next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
NormalToricVarieties :: max(NormalToricVariety)

max(NormalToricVariety) -- get the maximal cones in the associated fan

Synopsis

Description

A normal toric variety corresponds to a strongly convex rational polyhedral fan in affine space. In this package, the fan associated to a normal d-dimensional toric variety lies in the rational vector space d with underlying lattice N = ℤd. The fan is encoded by the minimal nonzero lattice points on its rays and the set of rays defining the maximal cones (i.e. a maximal cone is not properly contained in another cone in the fan). The rays are ordered and indexed by nonnegative integers: 0,…, n. Using this indexing, a maximal cone in the fan corresponds to a sublist of {0,…,n}; the entries index the rays that generate the cone.

The examples show the maximal cones for the projective plane, projective 3-space, a Hirzebruch surface, and a weighted projective space.

i1 : PP2 = projectiveSpace 2;
i2 : #rays PP2

o2 = 3
i3 : max PP2

o3 = {{0, 1}, {0, 2}, {1, 2}}

o3 : List
i4 : PP3 = projectiveSpace 3;
i5 : #rays PP3

o5 = 4
i6 : max PP3

o6 = {{0, 1, 2}, {0, 1, 3}, {0, 2, 3}, {1, 2, 3}}

o6 : List
i7 : FF7 = hirzebruchSurface 7;
i8 : #rays FF7

o8 = 4
i9 : max FF7

o9 = {{0, 1}, {0, 3}, {1, 2}, {2, 3}}

o9 : List
i10 : X = weightedProjectiveSpace {1,2,3};
i11 : #rays X

o11 = 3
i12 : max X

o12 = {{0, 1}, {0, 2}, {1, 2}}

o12 : List
A list corresponding to the maximal cones in the fan is part of the defining data of a toric variety.

See also