Z3
Public Member Functions | Friends
expr Class Reference

A Z3 expression is used to represent formulas and terms. For Z3, a formula is any expression of sort Boolean. Every expression has a sort. More...

+ Inheritance diagram for expr:

Public Member Functions

 expr (context &c)
 
 expr (context &c, Z3_ast n)
 
sort get_sort () const
 Return the sort of this expression. More...
 
bool is_bool () const
 Return true if this is a Boolean expression. More...
 
bool is_int () const
 Return true if this is an integer expression. More...
 
bool is_real () const
 Return true if this is a real expression. More...
 
bool is_arith () const
 Return true if this is an integer or real expression. More...
 
bool is_bv () const
 Return true if this is a Bit-vector expression. More...
 
bool is_array () const
 Return true if this is a Array expression. More...
 
bool is_datatype () const
 Return true if this is a Datatype expression. More...
 
bool is_relation () const
 Return true if this is a Relation expression. More...
 
bool is_seq () const
 Return true if this is a sequence expression. More...
 
bool is_re () const
 Return true if this is a regular expression. More...
 
bool is_finite_domain () const
 Return true if this is a Finite-domain expression. More...
 
bool is_fpa () const
 Return true if this is a FloatingPoint expression. . More...
 
bool is_numeral () const
 Return true if this expression is a numeral. Specialized functions also return representations for the numerals as small integers, 64 bit integers or rational or decimal strings. More...
 
bool is_numeral_i64 (int64_t &i) const
 
bool is_numeral_u64 (uint64_t &i) const
 
bool is_numeral_i (int &i) const
 
bool is_numeral_u (unsigned &i) const
 
bool is_numeral (std::string &s) const
 
bool is_numeral (std::string &s, unsigned precision) const
 
bool is_numeral (double &d) const
 
bool as_binary (std::string &s) const
 
double as_double () const
 
uint64_t as_uint64 () const
 
uint64_t as_int64 () const
 
bool is_app () const
 Return true if this expression is an application. More...
 
bool is_const () const
 Return true if this expression is a constant (i.e., an application with 0 arguments). More...
 
bool is_quantifier () const
 Return true if this expression is a quantifier. More...
 
bool is_forall () const
 Return true if this expression is a universal quantifier. More...
 
bool is_exists () const
 Return true if this expression is an existential quantifier. More...
 
bool is_lambda () const
 Return true if this expression is a lambda expression. More...
 
bool is_var () const
 Return true if this expression is a variable. More...
 
bool is_algebraic () const
 Return true if expression is an algebraic number. More...
 
bool is_well_sorted () const
 Return true if this expression is well sorted (aka type correct). More...
 
expr mk_is_inf () const
 Return Boolean expression to test for whether an FP expression is inf. More...
 
expr mk_is_nan () const
 Return Boolean expression to test for whether an FP expression is a NaN. More...
 
expr mk_is_normal () const
 Return Boolean expression to test for whether an FP expression is a normal. More...
 
expr mk_is_subnormal () const
 Return Boolean expression to test for whether an FP expression is a subnormal. More...
 
expr mk_is_zero () const
 Return Boolean expression to test for whether an FP expression is a zero. More...
 
expr mk_to_ieee_bv () const
 Convert this fpa into an IEEE BV. More...
 
expr mk_from_ieee_bv (sort const &s) const
 Convert this IEEE BV into a fpa. More...
 
std::string get_decimal_string (int precision) const
 Return string representation of numeral or algebraic number This method assumes the expression is numeral or algebraic. More...
 
expr algebraic_lower (unsigned precision) const
 
expr algebraic_upper (unsigned precision) const
 
expr_vector algebraic_poly () const
 Return coefficients for p of an algebraic number (root-obj p i) More...
 
unsigned algebraic_i () const
 Return i of an algebraic number (root-obj p i) More...
 
unsigned id () const
 retrieve unique identifier for expression. More...
 
int get_numeral_int () const
 Return int value of numeral, throw if result cannot fit in machine int. More...
 
unsigned get_numeral_uint () const
 Return uint value of numeral, throw if result cannot fit in machine uint. More...
 
int64_t get_numeral_int64 () const
 Return int64_t value of numeral, throw if result cannot fit in int64_t. More...
 
uint64_t get_numeral_uint64 () const
 Return uint64_t value of numeral, throw if result cannot fit in uint64_t. More...
 
