The Dose-Debcheck Primer

Pietro Abate, Roberto Di Cosmo, Ralf Treinen, Stefano Zacchiroli

June 20, 2018

The dose-debcheck tool determines, for a set of package control stanzas,
called the repository, whether packages of the repository can be installed relative
to the repository. Typically, the repository is a Packages file of a Debian suite.
The installability check is by default performed for all package stanzas in the
repository, but may be also be restricted to a subset of these.

This primer applies to version 5.0.1 of dose-debcheck.

Contents
1 Input Data: Packages and Repositories 1
1.1 Packages 1
1.2 Repositories L 2
2 Installability 3
2.1 A Precise Definition L. 3
2.2 What Installability does Not Mean 5
2.3 Co-installability oo 5
3 Invocation 6
3.1 Basicusage 6
3.2 Checking only selected packages 6
3.3 Checking for co-installability 6
3.4 Changing the Notion of Installability 7
3.5 Filtering Packages and Multiarch 8
3.6 Other Options 8
4 Output 8
4.1 Understanding Explanations of Installability 9
4.2 Understanding Explanations of Non-installability 10
4.2.1 Explanation in Case of a Missing Package 11
4.2.2 Explanation in Case of a Conflict 14
4.3 The output in case of co-installability queries 15
5 Exit codes 17

6 Tips and Tricks 17

6.1 Encoding checks involving several packages 17
6.2 Parsing dose-debcheck’s output in Python 18
6.3 Usage asatestinashellscript 19
7 Credits 19
8 Further Reading 19
9 Copyright and Licence 20

1 Input Data: Packages and Repositories

1.1 Packages

Debian control stanzas are defined in deb-control (5). For dose-debcheck
only the following fields are relevant, all others are ignored:

Package giving the package name. dose-debcheck is more liberal as to which
package names are acceptable, for instance it allows a slightly larger char-
acter set than the debian policy for constituting names. Required.

Version giving the version of the package. The version must be in conformance
with the Debian policy. Required.

Architecture specifying the architectures on which the package may be in-
stalled. Required.

Multiarch specifies whether the package may be installed simultaneously for
different architectures, and whether it may satisfy dependencies across
architecture boundaries. Values may be No, Same, Foreign, or Allowed
([?]). Optional, defaults to No.

Depends is a list of items required for the installation of this package. Each
item is a package name optionally with a version constraint, or a disjunc-
tion of these. Items may also be annotated with :any. Optional, defaults
to the empty list.

Pre-Depends are by dose-debcheck treated like Depends.

Conflicts is a list of package names, possibly with a version constraint, that
cannot be installed together with the package. Optional, defaults to the
empty list.

Breaks are by dose-debcheck treated like Conflicts.

Provides is a list of names symbolizing functionalities realized by the package.
They have to be taken into account for dependencies and conflicts of other
packages, see Section 2. Optional, defaults to the empty list.

Essential specifies whether the package must be installed (yes or no). Op-
tional, defaults to no.

In particular, Recommends and Suggests are ignored by dose-debcheck.
Also, dose-debcheck does not check for the presence of fields that are required
by Debian policy but that are not relevant for the task of dose-debcheck, like
Maintainer or Description.

Also note that dose-debcheck is slightly more liberal than the Debian policy
in accepting input, and hence cannot be used to check strict policy conformance
of package stanzas.

1.2 Repositories

A repository is a set of package stanzas. This set may be given to dose-debcheck
in form of a single file or as several files, in the latter case the repository is
constituted by all stanzas in all input files (see Section 3). dose-debcheck assures
that the repositories has two important properties:

1. We assume that there are no two package stanzas in the repository that
have the same values of all three fields Package, Version, and Architecture.
Having different versions for the same package name is OK, as it is of
course OK to have two stanzas with different package names and the
same version. In other words, the dose-debcheck tool uses internally the
triple of name, architecture and version as an identifier for packages.

In the following, when we speak of a package, we mean a precise package
stanza that is identified by a name, a version, and an architecture, like
the package of name gcc in version 4:4.3.2-2 and for architecture amd64.
The stanza with name gcc and version 4:4.4.4-2 for architecture amd64
would constitute a different package.

