next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
Binomials :: randomBinomialIdeal

randomBinomialIdeal -- Random Binomial Ideals

Synopsis

Description

The exponents are drawn at random from {-d,...,d}. All coefficients are set to 1.
i1 : R = QQ[a..x]

o1 = R

o1 : PolynomialRing
i2 : randomBinomialIdeal (R,6,2,4,true)

                          2           2           2    2    2            2 2
o2 = ideal (g*q - u*v, m*q  - e*w, e*k  - f*v, b*k  - c l, n p*t - u, m*s x 
     ------------------------------------------------------------------------
        2   2 2 2
     - n , j s v  - a)

o2 : Ideal of R
i3 : randomBinomialIdeal (R,3,4,10,false)

             2 4 4       3    3 4 4   4 3 2 3 4    3 3 2 2 3   3   4 2 3 2 2
o3 = ideal (f g h k*q*t*w  - c i j , b c e g n  - f j m p u , a b*d f p q r 
     ------------------------------------------------------------------------
        3 4 3   3 3 4 2 4 3 3    3 4 3
     - c g s , i l o p t u x  - d e g )

o3 : Ideal of R
This function is mostly for internal testing purposes. Don't expect anything from it.

Caveat

Minimal generators are produced. These can be less than n and of higher degree. They also need not be homogeneous.