Z3_lbool bool_value () const
 
expr numerator () const
 
expr denominator () const
 
bool is_string_value () const
 Return true if this expression is a string literal. The string can be accessed using get_string() and get_escaped_string() More...
 
std::string get_escaped_string () const
 for a string value expression return an escaped or unescaped string value. More...
 
std::string get_string () const
 
 operator Z3_app () const
 
func_decl decl () const
 Return the declaration associated with this application. This method assumes the expression is an application. More...
 
unsigned num_args () const
 Return the number of arguments in this application. This method assumes the expression is an application. More...
 
expr arg (unsigned i) const
 Return the i-th argument of this application. This method assumes the expression is an application. More...
 
expr body () const
 Return the 'body' of this quantifier. More...
 
bool is_true () const
 
bool is_false () const
 
bool is_not () const
 
bool is_and () const
 
bool is_or () const
 
bool is_xor () const
 
bool is_implies () const
 
bool is_eq () const
 
bool is_ite () const
 
bool is_distinct () const
 
expr rotate_left (unsigned i)
 
expr rotate_right (unsigned i)
 
expr repeat (unsigned i)
 
expr extract (unsigned hi, unsigned lo) const
 
unsigned lo () const
 
unsigned hi () const
 
expr extract (expr const &offset, expr const &length) const
 sequence and regular expression operations. More...
 
expr replace (expr const &src, expr const &dst) const
 
expr unit () const
 
expr contains (expr const &s) const
 
expr at (expr const &index) const
 
expr nth (expr const &index) const
 
expr length () const
 
expr stoi () const
 
expr itos () const
 
expr loop (unsigned lo)
 create a looping regular expression. More...
 
expr loop (unsigned lo, unsigned hi)
 
expr operator[] (expr const &index) const
 
expr operator[] (expr_vector const &index) const
 
expr simplify () const
 Return a simplified version of this expression. More...
 
expr simplify (params const &p) const
 Return a simplified version of this expression. The parameter p is a set of parameters for the Z3 simplifier. More...
 
expr substitute (expr_vector const &src, expr_vector const &dst)
 Apply substitution. Replace src expressions by dst. More...
 
expr substitute (expr_vector const &dst)
 Apply substitution. Replace bound variables by expressions. More...
 
- Public Member Functions inherited from ast
 ast (context &c)
 
 ast (context &c, Z3_ast n)
 
 ast (ast const &s)
 
 ast (ast &&s) noexcept
 
 ~ast ()
 
 operator Z3_ast () const
 
 operator bool () const
 
astoperator= (ast const &s)
 
astoperator= (ast &&s) noexcept
 
Z3_ast_kind kind () const
 
unsigned hash () const
 
std::string to_string () const
 
- Public Member Functions inherited from object
 object (context &c)
 
contextctx () const
 
Z3_error_code check_error () const
 

Friends

expr operator! (expr const &a)
 Return an expression representing not(a). More...
 
expr operator&& (expr const &a, expr const &b)
 Return an expression representing a and b. More...
 
expr operator&& (expr const &a, bool b)
 Return an expression representing a and b. The C++ Boolean value b is automatically converted into a Z3 Boolean constant. More...
 
expr operator&& (bool a, expr const &b)
 Return an expression representing a and b. The C++ Boolean value a is automatically converted into a Z3 Boolean constant. More...
 
expr operator|| (expr const &a, expr const &b)
 Return an expression representing a or b. More...
 