If the input contains several stanzas with the same name, version and
architecture then all but the last such stanza are dropped, and a warning
message is issued.

Example: The following input does not constitute a repository:

Package: abc
Version: 42
Architecture: amd64
Depends: xyz

Package: abc
Version: 42
Architecture: amd64
Depends: pqr

The reason is that the triple (abc, 42, amd64) is not unique. dose-debcheck
will warn us that it only accepts the second stanza and drops the first one
from its input:

(W)Debian: the input contains two packages with the same name, version and architec!

2. We assume that Multiarch information is consistent: If the repository con-
tains packages with the same name and version and different architecture
then both packages have to agree on the value of their Multiarch field.

2 Installability

2.1 A Precise Definition

In order to understand what installability exactly means for us we need a little
bit of theory. Let R be a repository (see Section 1). An R-installation set,
or sometimes simply called an R-installation, is a subset I of R that has the
following four properties:

flatness: I does not contain two different packages with the same name (which
then would have different versions or architecture), unless the package is
marked as Multiarch=Same. If package (p,a,n) has Multiarch=Same then
I just must not contain any package with name p and a version different
from n.

abundance: For each package p in I, every of its dependencies is satisfied by
some package ¢ in I, either directly or through a virtual package in case
the dependency does not carry a version constraint.

e If ¢ has a Multiarch value of No or Same then the architecture of ¢
must be the same as the architecture of p.

o If ¢ has a Multiarch value of Foreign then the architecture of ¢ may
be different then the architecture of p.

e If ¢ has a Multiarch value of Allowed then the architecture of ¢ must
be the same as the architecture of p, or the dependency relation must
carry the annotation :any.

In this context, the architecture value all is identified with the native
architecture [?].

peace: For each package in I and for each item in its list of conflicts, no package
in I satisfies the description of that item. As an exception, it is allowed
that a package in I both provides a virtual package and at the same time
conflicts with it.

foundation: If package (p,n) € R is essential, then I must contain a package
(p, m) such that (p,m) is essential.

Hence, the notion of an installation captures the idea that a certain set of pack-
ages may be installed together on a machine, following the semantics of binary
package relations according to the Debian Policy. The foundation requirement

expresses that essential packages must be installed; it is formulated in a way that
also caters to the (extremely rare) case that a package changes its Essential
value between different versions. The foundation property may be switched off
by giving the option --deb-ignore-essential

Example: Let R be the following repository:

Package: a

Version: 1

Depends: b (>=2) | v
Package: a

Version: 2

Depends: ¢ (> 1)
Package: b

Version: 1
Conflicts: d

Package: c
Version: 3
Depends: d
Conflicts: v

Package: d
Version: 5
Provides: v
Conflicts: v

The following subsets of R are not R-installation sets:

e The complete set R since it is not flat (it contains two different packages
with name a)

e The set {(a,1),(c,3)} since it not abundant (the dependency of (a,1) is
not satisfied, nor is the dependency of (¢, 3)).

e The set {(a,2),(c,3),(d,5)} since it is not in peace (there is conflict be-
tween (¢, 3) and (d,5) via the virtual package v)

Examples of R-installation sets are
e The set {(d,5)} (self conflicts via virtual packages are ignored)
e The set {(a,1),(b,1)}
e The set {(a,1),(d,5)}

A package (p,n) is said to be installable in a repository R if there exists an
R-installation set I that contains (p,n).

Example: In the above example, (a,1) is R-installable since it is contained
in the R-installation set {(a,1),(d,5)}.

However, (a,2) is not R-installable: Any R-installation set containing (a, 2)
must also contain (¢, 3) (since it is the only package in R that can satisfy the
dependency of (a,2) on ¢(> 1), and in the same way it must also contain (d, 5).
However, this destroys the peace as (¢, 3) and (d,5) are in conflict. Hence, no
such R-installation set can exist.

2.2 What Installability does Not Mean

e Installability in the sense of dose-debcheck only concerns the relations be-
tween different binary packages expressed in their respective control files.
It does not mean that a package indeed installs cleanly in a particular en-
vironment since an installation attempt may still fail for different reasons,
like failure of a maintainer script or attempting to hijack a file owned by
another already installed package.

e Installability means theoretical existence of a solution. It does not mean
that a package manager (like aptitude, apt-get) actually finds a way
to install that package. This failure to find a solution may be due to an
inherent incompleteness of the dependency resolution algorithm employed
by the package manager, or may be due to user-defined preferences that
exclude certain solutions.

