleLayer(NativeScaleLayer nativeScaleLayer) { 216 this.nativeScaleLayer = nativeScaleLayer; 217 zoomTo(getCenter(), scaleRound(getScale())); 218 repaint(); 219 } 220 221 /** 222 * Replies the layer which scale is set to. 223 * @return the current scale layer (may be null) 224 */ 225 public NativeScaleLayer getNativeScaleLayer() { 226 return nativeScaleLayer; 227 } 228 229 /** 230 * Get a new scale that is zoomed in from previous scale 231 * and snapped to selected native scale layer. 232 * @return new scale 233 */ 234 public double scaleZoomIn() { 235 return scaleZoomManyTimes(-1); 236 } 237 238 /** 239 * Get a new scale that is zoomed out from previous scale 240 * and snapped to selected native scale layer. 241 * @return new scale 242 */ 243 public double scaleZoomOut() { 244 return scaleZoomManyTimes(1); 245 } 246 247 /** 248 * Get a new scale that is zoomed in/out a number of times 249 * from previous scale and snapped to selected native scale layer. 250 * @param times count of zoom operations, negative means zoom in 251 * @return new scale 252 */ 253 public double scaleZoomManyTimes(int times) { 254 if (nativeScaleLayer != null) { 255 ScaleList scaleList = nativeScaleLayer.getNativeScales(); 256 if (scaleList != null) { 257 if (PROP_ZOOM_INTERMEDIATE_STEPS.get()) { 258 scaleList = scaleList.withIntermediateSteps(PROP_ZOOM_RATIO.get()); 259 } 260 Scale s = scaleList.scaleZoomTimes(getScale(), PROP_ZOOM_RATIO.get(), times); 261 return s != null ? s.getScale() : 0; 262 } 263 } 264 return getScale() * Math.pow(PROP_ZOOM_RATIO.get(), times); 265 } 266 267 /** 268 * Get a scale snapped to native resolutions, use round method. 269 * It gives nearest step from scale list. 270 * Use round method. 271 * @param scale to snap 272 * @return snapped scale 273 */ 274 public double scaleRound(double scale) { 275 return scaleSnap(scale, false); 276 } 277 278 /** 279 * Get a scale snapped to native resolutions. 280 * It gives nearest lower step from scale list, usable to fit objects. 281 * @param scale to snap 282 * @return snapped scale 283 */ 284 public double scaleFloor(double scale) { 285 return scaleSnap(scale, true); 286 } 287 288 /** 289 * Get a scale snapped to native resolutions. 290 * It gives nearest lower step from scale list, usable to fit objects. 291 * @param scale to snap 292 * @param floor use floor instead of round, set true when fitting view to objects 293 * @return new scale 294 */ 295 public double scaleSnap(double scale, boolean floor) { 296 if (nativeScaleLayer != null) { 297 ScaleList scaleList = nativeScaleLayer.getNativeScales(); 298 if (scaleList != null) { 299 if (PROP_ZOOM_INTERMEDIATE_STEPS.get()) { 300 scaleList = scaleList.withIntermediateSteps(PROP_ZOOM_RATIO.get()); 301 } 302 Scale snapscale = scaleList.getSnapScale(scale, PROP_ZOOM_RATIO.get(), floor); 303 return snapscale != null ? snapscale.getScale() : scale; 304 } 305 } 306 return scale; 307 } 308 309 /** 310 * Zoom in current view. Use configured zoom step and scaling settings. 311 */ 312 public void zoomIn() { 313 zoomTo(state.getCenter().getEastNorth(), scaleZoomIn()); 314 } 315 316 /** 317 * Zoom out current view. Use configured zoom step and scaling settings. 318 */ 319 public void zoomOut() { 320 zoomTo(state.getCenter().getEastNorth(), scaleZoomOut()); 321 } 322 323 protected void updateLocationState() { 324 if (isVisibleOnScreen()) { 325 state = state.usingLocation(this); 326 } 327 } 328 329 protected boolean isVisibleOnScreen() { 330 return SwingUtilities.getWindowAncestor(this) != null && isShowing(); 331 } 332 333 /** 334 * Changes the projection settings used for this map view. 335 * <p> 336 * Made public temporarily, will be made private later. 337 */ 338 public void fixProjection() { 339 state = state.usingProjection(ProjectionRegistry.getProjection()); 340 repaint(); 341 } 342 343 /** 344 * Gets the current view state. This includes the scale, the current view area and the position. 345 * @return The current state. 346 */ 347 public MapViewState getState() { 348 return state; 349 } 350 351 /** 352 * Returns the text describing the given distance in the current system of measurement. 353 * @param dist The distance in metres. 354 * @return the text describing the given distance in the current system of measurement. 355 * @since 3406 356 */ 357 public static String getDistText(double dist) { 358 return SystemOfMeasurement.getSystemOfMeasurement().getDistText(dist); 359 } 360 361 /** 362 * Returns the text describing the given distance in the current system of measurement. 363 * @param dist The distance in metres 364 * @param format A {@link NumberFormat} to format the area value 365 * @param threshold Values lower than this {@code threshold} are displayed as {@code "< [threshold]"} 366 * @return the text describing the given distance in the current system of measurement. 367 * @since 7135 368 */ 369 public static String getDistText(final double dist, final NumberFormat format, final double threshold) { 370 return SystemOfMeasurement.getSystemOfMeasurement().getDistText(dist, format, threshold); 371 } 372 373 /** 374 * Returns the text describing the distance in meter that correspond to 100 px on screen. 375 * @return the text describing the distance in meter that correspond to 100 px on screen 376 */ 377 public String getDist100PixelText() { 378 return getDistText(getDist100Pixel()); 379 } 380 381 /** 382 * Get the distance in meter that correspond to 100 px on screen. 383 * 384 * @return the distance in meter that correspond to 100 px on screen 385 */ 386 public double getDist100Pixel() { 387 return getDist100Pixel(true); 388 } 389 390 /** 391 * Get the distance in meter that correspond to 100 px on screen. 392 * 393 * @param alwaysPositive if true, makes sure the return value is always 394 * > 0. (Two points 100 px apart can appear to be identical if the user 395 * has zoomed out a lot and the projection code does something funny.) 396 * @return the distance in meter that correspond to 100 px on screen 397 */ 398 public double getDist100Pixel(boolean alwaysPositive) { 399 int w = getWidth()/2; 400 int h = getHeight()/2; 401 LatLon ll1 = getLatLon(w-50, h); 402 LatLon ll2 = getLatLon(w+50, h); 403 double gcd = ll1.greatCircleDistance(ll2); 404 if (alwaysPositive && gcd <= 0) 405 return 0.1; 406 return gcd; 407 } 408 409 /** 410 * Returns the current center of the viewport. 411 * 412 * (Use {@link #zoomTo(EastNorth)} to the change the center.) 