expr operator|| (expr const &a, bool b)
 Return an expression representing a or b. The C++ Boolean value b is automatically converted into a Z3 Boolean constant. More...
 
expr operator|| (bool a, expr const &b)
 Return an expression representing a or b. The C++ Boolean value a is automatically converted into a Z3 Boolean constant. More...
 
expr implies (expr const &a, expr const &b)
 
expr implies (expr const &a, bool b)
 
expr implies (bool a, expr const &b)
 
expr mk_or (expr_vector const &args)
 
expr mk_and (expr_vector const &args)
 
expr ite (expr const &c, expr const &t, expr const &e)
 Create the if-then-else expression ite(c, t, e) More...
 
expr distinct (expr_vector const &args)
 
expr concat (expr const &a, expr const &b)
 
expr concat (expr_vector const &args)
 
expr operator== (expr const &a, expr const &b)
 
expr operator== (expr const &a, int b)
 
expr operator== (int a, expr const &b)
 
expr operator!= (expr const &a, expr const &b)
 
expr operator!= (expr const &a, int b)
 
expr operator!= (int a, expr const &b)
 
expr operator+ (expr const &a, expr const &b)
 
expr operator+ (expr const &a, int b)
 
expr operator+ (int a, expr const &b)
 
expr sum (expr_vector const &args)
 
expr operator* (expr const &a, expr const &b)
 
expr operator* (expr const &a, int b)
 
expr operator* (int a, expr const &b)
 
expr pw (expr const &a, expr const &b)
 
expr pw (expr const &a, int b)
 
expr pw (int a, expr const &b)
 
expr mod (expr const &a, expr const &b)
 
expr mod (expr const &a, int b)
 
expr mod (int a, expr const &b)
 
expr rem (expr const &a, expr const &b)
 
expr rem (expr const &a, int b)
 
expr rem (int a, expr const &b)
 
expr is_int (expr const &e)
 
expr operator/ (expr const &a, expr const &b)
 
expr operator/ (expr const &a, int b)
 
expr operator/ (int a, expr const &b)
 
expr operator- (expr const &a)
 
expr operator- (expr const &a, expr const &b)
 
expr operator- (expr const &a, int b)
 
expr operator- (int a, expr const &b)
 
expr operator<= (expr const &a, expr const &b)
 
expr operator<= (expr const &a, int b)
 
expr operator<= (int a, expr const &b)
 
expr operator>= (expr const &a, expr const &b)
 
expr operator>= (expr const &a, int b)
 
expr operator>= (int a, expr const &b)
 
expr operator< (expr const &a, expr const &b)
 
expr operator< (expr const &a, int b)
 
expr operator< (int a, expr const &b)
 
expr operator> (expr const &a, expr const &b)
 
expr operator> (expr const &a, int b)
 
expr operator> (int a, expr const &b)
 
expr pble (expr_vector const &es, int const *coeffs, int bound)
 
expr pbge (expr_vector const &es, int const *coeffs, int bound)
 
expr pbeq (expr_vector const &es, int const *coeffs, int bound)
 
expr atmost (expr_vector const &es, unsigned bound)
 
expr atleast (expr_vector const &es, unsigned bound)
 
expr operator& (expr const &a, expr const &b)
 
expr operator& (expr const &a, int b)
 
expr operator& (int a, expr const &b)
 
expr operator^ (expr const &a, expr const &b)
 
expr operator^ (expr const &a, int b)
 
expr operator^ (int a, expr const &b)
 
expr operator| (expr const &a, expr const &b)
 
expr operator| (expr const &a, int b)
 
expr operator| (int a, expr const &b)
 
expr nand (expr const &a, expr const &b)
 
expr nor (expr const &a, expr const &b)
 
expr xnor (expr const &a, expr const &b)
 
expr min (expr const &a, expr const &b)
 
expr max (expr const &a, expr const &b)
 
expr bv2int (expr const &a, bool is_signed)
 bit-vector and integer conversions. More...
 
