This function determines if the canonical map from ambient R --> R is Golod. It does this by computing an acyclic closure of ambient R (which is a
DGAlgebra), then tensors this with R, and determines if this DG Algebra has a trivial Massey operation up to a certain homological degree provided by the option GenDegreeLimit.
i1 : R = ZZ/101[a,b,c,d]/ideal{a^4+b^4+c^4+d^4}
o1 = R
o1 : QuotientRing
|
i2 : isGolodHomomorphism(R,GenDegreeLimit=>5)
Computing generators in degree 1 : -- used 0.0120442 seconds
Computing generators in degree 2 : -- used 0.00871642 seconds
Computing generators in degree 3 : -- used 0.00825683 seconds
Computing generators in degree 4 : -- used 0.00791306 seconds
Computing generators in degree 5 : -- used 0.00165007 seconds
o2 = true
|
If R is a Golod ring, then ambient R → R is a Golod homomorphism.
i3 : Q = ZZ/101[a,b,c,d]/ideal{a^4,b^4,c^4,d^4}
o3 = Q
o3 : QuotientRing
|
i4 : R = Q/ideal (a^3*b^3*c^3*d^3)
o4 = R
o4 : QuotientRing
|
i5 : isGolodHomomorphism(R,GenDegreeLimit=>5)
Computing generators in degree 1 : -- used 0.0142191 seconds
Computing generators in degree 2 : -- used 0.0187886 seconds
Computing generators in degree 3 : -- used 0.0363324 seconds
Computing generators in degree 4 : -- used 0.0554898 seconds
Computing generators in degree 5 : -- used 0.283713 seconds
o5 = true
|
The map from Q to R is Golod by a result of Avramov and Levin.