413 * 414 * @return the current center of the viewport 415 */ 416 public EastNorth getCenter() { 417 return state.getCenter().getEastNorth(); 418 } 419 420 /** 421 * Returns the current scale. 422 * 423 * In east/north units per pixel. 424 * 425 * @return the current scale 426 */ 427 public double getScale() { 428 return state.getScale(); 429 } 430 431 /** 432 * @param x X-Pixelposition to get coordinate from 433 * @param y Y-Pixelposition to get coordinate from 434 * 435 * @return Geographic coordinates from a specific pixel coordination on the screen. 436 */ 437 public EastNorth getEastNorth(int x, int y) { 438 return state.getForView(x, y).getEastNorth(); 439 } 440 441 /** 442 * Determines the projection bounds of view area. 443 * @return the projection bounds of view area 444 */ 445 public ProjectionBounds getProjectionBounds() { 446 return getState().getViewArea().getProjectionBounds(); 447 } 448 449 /* FIXME: replace with better method - used by MapSlider */ 450 public ProjectionBounds getMaxProjectionBounds() { 451 Bounds b = getProjection().getWorldBoundsLatLon(); 452 return new ProjectionBounds(getProjection().latlon2eastNorth(b.getMin()), 453 getProjection().latlon2eastNorth(b.getMax())); 454 } 455 456 /* FIXME: replace with better method - used by Main to reset Bounds when projection changes, don't use otherwise */ 457 public Bounds getRealBounds() { 458 return getState().getViewArea().getCornerBounds(); 459 } 460 461 /** 462 * Returns unprojected geographic coordinates for a specific pixel position on the screen. 463 * @param x X-Pixelposition to get coordinate from 464 * @param y Y-Pixelposition to get coordinate from 465 * 466 * @return Geographic unprojected coordinates from a specific pixel position on the screen. 467 */ 468 public LatLon getLatLon(int x, int y) { 469 return getProjection().eastNorth2latlon(getEastNorth(x, y)); 470 } 471 472 /** 473 * Returns unprojected geographic coordinates for a specific pixel position on the screen. 474 * @param x X-Pixelposition to get coordinate from 475 * @param y Y-Pixelposition to get coordinate from 476 * 477 * @return Geographic unprojected coordinates from a specific pixel position on the screen. 478 */ 479 public LatLon getLatLon(double x, double y) { 480 return getLatLon((int) x, (int) y); 481 } 482 483 /** 484 * Determines the projection bounds of given rectangle. 485 * @param r rectangle 486 * @return the projection bounds of {@code r} 487 */ 488 public ProjectionBounds getProjectionBounds(Rectangle r) { 489 return getState().getViewArea(r).getProjectionBounds(); 490 } 491 492 /** 493 * @param r rectangle 494 * @return Minimum bounds that will cover rectangle 495 */ 496 public Bounds getLatLonBounds(Rectangle r) { 497 return ProjectionRegistry.getProjection().getLatLonBoundsBox(getProjectionBounds(r)); 498 } 499 500 /** 501 * Creates an affine transform that is used to convert the east/north coordinates to view coordinates. 502 * @return The affine transform. 503 */ 504 public AffineTransform getAffineTransform() { 505 return getState().getAffineTransform(); 506 } 507 508 /** 509 * Return the point on the screen where this Coordinate would be. 510 * @param p The point, where this geopoint would be drawn. 511 * @return The point on screen where "point" would be drawn, relative to the own top/left. 512 */ 513 public Point2D getPoint2D(EastNorth p) { 514 if (null == p) 515 return new Point(); 516 return getState().getPointFor(p).getInView(); 517 } 518 519 /** 520 * Return the point on the screen where this Coordinate would be. 521 * 522 * Alternative: {@link #getState()}, then {@link MapViewState#getPointFor(ILatLon)} 523 * @param latlon The point, where this geopoint would be drawn. 524 * @return The point on screen where "point" would be drawn, relative to the own top/left. 525 */ 526 public Point2D getPoint2D(ILatLon latlon) { 527 if (latlon == null) { 528 return new Point(); 529 } else { 530 return getPoint2D(latlon.getEastNorth(ProjectionRegistry.getProjection())); 531 } 532 } 533 534 /** 535 * Return the point on the screen where this Coordinate would be. 536 * 537 * Alternative: {@link #getState()}, then {@link MapViewState#getPointFor(ILatLon)} 538 * @param latlon The point, where this geopoint would be drawn. 539 * @return The point on screen where "point" would be drawn, relative to the own top/left. 540 */ 541 public Point2D getPoint2D(LatLon latlon) { 542 return getPoint2D((ILatLon) latlon); 543 } 544 545 /** 546 * Return the point on the screen where this Node would be. 547 * 548 * Alternative: {@link #getState()}, then {@link MapViewState#getPointFor(ILatLon)} 549 * @param n The node, where this geopoint would be drawn. 550 * @return The point on screen where "node" would be drawn, relative to the own top/left. 551 */ 552 public Point2D getPoint2D(Node n) { 553 return getPoint2D(n.getEastNorth()); 554 } 555 556 /** 557 * looses precision, may overflow (depends on p and current scale) 558 * @param p east/north 559 * @return point 560 * @see #getPoint2D(EastNorth) 561 */ 562 public Point getPoint(EastNorth p) { 563 Point2D d = getPoint2D(p); 564 return new Point((int) d.getX(), (int) d.getY()); 565 } 566 567 /** 568 * looses precision, may overflow (depends on p and current scale) 569 * @param latlon lat/lon 570 * @return point 571 * @see #getPoint2D(LatLon) 572 * @since 12725 573 */ 574 public Point getPoint(ILatLon latlon) { 575 Point2D d = getPoint2D(latlon); 576 return new Point((int) d.getX(), (int) d.getY()); 577 } 578 579 /** 580 * looses precision, may overflow (depends on p and current scale) 581 * @param latlon lat/lon 582 * @return point 583 * @see #getPoint2D(LatLon) 584 */ 585 public Point getPoint(LatLon latlon) { 586 return getPoint((ILatLon) latlon); 587 } 588 589 /** 590 * looses precision, may overflow (depends on p and current scale) 591 * @param n node 592 * @return point 593 * @see #getPoint2D(Node) 594 */ 595 public Point getPoint(Node n) { 596 Point2D d = getPoint2D(n); 597 return new Point((int) d.getX(), (int) d.getY()); 598 } 599 600 /** 601 * Zoom to the given coordinate and scale. 602 * 603 * @param newCenter The center x-value (easting) to zoom to. 604 * @param newScale The scale to use. 605 */ 606 public void zoomTo(EastNorth newCenter, double newScale) { 607 zoomTo(newCenter, newScale, false); 608 } 609 610 /** 611 * Zoom to the given coordinate and scale. 612 * 613 * @param center The center x-value (easting) to zoom to. 614 * @param scale The scale to use. 615 * @param initial true if this call initializes the viewport. 