expr int2bv (unsigned n, expr const &a)
 
expr bvadd_no_overflow (expr const &a, expr const &b, bool is_signed)
 bit-vector overflow/underflow checks More...
 
expr bvadd_no_underflow (expr const &a, expr const &b)
 
expr bvsub_no_overflow (expr const &a, expr const &b)
 
expr bvsub_no_underflow (expr const &a, expr const &b, bool is_signed)
 
expr bvsdiv_no_overflow (expr const &a, expr const &b)
 
expr bvneg_no_overflow (expr const &a)
 
expr bvmul_no_overflow (expr const &a, expr const &b, bool is_signed)
 
expr bvmul_no_underflow (expr const &a, expr const &b)
 
expr bvredor (expr const &a)
 
expr bvredand (expr const &a)
 
expr abs (expr const &a)
 
expr sqrt (expr const &a, expr const &rm)
 
expr fp_eq (expr const &a, expr const &b)
 
expr operator~ (expr const &a)
 
expr fma (expr const &a, expr const &b, expr const &c, expr const &rm)
 FloatingPoint fused multiply-add. More...
 
expr fpa_fp (expr const &sgn, expr const &exp, expr const &sig)
 Create an expression of FloatingPoint sort from three bit-vector expressions. More...
 
expr fpa_to_sbv (expr const &t, unsigned sz)
 Conversion of a floating-point term into a signed bit-vector. More...
 
expr fpa_to_ubv (expr const &t, unsigned sz)
 Conversion of a floating-point term into an unsigned bit-vector. More...
 
expr sbv_to_fpa (expr const &t, sort s)
 Conversion of a signed bit-vector term into a floating-point. More...
 
expr ubv_to_fpa (expr const &t, sort s)
 Conversion of an unsigned bit-vector term into a floating-point. More...
 
expr fpa_to_fpa (expr const &t, sort s)
 Conversion of a floating-point term into another floating-point. More...
 
expr round_fpa_to_closest_integer (expr const &t)
 Round a floating-point term into its closest integer. More...
 
expr range (expr const &lo, expr const &hi)
 

Additional Inherited Members

- Protected Attributes inherited from ast
Z3_ast m_ast
 
- Protected Attributes inherited from object
contextm_ctx
 

Detailed Description

A Z3 expression is used to represent formulas and terms. For Z3, a formula is any expression of sort Boolean. Every expression has a sort.

Definition at line 757 of file z3++.h.

Constructor & Destructor Documentation

◆ expr() [1/2]

expr ( context c)
inline

◆ expr() [2/2]

expr ( context c,
Z3_ast  n 
)
inline

Definition at line 760 of file z3++.h.

760 :ast(c, reinterpret_cast<Z3_ast>(n)) {}

Member Function Documentation

◆ algebraic_i()

unsigned algebraic_i ( ) const
inline

Return i of an algebraic number (root-obj p i)

Definition at line 993 of file z3++.h.

993  {
994  assert(is_algebraic());
995  unsigned i = Z3_algebraic_get_i(ctx(), m_ast);
996  check_error();
997  return i;
998  }
Z3_ast m_ast
Definition: z3++.h:500
bool is_algebraic() const
Return true if expression is an algebraic number.
Definition: z3++.h:875
context & ctx() const
Definition: z3++.h:422
Z3_error_code check_error() const
Definition: z3++.h:423
unsigned Z3_API Z3_algebraic_get_i(Z3_context c, Z3_ast a)
Return which root of the polynomial the algebraic number represents.

◆ algebraic_lower()

expr algebraic_lower ( unsigned  precision) const
inline

Retrieve lower and upper bounds for algebraic numerals based on a decimal precision

Definition at line 966 of file z3++.h.