2.3 Co-installability

One also should keep in mind that, even when two packages are R-installable,
this does not necessarily mean that both packages can be installed together.
A set P of packages is called R-co-installable when there exists a single R-
installation set extending P.

Example: Again in the above example, both (b,1) and (d, 5) are R-installable;
however they are not R-co-installable.

See Section 6 on how co-installability can be encoded.

3 Invocation

3.1 Basic usage

dose-debcheck accepts several different options, and also arguments.
dose-debcheck [option] ... [file]

The package repository is partionend into a background and a foreground.
The foreground contains the packages we are actually interested in, the back-
ground contains packages that are just available for satisfying dependencies, but
for which we do not care about installability.

All arguments are interpreted as filenames of Packages input files, the con-
tents of which go into the foreground. If no argument is given then metadata of
foreground packages is read from standard input. In addition, one may specify
listings of foreground packages with the option --fg=<filename>, and listings
of background packages with the option --bg=<filename>. Input from files
(but not from standard input) may be compressed with gzip or bzip2, provided
dose-debcheck was compiled with support for these compression libraries.

The option -f and -s ask for a listing of uninstallable, resp. installable
packages. The option -e asks for an explanation of each reported case. The
exact effect of these options will be explained in Section 4.

Example: We may check whether packages in mnon-free are installable,
where dependencies may be satisfied from main or contrib:

dose-distcheck -f -e \
--bg=/var/lib/apt/lists/ftp.fr.debian.org_debian_dists_sid_main_binary-amd64_Package:
--bg=/var/lib/apt/lists/ftp.fr.debian.org_debian_dists_sid_contrib_binary-amd64_Pack
/var/lib/apt/lists/ftp.fr.debian.org_debian_dists_sid_non-free_binary-amd64_Packages

3.2 Checking only selected packages

The initial distinction between foreground and background packages is modified
when using the --checkonly option. This option takes as value a comma-
separated list of package names, possibly qualified with a version constraint.
The effect is that only packages that match one of these package names are kept
in the foreground, all others are pushed into the background.

Example:

dose-debcheck --checkonly "1libc6, 2ping (= 1.2.3-1)" Packages

3.3 Checking for co-installability

Co-installability of packages can be easily checked with the --coinst option.
This option takes as argument a comma-separated list of packages, each of
them possibly with a version constraint. In that case, dose-debcheck will check
whether the packages specified are co-installable, that is whether it is possible
to install these packages at the same time (see Section 2.3).

Note that it is possible that the name of a package, even when qualified
with a version constraint, might be matched by several packages with different
versions. In that case, co-installability will be checked for each combination of
real packages that match the packages specified in the argument of the -—coinst
option.

Example: Consider the following repository (architectures are omitted for
clarity):

Package: a
Version: 1

Package: a
Version: 2

Package: a
Version: 3

Package: b
Version: 10

Package: b
Version: 11

Executing the command debcheck --coinst a (>1), b on this repository will
check co-installability of 4 pairs of packages: there are two packages that match
a (>1), namely package a in versions 2 and 3, and there are two packages
that match b. Hence, the following four pairs of packages will be checked for
co-installability:

1. (a,2), (b,10)
2. (a,2), (b,11)
3. (a,3), (b,10)
4. (a,3), (b,11)

Mathematically speaking, the set of checked tuples is the Cartesian product
of the denotations of the single package specifications.

3.4 Changing the Notion of Installability
Some options affect the notion of installability:

e —-deb-ignore-essential drops the Foundation requirement of installa-
tion sets (Section 2). In other words, it is no longer required that any
installation set contains all essential packages.

Other options concern Multiarch:

e ——deb-native-arch=a sets the native architecture to the value a. Note
that the native architecture is not necessarily the architecture on which the
tool is executed, it is just the primary architecture for which we are check-
ing installability of packages. In particular, packages with the architecture
field set to all are interpreted as packages of the native architecture [?].

e ——-deb-foreign-archs=ayq,...,a, sets the foreign architectures to the list
ai,...,a,. Packages may only be installed when their architecture is the
native architecture (including all), or one of the foreign architectures.