616 */ 617 public void zoomTo(EastNorth center, double scale, boolean initial) { 618 Bounds b = getProjection().getWorldBoundsLatLon(); 619 ProjectionBounds pb = getProjection().getWorldBoundsBoxEastNorth(); 620 double newScale = scale; 621 int width = getWidth(); 622 int height = getHeight(); 623 624 // make sure, the center of the screen is within projection bounds 625 double east = center.east(); 626 double north = center.north(); 627 east = Math.max(east, pb.minEast); 628 east = Math.min(east, pb.maxEast); 629 north = Math.max(north, pb.minNorth); 630 north = Math.min(north, pb.maxNorth); 631 EastNorth newCenter = new EastNorth(east, north); 632 633 // don't zoom out too much, the world bounds should be at least 634 // half the size of the screen 635 double pbHeight = pb.maxNorth - pb.minNorth; 636 if (height > 0 && 2 * pbHeight < height * newScale) { 637 double newScaleH = 2 * pbHeight / height; 638 double pbWidth = pb.maxEast - pb.minEast; 639 if (width > 0 && 2 * pbWidth < width * newScale) { 640 double newScaleW = 2 * pbWidth / width; 641 newScale = Math.max(newScaleH, newScaleW); 642 } 643 } 644 645 // don't zoom in too much, minimum: 100 px = 1 cm 646 LatLon ll1 = getLatLon(width / 2 - 50, height / 2); 647 LatLon ll2 = getLatLon(width / 2 + 50, height / 2); 648 if (ll1.isValid() && ll2.isValid() && b.contains(ll1) && b.contains(ll2)) { 649 double dm = ll1.greatCircleDistance(ll2); 650 double den = 100 * getScale(); 651 double scaleMin = 0.01 * den / dm / 100; 652 if (newScale < scaleMin && !Double.isInfinite(scaleMin)) { 653 newScale = scaleMin; 654 } 655 } 656 657 // snap scale to imagery if needed 658 newScale = scaleRound(newScale); 659 660 // Align to the pixel grid: 661 // This is a sub-pixel correction to ensure consistent drawing at a certain scale. 662 // For example take 2 nodes, that have a distance of exactly 2.6 pixels. 663 // Depending on the offset, the distance in rounded or truncated integer 664 // pixels will be 2 or 3. It is preferable to have a consistent distance 665 // and not switch back and forth as the viewport moves. This can be achieved by 666 // locking an arbitrary point to integer pixel coordinates. (Here the EastNorth 667 // origin is used as reference point.) 668 // Note that the normal right mouse button drag moves the map by integer pixel 669 // values, so it is not an issue in this case. It only shows when zooming 670 // in & back out, etc. 671 MapViewState mvs = getState().usingScale(newScale); 672 mvs = mvs.movedTo(mvs.getCenter(), newCenter); 673 Point2D enOrigin = mvs.getPointFor(new EastNorth(0, 0)).getInView(); 674 // as a result of the alignment, it is common to round "half integer" values 675 // like 1.49999, which is numerically unstable; add small epsilon to resolve this 676 Point2D enOriginAligned = new Point2D.Double( 677 Math.round(enOrigin.getX()) + ALIGNMENT_EPSILON, 678 Math.round(enOrigin.getY()) + ALIGNMENT_EPSILON); 679 EastNorth enShift = mvs.getForView(enOriginAligned.getX(), enOriginAligned.getY()).getEastNorth(); 680 newCenter = newCenter.subtract(enShift); 681 682 EastNorth oldCenter = getCenter(); 683 if (!newCenter.equals(oldCenter) || !Utils.equalsEpsilon(getScale(), newScale)) { 684 if (!initial) { 685 pushZoomUndo(oldCenter, getScale()); 686 } 687 zoomNoUndoTo(newCenter, newScale, initial); 688 } 689 } 690 691 /** 692 * Zoom to the given coordinate without adding to the zoom undo buffer. 693 * 694 * @param newCenter The center x-value (easting) to zoom to. 695 * @param newScale The scale to use. 696 * @param initial true if this call initializes the viewport. 697 */ 698 private void zoomNoUndoTo(EastNorth newCenter, double newScale, boolean initial) { 699 if (!Utils.equalsEpsilon(getScale(), newScale)) { 700 state = state.usingScale(newScale); 701 } 702 if (!newCenter.equals(getCenter())) { 703 state = state.movedTo(state.getCenter(), newCenter); 704 } 705 if (!initial) { 706 repaint(); 707 fireZoomChanged(); 708 } 709 } 710 711 /** 712 * Zoom to given east/north. 713 * @param newCenter new center coordinates 714 */ 715 public void zoomTo(EastNorth newCenter) { 716 zoomTo(newCenter, getScale()); 717 } 718 719 /** 720 * Zoom to given lat/lon. 721 * @param newCenter new center coordinates 722 * @since 12725 723 */ 724 public void zoomTo(ILatLon newCenter) { 725 zoomTo(getProjection().latlon2eastNorth(newCenter)); 726 } 727 728 /** 729 * Zoom to given lat/lon. 730 * @param newCenter new center coordinates 731 */ 732 public void zoomTo(LatLon newCenter) { 733 zoomTo((ILatLon) newCenter); 734 } 735 736 /** 737 * Create a thread that moves the viewport to the given center in an animated fashion. 738 * @param newCenter new east/north center 739 */ 740 public void smoothScrollTo(EastNorth newCenter) { 741 // FIXME make these configurable. 742 final int fps = 20; // animation frames per second 743 final int speed = 1500; // milliseconds for full-screen-width pan 744 final EastNorth oldCenter = getCenter(); 745 if (!newCenter.equals(oldCenter)) { 746 final double distance = newCenter.distance(oldCenter) / getScale(); 747 final double milliseconds = distance / getWidth() * speed; 748 final double frames = milliseconds * fps / 1000; 749 final EastNorth finalNewCenter = newCenter; 750 751 new Thread("smooth-scroller") { 752 @Override 753 public void run() { 754 for (int i = 0; i < frames; i++) { 755 // FIXME - not use zoom history here 756 zoomTo(oldCenter.interpolate(finalNewCenter, (i+1) / frames)); 757 try { 758 Thread.sleep(1000L / fps); 759 } catch (InterruptedException ex) { 760 Logging.warn("InterruptedException in "+NavigatableComponent.class.getSimpleName()+" during smooth scrolling"); 761 Thread.currentThread().interrupt(); 762 } 763 } 764 } 765 }.start(); 766 } 767 } 768 769 public void zoomManyTimes(double x, double y, int times) { 770 double oldScale = getScale(); 771 double newScale = scaleZoomManyTimes(times); 772 zoomToFactor(x, y, newScale / oldScale); 773 } 774 775 public void zoomToFactor(double x, double y, double factor) { 776 double newScale = getScale()*factor; 777 EastNorth oldUnderMouse = getState().getForView(x, y).getEastNorth(); 778 MapViewState newState = getState().usingScale(newScale); 779 newState = newState.movedTo(newState.getForView(x, y), oldUnderMouse); 780 zoomTo(newState.getCenter().getEastNorth(), newScale); 781 } 782 783 public void zoomToFactor(EastNorth newCenter, double factor) { 784 zoomTo(newCenter, getScale()*factor); 785 } 786 787 public void zoomToFactor(double factor) { 788 zoomTo(getCenter(), getScale()*factor); 789 } 790 791 /** 792 * Zoom to given projection bounds. 