966  {
967  assert(is_algebraic());
968  Z3_ast r = Z3_get_algebraic_number_lower(ctx(), m_ast, precision);
969  check_error();
970  return expr(ctx(), r);
971  }
expr(context &c)
Definition: z3++.h:759
Z3_ast Z3_API Z3_get_algebraic_number_lower(Z3_context c, Z3_ast a, unsigned precision)
Return a lower bound for the given real algebraic number. The interval isolating the number is smalle...

◆ algebraic_poly()

expr_vector algebraic_poly ( ) const
inline

Return coefficients for p of an algebraic number (root-obj p i)

Definition at line 983 of file z3++.h.

983  {
984  assert(is_algebraic());
985  Z3_ast_vector r = Z3_algebraic_get_poly(ctx(), m_ast);
986  check_error();
987  return expr_vector(ctx(), r);
988  }
ast_vector_tpl< expr > expr_vector
Definition: z3++.h:73
Z3_ast_vector Z3_API Z3_algebraic_get_poly(Z3_context c, Z3_ast a)
Return the coefficients of the defining polynomial.

◆ algebraic_upper()

expr algebraic_upper ( unsigned  precision) const
inline

Definition at line 973 of file z3++.h.

973  {
974  assert(is_algebraic());
975  Z3_ast r = Z3_get_algebraic_number_upper(ctx(), m_ast, precision);
976  check_error();
977  return expr(ctx(), r);
978  }
Z3_ast Z3_API Z3_get_algebraic_number_upper(Z3_context c, Z3_ast a, unsigned precision)
Return a upper bound for the given real algebraic number. The interval isolating the number is smalle...

◆ arg()

expr arg ( unsigned  i) const
inline

Return the i-th argument of this application. This method assumes the expression is an application.

Precondition
is_app()
i < num_args()

Definition at line 1148 of file z3++.h.

1148 { Z3_ast r = Z3_get_app_arg(ctx(), *this, i); check_error(); return expr(ctx(), r); }
Z3_ast Z3_API Z3_get_app_arg(Z3_context c, Z3_app a, unsigned i)
Return the i-th argument of the given application.

Referenced by AstRef::__bool__(), and ExprRef::children().

◆ as_binary()

bool as_binary ( std::string &  s) const
inline

Definition at line 835 of file z3++.h.

835 { if (!is_numeral()) return false; s = Z3_get_numeral_binary_string(ctx(), m_ast); check_error(); return true; }
bool is_numeral() const
Return true if this expression is a numeral. Specialized functions also return representations for th...
Definition: z3++.h:827
Z3_string Z3_API Z3_get_numeral_binary_string(Z3_context c, Z3_ast a)
Return numeral value, as a binary string of a numeric constant term.

◆ as_double()

double as_double ( ) const
inline

Definition at line 837 of file z3++.h.

837 { double d = 0; is_numeral(d); return d; }

◆ as_int64()

uint64_t as_int64 ( ) const
inline

Definition at line 839 of file z3++.h.

839 { int64_t r = 0; is_numeral_i64(r); return r; }
bool is_numeral_i64(int64_t &i) const
Definition: z3++.h:828

◆ as_uint64()

uint64_t as_uint64 ( ) const
inline

Definition at line 838 of file z3++.h.

838 { uint64_t r = 0; is_numeral_u64(r); return r; }
bool is_numeral_u64(uint64_t &i) const
Definition: z3++.h:829

◆ at()

expr at ( expr const &  index) const
inline

Definition at line 1413 of file z3++.h.

1413  {
1414  check_context(*this, index);
1415  Z3_ast r = Z3_mk_seq_at(ctx(), *this, index);
1416  check_error();
1417  return expr(ctx(), r);
1418  }
friend void check_context(object const &a, object const &b)
Definition: z3++.h:426
Z3_ast Z3_API Z3_mk_seq_at(Z3_context c, Z3_ast s, Z3_ast index)
Retrieve from s the unit sequence positioned at position index. The sequence is empty if the index is...

◆ body()

expr body ( ) const
inline

Return the 'body' of this quantifier.

Precondition
is_quantifier()

Definition at line 1155 of file z3++.h.