3.5 Filtering Packages and Multiarch

Filtering out packages is a different operation than pushing packages into the
background (Section 3.2): Background packages are still available to satisfy
dependencies, while filtering out a package makes it completely invisible.

e The effect of -—latest is to keep only the latest version of any package.

3.6 Other Options

Other options controlling the output are explained in detail in Section 4. A
complete listing of all options can be found in the dose-debcheck(1) manpage.

4 Output

The output of dose-debcheck is in the YAML format, see Section 6.2 for how to
parse the output.
Without any particular options, dose-debcheck just reports some statistics:
Example:

% dose-debcheck repl
background-packages: 0
foreground-packages: 4
total-packages: 4
broken-packages: 1

With the options --failures and --successes, dose-debcheck reports find-
ings of the requested kind for all packages in the foreground. These options may
be used alone or in combination. In any case, the status field tells whether the
package is found to be installable (value ok) or non-installable (value broken).

Example:

% dose-debcheck --failures --successes repl
report:

package: a

version: 1

architecture: amd64

source: a (= 1)

status: broken

package: a

version: 2
architecture: amd64
source: a (= 2)
status: ok

package: b

version: 1
architecture: amd64
source: b (= 1)
status: ok

package: c

version: 3
architecture: amd64
source: ¢ (= 3)
status: ok

background-packages: 0
foreground-packages: 4
total-packages: 4
broken-packages: 1

With an additional --explain option, an explanation is given with each
finding.

4.1 Understanding Explanations of Installability

An explanation of installability simply consists of an installation set in the sense
of Section 2 containing the package in question.
Example:

% dose-debcheck --explain --successes repl
report:
package: a
version: 2
architecture: amd64
source: a (= 2)
status: ok
installationset:
package: c
version: 3
architecture: amd64
package: a
version: 2
architecture: amd64

10

package: b
version: 1
architecture: amd64
source: b (= 1)
status: ok
installationset:
package: b
version: 1
architecture: amd64

An installation set contains all essential packages (see Section 2), which may
blow up the output of installability. Giving the option --deb-ignore-essential
will avoid this, but will also alter the notion of installability in some corner cases
(for instance, when a package needs a version of an essential package that is not
available in the repository).

4.2 Understanding Explanations of Non-installability

Installability of a package is much easier to explain than non-installability. The
reason for this is that in the former case we just have to give one installation
that our tool has found, while in the latter case we have to explain why all
possible attempts to install the package must fail. The first consequence of this
observation is that the explanation in case of non-installability may consist of
several components.

Example: Consider the following repository consisting of only two packages:

Package: a
Version: 1
Depends: b | ¢

Package: c
Version: 3
Conflicts: a

To explain why package (a,1) is not installable we have to say why all possible
alternative ways to satisfy its dependency must fail:

e there is no package b in the repository

e the only version of package c in the repository is in conflict with package
(a1)

There may be several ways to satisfy dependencies due to alternatives in the
dependencies in packages. Alternatives may occur in dependencies in different
forms:

e explicitly, like in Depends: blc,

11

e through dependency on a package that exists in several versions,

e through dependency on a virtual package which is provided by several
(possibly versions of) real packages.

There is one component in the explanation for every possible way to choose
among these alternatives in the dependencies.

There are only two possible reasons why an attempt to satisfy dependencies
may fail:

1. dependency on a package that is missing from the repository,

2. dependency on a package that is in conflict with some other package we
depend on (possibly through a chain of dependencies).

Each component of the explanation is either a missing package, or a conflict.

4.2.1 Explanation in Case of a Missing Package

A component of the explanation that corresponds to the case of a missing pack-
age consist of two stanzas:

e a pkg stanza that states the package that cannot satisfy one of its direct
dependencies

e a depchains stanza containing the dependency chain that leads from the
package we have found non-installable to the one that cannot satisfy its
direct dependency.