793 * @param box new projection bounds 794 */ 795 public void zoomTo(ProjectionBounds box) { 796 double newScale = box.getScale(getWidth(), getHeight()); 797 newScale = scaleFloor(newScale); 798 zoomTo(box.getCenter(), newScale); 799 } 800 801 /** 802 * Zoom to given bounds. 803 * @param box new bounds 804 */ 805 public void zoomTo(Bounds box) { 806 zoomTo(new ProjectionBounds(getProjection().latlon2eastNorth(box.getMin()), 807 getProjection().latlon2eastNorth(box.getMax()))); 808 } 809 810 /** 811 * Zoom to given viewport data. 812 * @param viewport new viewport data 813 */ 814 public void zoomTo(ViewportData viewport) { 815 if (viewport == null) return; 816 if (viewport.getBounds() != null) { 817 zoomTo(viewport.getBounds()); 818 } else { 819 zoomTo(viewport.getCenter(), viewport.getScale(), true); 820 } 821 } 822 823 /** 824 * Set the new dimension to the view. 825 * @param v box to zoom to 826 */ 827 public void zoomTo(BoundingXYVisitor v) { 828 if (v == null) { 829 v = new BoundingXYVisitor(); 830 } 831 if (v.getBounds() == null) { 832 v.visit(getProjection().getWorldBoundsLatLon()); 833 } 834 835 // increase bbox. This is required 836 // especially if the bbox contains one single node, but helpful 837 // in most other cases as well. 838 // Do not zoom if the current scale covers the selection, #16706 839 final MapView mapView = MainApplication.getMap().mapView; 840 final double mapScale = mapView.getScale(); 841 final double minScale = v.getBounds().getScale(mapView.getWidth(), mapView.getHeight()); 842 v.enlargeBoundingBoxLogarithmically(); 843 final double maxScale = v.getBounds().getScale(mapView.getWidth(), mapView.getHeight()); 844 if (minScale <= mapScale && mapScale < maxScale) { 845 mapView.zoomTo(v.getBounds().getCenter()); 846 } else { 847 zoomTo(v.getBounds()); 848 } 849 } 850 851 private static class ZoomData { 852 private final EastNorth center; 853 private final double scale; 854 855 ZoomData(EastNorth center, double scale) { 856 this.center = center; 857 this.scale = scale; 858 } 859 860 public EastNorth getCenterEastNorth() { 861 return center; 862 } 863 864 public double getScale() { 865 return scale; 866 } 867 } 868 869 private final transient Stack<ZoomData> zoomUndoBuffer = new Stack<>(); 870 private final transient Stack<ZoomData> zoomRedoBuffer = new Stack<>(); 871 private Date zoomTimestamp = new Date(); 872 873 private void pushZoomUndo(EastNorth center, double scale) { 874 Date now = new Date(); 875 if ((now.getTime() - zoomTimestamp.getTime()) > (Config.getPref().getDouble("zoom.undo.delay", 1.0) * 1000)) { 876 zoomUndoBuffer.push(new ZoomData(center, scale)); 877 if (zoomUndoBuffer.size() > Config.getPref().getInt("zoom.undo.max", 50)) { 878 zoomUndoBuffer.remove(0); 879 } 880 zoomRedoBuffer.clear(); 881 } 882 zoomTimestamp = now; 883 } 884 885 /** 886 * Zoom to previous location. 887 */ 888 public void zoomPrevious() { 889 if (!zoomUndoBuffer.isEmpty()) { 890 ZoomData zoom = zoomUndoBuffer.pop(); 891 zoomRedoBuffer.push(new ZoomData(getCenter(), getScale())); 892 zoomNoUndoTo(zoom.getCenterEastNorth(), zoom.getScale(), false); 893 } 894 } 895 896 /** 897 * Zoom to next location. 898 */ 899 public void zoomNext() { 900 if (!zoomRedoBuffer.isEmpty()) { 901 ZoomData zoom = zoomRedoBuffer.pop(); 902 zoomUndoBuffer.push(new ZoomData(getCenter(), getScale())); 903 zoomNoUndoTo(zoom.getCenterEastNorth(), zoom.getScale(), false); 904 } 905 } 906 907 /** 908 * Determines if zoom history contains "undo" entries. 909 * @return {@code true} if zoom history contains "undo" entries 910 */ 911 public boolean hasZoomUndoEntries() { 912 return !zoomUndoBuffer.isEmpty(); 913 } 914 915 /** 916 * Determines if zoom history contains "redo" entries. 917 * @return {@code true} if zoom history contains "redo" entries 918 */ 919 public boolean hasZoomRedoEntries() { 920 return !zoomRedoBuffer.isEmpty(); 921 } 922 923 private BBox getBBox(Point p, int snapDistance) { 924 return new BBox(getLatLon(p.x - snapDistance, p.y - snapDistance), 925 getLatLon(p.x + snapDistance, p.y + snapDistance)); 926 } 927 928 /** 929 * The *result* does not depend on the current map selection state, neither does the result *order*. 930 * It solely depends on the distance to point p. 931 * @param p point 932 * @param predicate predicate to match 933 * 934 * @return a sorted map with the keys representing the distance of their associated nodes to point p. 935 */ 936 private Map<Double, List<Node>> getNearestNodesImpl(Point p, Predicate<OsmPrimitive> predicate) { 937 Map<Double, List<Node>> nearestMap = new TreeMap<>(); 938 DataSet ds = MainApplication.getLayerManager().getActiveDataSet(); 939 940 if (ds != null) { 941 double dist, snapDistanceSq = PROP_SNAP_DISTANCE.get(); 942 snapDistanceSq *= snapDistanceSq; 943 944 for (Node n : ds.searchNodes(getBBox(p, PROP_SNAP_DISTANCE.get()))) { 945 if (predicate.test(n) 946 && (dist = getPoint2D(n).distanceSq(p)) < snapDistanceSq) { 947 List<Node> nlist; 948 if (nearestMap.containsKey(dist)) { 949 nlist = nearestMap.get(dist); 950 } else { 951 nlist = new LinkedList<>(); 952 nearestMap.put(dist, nlist); 953 } 954 nlist.add(n); 955 } 956 } 957 } 958 959 return nearestMap; 960 } 961 962 /** 963 * The *result* does not depend on the current map selection state, 964 * neither does the result *order*. 965 * It solely depends on the distance to point p. 966 * 967 * @param p the point for which to search the nearest segment. 968 * @param ignore a collection of nodes which are not to be returned. 969 * @param predicate the returned objects have to fulfill certain properties. 970 * 971 * @return All nodes nearest to point p that are in a belt from 972 * dist(nearest) to dist(nearest)+4px around p and 973 * that are not in ignore. 974 */ 975 public final List<Node> getNearestNodes(Point p, 976 Collection<Node> ignore, Predicate<OsmPrimitive> predicate) { 977 List<Node> nearestList = Collections.emptyList(); 978 979 if (ignore == null) { 980 ignore = Collections.emptySet(); 981 } 982 983 Map<Double, List<Node>> nlists = getNearestNodesImpl(p, predicate); 984 if (!nlists.isEmpty()) { 985 Double minDistSq = null; 986 for (Entry<Double, List<Node>> entry : nlists.entrySet()) { 987 Double distSq = entry.getKey(); 988 List<Node> nlist = entry.getValue(); 989 990 // filter nodes to be ignored before determining minDistSq.. 