1155 { assert(is_quantifier()); Z3_ast r = Z3_get_quantifier_body(ctx(), *this); check_error(); return expr(ctx(), r); }
bool is_quantifier() const
Return true if this expression is a quantifier.
Definition: z3++.h:853
Z3_ast Z3_API Z3_get_quantifier_body(Z3_context c, Z3_ast a)
Return body of quantifier.

Referenced by QuantifierRef::children().

◆ bool_value()

Z3_lbool bool_value ( ) const
inline

Definition at line 1079 of file z3++.h.

1079  {
1080  return Z3_get_bool_value(ctx(), m_ast);
1081  }
Z3_lbool Z3_API Z3_get_bool_value(Z3_context c, Z3_ast a)
Return Z3_L_TRUE if a is true, Z3_L_FALSE if it is false, and Z3_L_UNDEF otherwise.

◆ contains()

expr contains ( expr const &  s) const
inline

Definition at line 1407 of file z3++.h.

1407  {
1408  check_context(*this, s);
1409  Z3_ast r = Z3_mk_seq_contains(ctx(), *this, s);
1410  check_error();
1411  return expr(ctx(), r);
1412  }
Z3_ast Z3_API Z3_mk_seq_contains(Z3_context c, Z3_ast container, Z3_ast containee)
Check if container contains containee.

◆ decl()

func_decl decl ( ) const
inline

Return the declaration associated with this application. This method assumes the expression is an application.

Precondition
is_app()

Definition at line 1133 of file z3++.h.

1133 { Z3_func_decl f = Z3_get_app_decl(ctx(), *this); check_error(); return func_decl(ctx(), f); }
Z3_func_decl Z3_API Z3_get_app_decl(Z3_context c, Z3_app a)
Return the declaration of a constant or function application.

Referenced by expr::hi(), expr::is_and(), expr::is_distinct(), expr::is_eq(), expr::is_false(), expr::is_implies(), expr::is_ite(), expr::is_not(), expr::is_or(), expr::is_true(), expr::is_xor(), expr::lo(), and ExprRef::params().

◆ denominator()

expr denominator ( ) const
inline

Definition at line 1091 of file z3++.h.

1091  {
1092  assert(is_numeral());
1093  Z3_ast r = Z3_get_denominator(ctx(), m_ast);
1094  check_error();
1095  return expr(ctx(),r);
1096  }
Z3_ast Z3_API Z3_get_denominator(Z3_context c, Z3_ast a)
Return the denominator (as a numeral AST) of a numeral AST of sort Real.

Referenced by RatNumRef::denominator_as_long(), and RatNumRef::is_int_value().

◆ extract() [1/2]

expr extract ( expr const &  offset,
expr const &  length 
) const
inline

sequence and regular expression operations.

  • is overloaded as sequence concatenation and regular expression union. concat is overloaded to handle sequences and regular expressions

Definition at line 1392 of file z3++.h.

1392  {
1393  check_context(*this, offset); check_context(offset, length);
1394  Z3_ast r = Z3_mk_seq_extract(ctx(), *this, offset, length); check_error(); return expr(ctx(), r);
1395  }
expr length() const
Definition: z3++.h:1425
Z3_ast Z3_API Z3_mk_seq_extract(Z3_context c, Z3_ast s, Z3_ast offset, Z3_ast length)
Extract subsequence starting at offset of length.

◆ extract() [2/2]

expr extract ( unsigned  hi,
unsigned  lo 
) const
inline

Definition at line 1343 of file z3++.h.

1343 { Z3_ast r = Z3_mk_extract(ctx(), hi, lo, *this); ctx().check_error(); return expr(ctx(), r); }
Z3_error_code check_error() const
Auxiliary method used to check for API usage errors.
Definition: z3++.h:188
unsigned hi() const
Definition: z3++.h:1345
unsigned lo() const
Definition: z3++.h:1344
Z3_ast Z3_API Z3_mk_extract(Z3_context c, unsigned high, unsigned low, Z3_ast t1)
Extract the bits high down to low from a bit-vector of size m to yield a new bit-vector of size n,...