Example: An explanation might look like this:

package: libgnuradio-dev
version: 3.2.2.dfsg-1
architecture: all
source: gnuradio (= 3.2.2.dfsg-1)
status: broken
reasons:
missing:
pkg:
package: libgruelO
version: 3.2.2.dfsg-1+bl
architecture: amd64
unsat-dependency: libboost-threadl.40.0 (>= 1.40.0-1)
depchains:

depchain:

package: libgnuradio-dev

12

version: 3.2.2.dfsg-1

Architecture: all

Depends: libgnuradio (= 3.2.2.dfsg-1)
package: libgnuradio

ersion: 3.2.2.dfsg-1

architecture: all

depends: libgnuradio-core0

package: libgnuradio-core0

version: 3.2.2.dfsg-1+bl
architecture: amd64

depends: libgruelO (= 3.2.2.dfsg-1+b1)

This tells us that 1ibgnuradio-dev in version 3.2.2.dfsg — 1 is not installable,
due to the fact that package libgruelO in version 3.2.2.dfsg — 1 + bl has
a dependency libboost-thread1.40.0 (>= 1.40.0-1) that is not matched
by any package in the repository. The dependency chain tells why package
libgnuradio-dev in the given version might want to install 1ibgruelO.

The depchains component gives all possible dependency chains (depchains,
for short) from the root package (libgnuradio-dev in the above example) to
the one where a direct dependency is not matched by any package (1ibgruelO
in the example). We do not include the last node in the dependency chain to
avoid a useless repetition.

In general there may be more then one path to reach a certain package from
a given root package, in that case dose-debcheck will unroll all of them.

Example: In the following repository, package a is not installable since the
dependency of package d cannot be satisfied:

Package: a
Architecture: amd64
Version: 1

Depends: blc

Package: b
Architecture: amd64
Version: 1
Depends: d

Package: c
Architecture: amd64
Version: 3
Depends: d

Package: d

Architecture: amd64
Version: 42

13

Depends: x

There are two different ways how a arrives at a dependency on d. dose-debcheck
reports the problem once, but lists the two paths from a to d:

% dose-debcheck -e -f --checkonly a repl
report:
package: a
version: 1
architecture: amd64
source: a (= 1)
status: broken
reasons:
missing:
pkg:
package: d
version: 42
architecture: amd64
unsat-dependency: x
depchains:

depchain:

package: a

version: 1
architecture: amd64
depends: b | ¢
package: b

version: 1
architecture: amd64
depends: d

depchain:

package: a

version: 1
architecture: amd64
depends: b | ¢
package: c

version: 3
architecture: amd64
depends: d

14

4.2.2 Explanation in Case of a Conflict

The other possible cause of a problem is a conflict. In that case, the explanation
consists of a conflict stanza giving the two packages that are in direct conflict
with each other. Next, we have two depchain stanzas that lead to the first,
resp. the second of these directly conflicting packages.

Example:

package: a
version: 1
status: broken
reasons:

conflict:
pkgl:
package:
version: 1
pkg2:
package: f
version: 1
depchainl:

(0]

depchain:

package: a

version: 1
depends: b
package: b
version: 1
depends: e
depchain?2:
depchain:

package: a

version: 1
depends: d
package: d
version: 1
depends: f

The first part of the dose-debcheck report is as before with details about the
broken package. Since this is a conflict, and all conflicts are binary, we give the
two packages involved in the conflict first. Packages £ and e are in conflict, but
they are not direct dependencies of package a . For this reason, we output the

15

two paths that from a lead to £ or e. All dependency chains for each conflict
are together. Again, since there might be more than one way from a to reach
the conflicting packages, we can have more then one depchain.

If a conflict occurs between two packages that are both reached through
non-trivial dependency chains then we sometimes speak of a deep conflict.