991 nlist.removeAll(ignore); 992 if (minDistSq == null) { 993 if (!nlist.isEmpty()) { 994 minDistSq = distSq; 995 nearestList = new ArrayList<>(); 996 nearestList.addAll(nlist); 997 } 998 } else { 999 if (distSq-minDistSq < (4)*(4)) { 1000 nearestList.addAll(nlist); 1001 } 1002 } 1003 } 1004 } 1005 1006 return nearestList; 1007 } 1008 1009 /** 1010 * The *result* does not depend on the current map selection state, 1011 * neither does the result *order*. 1012 * It solely depends on the distance to point p. 1013 * 1014 * @param p the point for which to search the nearest segment. 1015 * @param predicate the returned objects have to fulfill certain properties. 1016 * 1017 * @return All nodes nearest to point p that are in a belt from 1018 * dist(nearest) to dist(nearest)+4px around p. 1019 * @see #getNearestNodes(Point, Collection, Predicate) 1020 */ 1021 public final List<Node> getNearestNodes(Point p, Predicate<OsmPrimitive> predicate) { 1022 return getNearestNodes(p, null, predicate); 1023 } 1024 1025 /** 1026 * The *result* depends on the current map selection state IF use_selected is true. 1027 * 1028 * If more than one node within node.snap-distance pixels is found, 1029 * the nearest node selected is returned IF use_selected is true. 1030 * 1031 * Else the nearest new/id=0 node within about the same distance 1032 * as the true nearest node is returned. 1033 * 1034 * If no such node is found either, the true nearest node to p is returned. 1035 * 1036 * Finally, if a node is not found at all, null is returned. 1037 * 1038 * @param p the screen point 1039 * @param predicate this parameter imposes a condition on the returned object, e.g. 1040 * give the nearest node that is tagged. 1041 * @param useSelected make search depend on selection 1042 * 1043 * @return A node within snap-distance to point p, that is chosen by the algorithm described. 1044 */ 1045 public final Node getNearestNode(Point p, Predicate<OsmPrimitive> predicate, boolean useSelected) { 1046 return getNearestNode(p, predicate, useSelected, null); 1047 } 1048 1049 /** 1050 * The *result* depends on the current map selection state IF use_selected is true 1051 * 1052 * If more than one node within node.snap-distance pixels is found, 1053 * the nearest node selected is returned IF use_selected is true. 1054 * 1055 * If there are no selected nodes near that point, the node that is related to some of the preferredRefs 1056 * 1057 * Else the nearest new/id=0 node within about the same distance 1058 * as the true nearest node is returned. 1059 * 1060 * If no such node is found either, the true nearest node to p is returned. 1061 * 1062 * Finally, if a node is not found at all, null is returned. 1063 * 1064 * @param p the screen point 1065 * @param predicate this parameter imposes a condition on the returned object, e.g. 1066 * give the nearest node that is tagged. 1067 * @param useSelected make search depend on selection 1068 * @param preferredRefs primitives, whose nodes we prefer 1069 * 1070 * @return A node within snap-distance to point p, that is chosen by the algorithm described. 1071 * @since 6065 1072 */ 1073 public final Node getNearestNode(Point p, Predicate<OsmPrimitive> predicate, 1074 boolean useSelected, Collection<OsmPrimitive> preferredRefs) { 1075 1076 Map<Double, List<Node>> nlists = getNearestNodesImpl(p, predicate); 1077 if (nlists.isEmpty()) return null; 1078 1079 if (preferredRefs != null && preferredRefs.isEmpty()) preferredRefs = null; 1080 Node ntsel = null, ntnew = null, ntref = null; 1081 boolean useNtsel = useSelected; 1082 double minDistSq = nlists.keySet().iterator().next(); 1083 1084 for (Entry<Double, List<Node>> entry : nlists.entrySet()) { 1085 Double distSq = entry.getKey(); 1086 for (Node nd : entry.getValue()) { 1087 // find the nearest selected node 1088 if (ntsel == null && nd.isSelected()) { 1089 ntsel = nd; 1090 // if there are multiple nearest nodes, prefer the one 1091 // that is selected. This is required in order to drag 1092 // the selected node if multiple nodes have the same 1093 // coordinates (e.g. after unglue) 1094 useNtsel |= Utils.equalsEpsilon(distSq, minDistSq); 1095 } 1096 if (ntref == null && preferredRefs != null && Utils.equalsEpsilon(distSq, minDistSq)) { 1097 List<OsmPrimitive> ndRefs = nd.getReferrers(); 1098 for (OsmPrimitive ref: preferredRefs) { 1099 if (ndRefs.contains(ref)) { 1100 ntref = nd; 1101 break; 1102 } 1103 } 1104 } 1105 // find the nearest newest node that is within about the same 1106 // distance as the true nearest node 1107 if (ntnew == null && nd.isNew() && (distSq-minDistSq < 1)) { 1108 ntnew = nd; 1109 } 1110 } 1111 } 1112 1113 // take nearest selected, nearest new or true nearest node to p, in that order 1114 if (ntsel != null && useNtsel) 1115 return ntsel; 1116 if (ntref != null) 1117 return ntref; 1118 if (ntnew != null) 1119 return ntnew; 1120 return nlists.values().iterator().next().get(0); 1121 } 1122 1123 /** 1124 * Convenience method to {@link #getNearestNode(Point, Predicate, boolean)}. 1125 * @param p the screen point 1126 * @param predicate this parameter imposes a condition on the returned object, e.g. 1127 * give the nearest node that is tagged. 1128 * 1129 * @return The nearest node to point p. 1130 */ 1131 public final Node getNearestNode(Point p, Predicate<OsmPrimitive> predicate) { 1132 return getNearestNode(p, predicate, true); 1133 } 1134 1135 /** 1136 * The *result* does not depend on the current map selection state, neither does the result *order*. 1137 * It solely depends on the distance to point p. 1138 * @param p the screen point 1139 * @param predicate this parameter imposes a condition on the returned object, e.g. 1140 * give the nearest node that is tagged. 1141 * 1142 * @return a sorted map with the keys representing the perpendicular 1143 * distance of their associated way segments to point p. 1144 */ 1145 private Map<Double, List<WaySegment>> getNearestWaySegmentsImpl(Point p, Predicate<OsmPrimitive> predicate) { 1146 Map<Double, List<WaySegment>> nearestMap = new TreeMap<>(); 1147 DataSet ds = MainApplication.getLayerManager().getActiveDataSet(); 1148 1149 if (ds != null) { 1150 double snapDistanceSq = Config.getPref().getInt("mappaint.segment.snap-distance", 10); 1151 snapDistanceSq *= snapDistanceSq; 1152 1153 for (Way w : ds.searchWays(getBBox(p, Config.getPref().getInt("mappaint.segment.snap-distance", 10)))) { 1154 if (!predicate.test(w)) { 1155 continue; 1156 } 1157 Node lastN = null; 1158 int i = -2; 1159 for (Node n : w.getNodes()) { 1160 i++; 1161 if (n.isDeleted() || n.isIncomplete()) { //FIXME: This shouldn't happen, raise exception? 1162 continue; 1163 } 1164 if (lastN == null) { 1165 lastN = n; 1166 continue; 1167 } 1168 1169 Point2D pA = getPoint2D(lastN); 1170 Point2D pB = getPoint2D(n); 1171 double c = pA.distanceSq(pB); 1172 double a = p.distanceSq(pB); 1173 double b = p.distanceSq(pA); 1174 1175 /* perpendicular distance squared 1176 * loose some precision to account for possible deviations in the calculation above 1177 * e.g. if identical (A and B) come about reversed in another way, values may differ 1178 * -- zero out least significant 32 dual digits of mantissa.. 1179 */ 1180 double perDistSq = Double.longBitsToDouble( 1181 Double.doubleToLongBits(a - (a - b + c) * (a - b + c) / 4 / c) 1182 >> 32 << 32); // resolution in numbers with large exponent not needed here.. 1183 1184 if (perDistSq < snapDistanceSq && a < c + snapDistanceSq && b < c + snapDistanceSq) { 1185 List<WaySegment> wslist; 1186 if (nearestMap.containsKey(perDistSq)) { 1187 wslist = nearestMap.get(perDistSq); 1188 } else { 1189 wslist = new LinkedList<>(); 1190 nearestMap.put(perDistSq, wslist); 1191 } 1192 wslist.add(new WaySegment(w, i)); 1193 } 1194 1195 lastN = n; 1196 } 1197 } 1198 } 1199 1200 return nearestMap; 1201 } 1202 1203 /** 1204 * The result *order* depends on the current map selection state. 1205 * Segments within 10px of p are searched and sorted by their distance to @param p, 1206 * then, within groups of equally distant segments, prefer those that are selected. 1207 * 1208 * @param p the point for which to search the nearest segments. 1209 * @param ignore a collection of segments which are not to be returned. 1210 * @param predicate the returned objects have to fulfill certain properties. 1211 * 1212 * @return all segments within 10px of p that are not in ignore, 1213 * sorted by their perpendicular distance. 1214 */ 1215 public final List<WaySegment> getNearestWaySegments(Point p, 1216 Collection<WaySegment> ignore, Predicate<OsmPrimitive> predicate) { 1217 List<WaySegment> nearestList = new ArrayList<>(); 1218 List<WaySegment> unselected = new LinkedList<>(); 1219 1220 for (List<WaySegment> wss : getNearestWaySegmentsImpl(p, predicate).values()) { 1221 // put selected waysegs within each distance group first 1222 // makes the order of nearestList dependent on current selection state 1223 for (WaySegment ws : wss) { 1224 (ws.way.isSelected() ? nearestList : unselected).add(ws); 1225 } 1226 nearestList.addAll(unselected); 1227 unselected.clear(); 1228 } 1229 if (ignore != null) { 1230 nearestList.removeAll(ignore); 1231 } 1232 1233 return nearestList; 1234 } 1235 1236 /** 1237 * The result *order* depends on the current map selection state. 1238 * 1239 * @param p the point for which to search the nearest segments. 1240 * @param predicate the returned objects have to fulfill certain properties. 1241 * 1242 * @return all segments within 10px of p, sorted by their perpendicular distance. 1243 * @see #getNearestWaySegments(Point, Collection, Predicate) 1244 */ 1245 public final List<WaySegment> getNearestWaySegments(Point p, Predicate<OsmPrimitive> predicate) { 1246 return getNearestWaySegments(p, null, predicate); 1247 } 1248 1249 /** 1250 * The *result* depends on the current map selection state IF use_selected is true. 1251 * 1252 * @param p the point for which to search the nearest segment. 1253 * @param predicate the returned object has to fulfill certain properties. 1254 * @param useSelected whether selected way segments should be preferred. 1255 * 1256 * @return The nearest way segment to point p, 1257 * and, depending on use_selected, prefers a selected way segment, if found. 1258 * @see #getNearestWaySegments(Point, Collection, Predicate) 1259 */ 1260 public final WaySegment getNearestWaySegment(Point p, Predicate<OsmPrimitive> predicate, boolean useSelected) { 1261 WaySegment wayseg = null; 1262 WaySegment ntsel = null; 1263 1264 for (List<WaySegment> wslist : getNearestWaySegmentsImpl(p, predicate).values()) { 1265 if (wayseg != null && ntsel != null) { 1266 break; 1267 } 1268 for (WaySegment ws : wslist) { 1269 if (wayseg == null) { 1270 wayseg = ws; 1271 } 1272 if (ntsel == null && ws.way.isSelected()) { 1273 ntsel = ws; 1274 } 1275 } 1276 } 1277 1278 return (ntsel != null && useSelected) ? ntsel : wayseg; 1279 } 1280 1281 /** 1282 * The *result* depends on the current map selection state IF use_selected is true. 1283 * 1284 * @param p the point for which to search the nearest segment. 1285 * @param predicate the returned object has to fulfill certain properties. 1286 * @param useSelected whether selected way segments should be preferred. 1287 * @param preferredRefs - prefer segments related to these primitives, may be null 1288 * 1289 * @return The nearest way segment to point p, 1290 * and, depending on use_selected, prefers a selected way segment, if found. 1291 * Also prefers segments of ways that are related to one of preferredRefs primitives 1292 * 1293 * @see #getNearestWaySegments(Point, Collection, Predicate) 1294 * @since 6065 1295 */ 1296 public final WaySegment getNearestWaySegment(Point p, Predicate<OsmPrimitive> predicate, 1297 boolean useSelected, Collection<OsmPrimitive> preferredRefs) { 1298 WaySegment wayseg = null; 1299 if (preferredRefs != null && preferredRefs.isEmpty()) 1300 preferredRefs = null; 1301 1302 for (List<WaySegment> wslist : getNearestWaySegmentsImpl(p, predicate).values()) { 1303 for (WaySegment ws : wslist) { 1304 if (wayseg == null) { 1305 wayseg = ws; 1306 } 1307 if (useSelected && ws.way.isSelected()) { 1308 return ws; 1309 } 1310 if (preferredRefs != null && !preferredRefs.isEmpty()) { 1311 // prefer ways containing given nodes 1312 if (preferredRefs.contains(ws.getFirstNode()) || preferredRefs.contains(ws.getSecondNode())) { 1313 return ws; 1314 } 1315 Collection<OsmPrimitive> wayRefs = ws.way.getReferrers(); 1316 // prefer member of the given relations 1317 for (OsmPrimitive ref: preferredRefs) { 1318 if (ref instanceof Relation && wayRefs.contains(ref)) { 1319 return ws; 1320 } 1321 } 1322 } 1323 } 1324 } 1325 return wayseg; 1326 } 1327 1328 /** 1329 * Convenience method to {@link #getNearestWaySegment(Point, Predicate, boolean)}. 1330 * @param p the point for which to search the nearest segment. 1331 * @param predicate the returned object has to fulfill certain properties. 