4.3 The output in case of co-installability queries

In case of a co-installability query (with the option --coinst), the distinction
between background and foreground does no longer make sense since the checks
now apply to tuples of packages, and not to individual packages. As a conse-
quence, the summary looks a bit different in this case:

Example: In the following example, there are 3 different versions of package
aa, two different versions of package bb and two packages with other names,
giving rise to 6 pairs of packages to check for co-installability. Two pairs out of
these 6 are found not co-installable:

% ./debcheck --coinst "aa,bb" coinst.packages
total-packages: 7

total-tuples: 6

broken-tuples: 2

Listings of co-installable, or non co-installable packages when requested with
the options -s/--successes, resp. -f/--failures, are similar as before but
now start on the word coinst instead of package. Explanations are as before:

Example:

% ./debcheck --coinst "aa,bb" -s -f -e coinst.simple
report:
coinst: aa (= 2) , bb (= 11)
status: ok
installationset:
package: aa
version: 2
architecture: all
package: bb
version: 11
architecture: all
package: cc
version: 31
architecture: all

coinst: aa (= 1) , bb (= 11)

16

status: broken

reasons:

conflict:
pkgl:
package: aa
version: 1
architecture: all
source: aa (= 1)
unsat-conflict: cc
pkg2:
package: cc
version: 31
architecture: all
source: cc (= 31)
depchain2:

conflict:
pkgl:
package: aa
version: 1
architecture: all
source: aa (= 1)
unsat-conflict: cc
pkg2:
package: cc
version: 31
architecture: all
source: cc (= 31)
depchainl:

depchain2:

depchain:
package: bb
version: 11
architecture: all
depends: cc

total-packages: 5
total-tuples: 2
broken-tuples: 1

5 Exit codes

Exit codes 0-63 indicate a normal termination of the program, codes 64-127
indicate abnormal termination of the program (such as parse errors, I/O errors).
In case of normal program termination:

e exit code 0 indicates that all foreground packages are found installable;

e exit code 1 indicates that at least one foreground package is found unin-
stallable.

6 Tips and Tricks

6.1 Encoding checks involving several packages

dose-debcheck only tests whether any package in the foreground set is installable.
However, sometimes one is interested in knowing whether several packages are
co-installable, that is whether there exists an installation set that contains all
these packages. One might also be interested in an installation that does not
contain a certain package.

This can be encoded by creating a pseudo-package that represents the query.

Example: We wish to know whether it is possible to install at the same
time a and b, the latter in some version > 42, but without installing c. We
create a pseudo package like this:

Package: query
Version: 1
Architecture: all
Depends: a, b(>= 42)
Conflicts: c

Then we check for installability of that package with respect to the repository:

echo "Package: query\nVersion: 1\nArchitecture: all\nDepends: a, b(>=42)\nConflicts: c"
(Beware: This might not do exactly what you want, see below!)

The problem with this encoding is as follows: if we ask dose-debcheck for
installability of some package depending on a then this dependency can a priori
be satisfied by any of the available versions of package a, or even by some other
package that provides a as a virtual package. Virtual packages can be excluded
by exploiting the fact that, in Debian, virtual packages are not versioned. As a
consequence, any package relation (like Depends) containing a version constraint
can only be matched by a real package, and not by a virtual package. This means
that the dependency on b (>= 42) in the above example already can only be
matched by a real package. If we also want to restrict dependency on a to
real packages only without knowing its possible versions, then we may write
Depends: a (>=0) | a(<0).

18

Example: If we wish to know whether it is possible to install at the same
time some version of package a and some version of package b, under the condi-
tion that these are real packages and not virtual packages, then we may construct
the following pseudo-package and check its installability:

Package: query

Version: 1

Architecture: all

Depends: a(>=0) | a(<0), b(>=0) | b(<0)

Note that it is in theory possible, though admittedly quite unlikely, that a
package has a version number smaller than 0 (example: 0 ~).

However, if we have several versions of package a and several versions of
package b then the above pseudo-package is installable if it is possible to install
at the same time some version of a and some version of b. If we want instead to
check co-installability of any combination of versions of package a with versions
of package b then the -—coinst option (see Section 3.3) is better suited for the
task.

6.2 Parsing dose-debcheck’s output in Python

Debcheck’s output can be easily parsed from a Python program by using the
YAML parser (needs the Debian package python-yaml).

Example: If you have run debcheck with the option -f (and possibly
with the -s option in addition) you may obtain a report containing one non-
installable package (name and version) per line like this:

import yaml

doc = yaml.load(file(’output-of-distcheck’, ’r’))
if doc[’report’] is not None:
for p in doc[’report’]:
if p[’status’] == ’broken’:
print ’%s %s is broken’ (p[’package’], p[’version’])

A complete example of a python script that constructs a set of pseudo-
packages, runs dose-debcheck on it, and then processes the output is given in
the directory doc/examples/potential-file-overwrites.