1332 * 1333 * @return The nearest way segment to point p. 1334 */ 1335 public final WaySegment getNearestWaySegment(Point p, Predicate<OsmPrimitive> predicate) { 1336 return getNearestWaySegment(p, predicate, true); 1337 } 1338 1339 /** 1340 * The *result* does not depend on the current map selection state, 1341 * neither does the result *order*. 1342 * It solely depends on the perpendicular distance to point p. 1343 * 1344 * @param p the point for which to search the nearest ways. 1345 * @param ignore a collection of ways which are not to be returned. 1346 * @param predicate the returned object has to fulfill certain properties. 1347 * 1348 * @return all nearest ways to the screen point given that are not in ignore. 1349 * @see #getNearestWaySegments(Point, Collection, Predicate) 1350 */ 1351 public final List<Way> getNearestWays(Point p, 1352 Collection<Way> ignore, Predicate<OsmPrimitive> predicate) { 1353 List<Way> nearestList = new ArrayList<>(); 1354 Set<Way> wset = new HashSet<>(); 1355 1356 for (List<WaySegment> wss : getNearestWaySegmentsImpl(p, predicate).values()) { 1357 for (WaySegment ws : wss) { 1358 if (wset.add(ws.way)) { 1359 nearestList.add(ws.way); 1360 } 1361 } 1362 } 1363 if (ignore != null) { 1364 nearestList.removeAll(ignore); 1365 } 1366 1367 return nearestList; 1368 } 1369 1370 /** 1371 * The *result* does not depend on the current map selection state, 1372 * neither does the result *order*. 1373 * It solely depends on the perpendicular distance to point p. 1374 * 1375 * @param p the point for which to search the nearest ways. 1376 * @param predicate the returned object has to fulfill certain properties. 1377 * 1378 * @return all nearest ways to the screen point given. 1379 * @see #getNearestWays(Point, Collection, Predicate) 1380 */ 1381 public final List<Way> getNearestWays(Point p, Predicate<OsmPrimitive> predicate) { 1382 return getNearestWays(p, null, predicate); 1383 } 1384 1385 /** 1386 * The *result* depends on the current map selection state. 1387 * 1388 * @param p the point for which to search the nearest segment. 1389 * @param predicate the returned object has to fulfill certain properties. 1390 * 1391 * @return The nearest way to point p, prefer a selected way if there are multiple nearest. 1392 * @see #getNearestWaySegment(Point, Predicate) 1393 */ 1394 public final Way getNearestWay(Point p, Predicate<OsmPrimitive> predicate) { 1395 WaySegment nearestWaySeg = getNearestWaySegment(p, predicate); 1396 return (nearestWaySeg == null) ? null : nearestWaySeg.way; 1397 } 1398 1399 /** 1400 * The *result* does not depend on the current map selection state, 1401 * neither does the result *order*. 1402 * It solely depends on the distance to point p. 1403 * 1404 * First, nodes will be searched. If there are nodes within BBox found, 1405 * return a collection of those nodes only. 1406 * 1407 * If no nodes are found, search for nearest ways. If there are ways 1408 * within BBox found, return a collection of those ways only. 1409 * 1410 * If nothing is found, return an empty collection. 1411 * 1412 * @param p The point on screen. 1413 * @param ignore a collection of ways which are not to be returned. 1414 * @param predicate the returned object has to fulfill certain properties. 1415 * 1416 * @return Primitives nearest to the given screen point that are not in ignore. 1417 * @see #getNearestNodes(Point, Collection, Predicate) 1418 * @see #getNearestWays(Point, Collection, Predicate) 1419 */ 1420 public final List<OsmPrimitive> getNearestNodesOrWays(Point p, 1421 Collection<OsmPrimitive> ignore, Predicate<OsmPrimitive> predicate) { 1422 List<OsmPrimitive> nearestList = Collections.emptyList(); 1423 OsmPrimitive osm = getNearestNodeOrWay(p, predicate, false); 1424 1425 if (osm != null) { 1426 if (osm instanceof Node) { 1427 nearestList = new ArrayList<>(getNearestNodes(p, predicate)); 1428 } else if (osm instanceof Way) { 1429 nearestList = new ArrayList<>(getNearestWays(p, predicate)); 1430 } 1431 if (ignore != null) { 1432 nearestList.removeAll(ignore); 1433 } 1434 } 1435 1436 return nearestList; 1437 } 1438 1439 /** 1440 * The *result* does not depend on the current map selection state, 1441 * neither does the result *order*. 1442 * It solely depends on the distance to point p. 1443 * 1444 * @param p The point on screen. 1445 * @param predicate the returned object has to fulfill certain properties. 1446 * @return Primitives nearest to the given screen point. 1447 * @see #getNearestNodesOrWays(Point, Collection, Predicate) 1448 */ 1449 public final List<OsmPrimitive> getNearestNodesOrWays(Point p, Predicate<OsmPrimitive> predicate) { 1450 return getNearestNodesOrWays(p, null, predicate); 1451 } 1452 1453 /** 1454 * This is used as a helper routine to {@link #getNearestNodeOrWay(Point, Predicate, boolean)} 1455 * It decides, whether to yield the node to be tested or look for further (way) candidates. 1456 * 1457 * @param osm node to check 1458 * @param p point clicked 1459 * @param useSelected whether to prefer selected nodes 1460 * @return true, if the node fulfills the properties of the function body 1461 */ 1462 private boolean isPrecedenceNode(Node osm, Point p, boolean useSelected) { 1463 if (osm != null) { 1464 if (p.distanceSq(getPoint2D(osm)) <= (4*4)) return true; 1465 if (osm.isTagged()) return true; 1466 if (useSelected && osm.isSelected()) return true; 1467 } 1468 return false; 1469 } 1470 1471 /** 1472 * The *result* depends on the current map selection state IF use_selected is true. 1473 * 1474 * IF use_selected is true, use {@link #getNearestNode(Point, Predicate)} to find 1475 * the nearest, selected node. If not found, try {@link #getNearestWaySegment(Point, Predicate)} 1476 * to find the nearest selected way. 1477 * 1478 * IF use_selected is false, or if no selected primitive was found, do the following. 1479 * 1480 * If the nearest node found is within 4px of p, simply take it. 1481 * Else, find the nearest way segment. Then, if p is closer to its 1482 * middle than to the node, take the way segment, else take the node. 1483 * 1484 * Finally, if no nearest primitive is found at all, return null. 1485 * 1486 * @param p The point on screen. 1487 * @param predicate the returned object has to fulfill certain properties. 1488 * @param useSelected whether to prefer primitives that are currently selected or referred by selected primitives 1489 * 1490 * @return A primitive within snap-distance to point p, 1491 * that is chosen by the algorithm described. 1492 * @see #getNearestNode(Point, Predicate) 1493 * @see #getNearestWay(Point, Predicate) 1494 */ 1495 public final OsmPrimitive getNearestNodeOrWay(Point p, Predicate<OsmPrimitive> predicate, boolean useSelected) { 1496 Collection<OsmPrimitive> sel; 1497 DataSet ds = MainApplication.getLayerManager().getActiveDataSet(); 1498 if (useSelected && ds != null) { 1499 sel = ds.getSelected(); 1500 } else { 1501 sel = null; 1502 } 1503 OsmPrimitive osm = getNearestNode(p, predicate, useSelected, sel); 1504 1505 if (isPrecedenceNode((Node) osm, p, useSelected)) return osm; 1506 WaySegment ws; 1507 if (useSelected) { 1508 ws = getNearestWaySegment(p, predicate, useSelected, sel); 1509 } else { 1510 ws = getNearestWaySegment(p, predicate, useSelected); 1511 } 1512 if (ws == null) return osm; 1513 1514 if ((ws.way.isSelected() && useSelected) || osm == null) { 1515 // either (no _selected_ nearest node found, if desired) or no nearest node was found 1516 osm = ws.way; 1517 } else { 1518 int maxWaySegLenSq = 3*PROP_SNAP_DISTANCE.get(); 1519 maxWaySegLenSq *= maxWaySegLenSq; 1520 1521 Point2D wp1 = getPoint2D(ws.getFirstNode()); 1522 Point2D wp2 = getPoint2D(ws.getSecondNode()); 1523 1524 // is wayseg shorter than maxWaySegLenSq and 1525 // is p closer to the middle of wayseg than to the nearest node? 1526 if (wp1.distanceSq(wp2) < maxWaySegLenSq && 1527 p.distanceSq(project(0.5, wp1, wp2)) < p.distanceSq(getPoint2D((Node) osm))) { 1528 osm = ws.way; 1529 } 1530 } 1531 return osm; 1532 } 1533 1534 /** 1535 * if r = 0 returns a, if r=1 returns b, 1536 * if r = 0.5 returns center between a and b, etc.. 1537 * 1538 * @param r scale value 1539 * @param a root of vector 1540 * @param b vector 1541 * @return new point at a + r*(ab) 1542 */ 1543 public static Point2D project(double r, Point2D a, Point2D b) { 1544 Point2D ret = null; 1545 1546 if (a != null && b != null) { 1547 ret = new Point2D.Double(a.getX() + r*(b.getX()-a.getX()), 1548 a.getY() + r*(b.getY()-a.getY())); 1549 } 1550 return ret; 1551 } 1552 1553 /** 1554 * The *result* does not depend on the current map selection state, neither does the result *order*. 1555 * It solely depends on the distance to point p. 1556 * 1557 * @param p The point on screen. 1558 * @param ignore a collection of ways which are not to be returned. 1559 * @param predicate the returned object has to fulfill certain properties. 1560 * 1561 * @return a list of all objects that are nearest to point p and 1562 * not in ignore or an empty list if nothing was found. 1563 */ 1564 public final List<OsmPrimitive> getAllNearest(Point p, 1565 Collection<OsmPrimitive> ignore, Predicate<OsmPrimitive> predicate) { 1566 List<OsmPrimitive> nearestList = new ArrayList<>(); 1567 Set<Way> wset = new HashSet<>(); 1568 1569 // add nearby ways 1570 for (List<WaySegment> wss : getNearestWaySegmentsImpl(p, predicate).values()) { 1571 for (WaySegment ws : wss) { 1572 if (wset.add(ws.way)) { 1573 nearestList.add(ws.way); 1574 } 1575 } 1576 } 1577 1578 // add nearby nodes 1579 for (List<Node> nlist : getNearestNodesImpl(p, predicate).values()) { 1580 nearestList.addAll(nlist); 1581 } 1582 1583 // add parent relations of nearby nodes and ways 1584 Set<OsmPrimitive> parentRelations = new HashSet<>(); 1585 for (OsmPrimitive o : nearestList) { 1586 for (OsmPrimitive r : o.getReferrers()) { 1587 if (r instanceof Relation && predicate.test(r)) { 1588 parentRelations.add(r); 1589 } 1590 } 1591 } 1592 nearestList.addAll(parentRelations); 1593 1594 if (ignore != null) { 1595 nearestList.removeAll(ignore); 1596 } 1597 1598 return nearestList; 1599 } 1600 1601 /** 1602 * The *result* does not depend on the current map selection state, neither does the result *order*. 1603 * It solely depends on the distance to point p. 1604 * 1605 * @param p The point on screen. 1606 * @param predicate the returned object has to fulfill certain properties. 1607 * 1608 * @return a list of all objects that are nearest to point p 1609 * or an empty list if nothing was found. 1610 * @see #getAllNearest(Point, Collection, Predicate) 1611 */ 1612 public final List<OsmPrimitive> getAllNearest(Point p, Predicate<OsmPrimitive> predicate) { 1613 return getAllNearest(p, null, predicate); 1614 } 1615 1616 /** 1617 * @return The projection to be used in calculating stuff. 1618 */ 1619 public Projection getProjection() { 1620 return state.getProjection(); 1621 } 1622 1623 @Override 1624 public String helpTopic() { 1625 String n = getClass().getName(); 1626 return n.substring(n.lastIndexOf('.')+1); 1627 } 1628 1629 /** 1630 * Return a ID which is unique as long as viewport dimensions are the same 1631 * @return A unique ID, as long as viewport dimensions are the same 1632 */ 1633 public int getViewID() { 1634 EastNorth center = getCenter(); 1635 String x = new StringBuilder().append(center.east()) 1636 .append('_').append(center.north()) 1637 .append('_').append(getScale()) 1638 .append('_').append(getWidth()) 1639 .append('_').append(getHeight()) 1640 .append('_').append(getProjection()).toString(); 1641 CRC32 id = new CRC32(); 1642 id.update(x.getBytes(StandardCharsets.UTF_8)); 1643 return (int) id.getValue(); 1644 } 1645 1646 /** 1647 * Set new cursor. 1648 * @param cursor The new cursor to use. 1649 * @param reference A reference object that can be passed to the next set/reset calls to identify the caller. 1650 */ 1651 public void setNewCursor(Cursor cursor, Object reference) { 1652 cursorManager.setNewCursor(cursor, reference); 1653 } 1654 1655 /** 1656 * Set new cursor. 1657 * @param cursor the type of predefined cursor 1658 * @param reference A reference object that can be passed to the next set/reset calls to identify the caller. 1659 */ 1660 public void setNewCursor(int cursor, Object reference) { 1661 setNewCursor(Cursor.getPredefinedCursor(cursor), reference); 1662 } 1663 1664 /** 1665 * Remove the new cursor and reset to previous 1666 * @param reference Cursor reference 1667 */ 1668 public void resetCursor(Object reference) { 1669 cursorManager.resetCursor(reference); 1670 } 1671 1672 /** 1673 * Gets the cursor manager that is used for this NavigatableComponent. 1674 * @return The cursor manager. 1675 */ 1676 public CursorManager getCursorManager() { 1677 return cursorManager; 1678 } 1679 1680 /** 1681 * Get a max scale for projection that describes world in 1/512 of the projection unit 1682 * @return max scale 1683 */ 1684 public double getMaxScale() { 1685 ProjectionBounds world = getMaxProjectionBounds(); 1686 return Math.max( 1687 world.maxNorth-world.minNorth, 1688 world.maxEast-world.minEast 1689 )/512; 1690 } 1691}