6.3 Usage as a test in a shell script

Exit codes allow for a convenient integration of installation checks as tests in
shell scripts.

Example: Suppose that you want to check installability of all .deb files in
the current directory with respect to the repository unstable.packages before
uploading your package described in mypackage.changes:

find . -name "*.deb" -exec dpkg-deb --info ’{}’ control \; -exec echo ""\; | \
dose-debcheck --bg unstable.packages && dput mypackage.changes

19

7 Credits

Jérome Vouillon is the author of the solving engine. He also wrote the first
version of the program (called DEBCHECK and RPMCHECK at that time), which
was released in November 2005.

The initial development of this tool was supported by the research project
Environment for the development and Distribution of Open Source software
(EDOS), funded by the European Commission under the IST activities of the
6th Framework Programme. Further development and maintenance of the soft-
ware, together with new applications building on top of it, was funded by the
research project Managing the Complexity of the Open Source Infrastructure
(Mancoosi), funded by the European Commission under the IST activities of
the 7th Framework Programme, grant agreement 214898.

The work on this software was partly performed at IRILL, the Center for
Research and Innovation on Free Software.

8 Further Reading

The dose-debcheck tool, the underlying theory and its application, was described
in [?].

The paper [?] gives an overview of the theory, and explains how dose-
debcheck is used for various aspect of quality assurance in Debian.

Checking the relationships between software components is of course also
possible and useful for other models of software packages than Debian packages.
In fact, the dose-debcheck tool is only one flavor of a more general tool called
dose-distcheck which may perform these checks as well for RPM packages and
Eclipse plugins, and in the future possibly for even more formats. These formats
have many things in common, and the authors of dose-debcheck are convinced
that the right architecture for tools dealing with logical aspects of packages
is a modular one. Such a modular architecture should be centered around a
common universal format for describing the relationships between packages.
This architecture is described in [?].

9 Copyright and Licence

Copyright (© 2010, 2011, 2012 Pietro Abate <pietro.abate®@pps.univ-paris-diderot.fr>,
Ralf Treinen <ralf.treinen@pps.univ-paris-diderot.fr>, and Université
Paris-Diderot, for this documentation.
This documentation is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by the Free
Software Foundation, either version 3 of the License, or (at your option) any
later version.
The software itself is, of course, free software. You can redistribute and/or
modify dose-distcheck (including dose-debcheck), as well as the underlying li-
brary called dose, under the terms of the GNU Lesser General Public License as

20

published by the Free Software Foundation, either version 3 of the License, or (at
your option) any later version. A special linking exception to the GNU Lesser
General Public License applies to the library, see the precise licence information
of dose for details.

References

[ACTZ11]

[Lan11]

[MBD*06]

[TZ08]

Pietro Abate, Roberto Di Cosmo, Ralf Treinen, and Stefano Za-
cchiroli. MPM: a modular package manager. In Ivica Crnkovic,
Judith A. Stafford, Antonia Bertolino, and Kendra M. L. Cooper,
editors, Proceedings of the 14th International ACM Sigsoft Sym-
posium on Component Based Software Engineering (CBSE 2011),
pages 179-188, Boulder, CO, USA, June 2011. ACM. [PDF].

Steve Langasek. Multiarch spec, 2011. Available at
https://wiki.ubuntu.com/MultiarchSpec.

Fabio Mancinelli, Jaap Boender, Roberto Di Cosmo, Jéréome Vouil-
lon, Berke Durak, Xavier Leroy, and Ralf Treinen. Managing the
complexity of large free and open source package-based software dis-
tributions. In 21st IEEE/ACM International Conference on Auto-
mated Software Engeineering (ASE), pages 199208, Tokyo, Japan,
2006. IEEE.

Ralf Treinen and Stefano Zacchiroli. Solving package dependen-
cies: from EDOS to Mancoosi. In Proceedings of DebConfS8: 9th
annual conference of the Debian project developers, Mar del Plata,
Argentina, August 2008. [PDF].

21