◆ get_decimal_string()

std::string get_decimal_string ( int  precision) const
inline

Return string representation of numeral or algebraic number This method assumes the expression is numeral or algebraic.

Precondition
is_numeral() || is_algebraic()

Definition at line 958 of file z3++.h.

958  {
959  assert(is_numeral() || is_algebraic());
960  return std::string(Z3_get_numeral_decimal_string(ctx(), m_ast, precision));
961  }
Z3_string Z3_API Z3_get_numeral_decimal_string(Z3_context c, Z3_ast a, unsigned precision)
Return numeral as a string in decimal notation. The result has at most precision decimal places.

◆ get_escaped_string()

std::string get_escaped_string ( ) const
inline

for a string value expression return an escaped or unescaped string value.

Precondition
expression is for a string value.

Definition at line 1110 of file z3++.h.

1110  {
1111  assert(is_string_value());
1112  char const* s = Z3_get_string(ctx(), m_ast);
1113  check_error();
1114  return std::string(s);
1115  }
bool is_string_value() const
Return true if this expression is a string literal. The string can be accessed using get_string() and...
Definition: z3++.h:1103
Z3_string Z3_API Z3_get_string(Z3_context c, Z3_ast s)
Retrieve the string constant stored in s.

◆ get_numeral_int()

int get_numeral_int ( ) const
inline

Return int value of numeral, throw if result cannot fit in machine int.

It only makes sense to use this function if the caller can ensure that the result is an integer or if exceptions are enabled. If exceptions are disabled, then use the is_numeral_i function.

Precondition
is_numeral()

Definition at line 1015 of file z3++.h.

1015  {
1016  int result = 0;
1017  if (!is_numeral_i(result)) {
1018  assert(ctx().enable_exceptions());
1019  if (!ctx().enable_exceptions()) return 0;
1020  Z3_THROW(exception("numeral does not fit in machine int"));
1021  }
1022  return result;
1023  }
bool is_numeral_i(int &i) const
Definition: z3++.h:830
#define Z3_THROW(x)
Definition: z3++.h:100

◆ get_numeral_int64()

int64_t get_numeral_int64 ( ) const
inline

Return int64_t value of numeral, throw if result cannot fit in int64_t.

Precondition
is_numeral()

Definition at line 1051 of file z3++.h.

1051  {
1052  assert(is_numeral());
1053  int64_t result = 0;
1054  if (!is_numeral_i64(result)) {
1055  assert(ctx().enable_exceptions());
1056  if (!ctx().enable_exceptions()) return 0;
1057  Z3_THROW(exception("numeral does not fit in machine int64_t"));
1058  }
1059  return result;
1060  }

◆ get_numeral_uint()

unsigned get_numeral_uint ( ) const
inline

Return uint value of numeral, throw if result cannot fit in machine uint.

It only makes sense to use this function if the caller can ensure that the result is an integer or if exceptions are enabled. If exceptions are disabled, then use the is_numeral_u function.

Precondition
is_numeral()

Definition at line 1034 of file z3++.h.

1034  {
1035  assert(is_numeral());
1036  unsigned result = 0;
1037  if (!is_numeral_u(result)) {
1038  assert(ctx().enable_exceptions());
1039  if (!ctx().enable_exceptions()) return 0;
1040  Z3_THROW(exception("numeral does not fit in machine uint"));
1041  }
1042  return result;
1043  }
bool is_numeral_u(unsigned &i) const
Definition: z3++.h:831

◆ get_numeral_uint64()

uint64_t get_numeral_uint64 ( ) const
inline

Return uint64_t value of numeral, throw if result cannot fit in uint64_t.

Precondition
is_numeral()

Definition at line 1068 of file z3++.h.

1068  {
1069  assert(is_numeral());
1070  uint64_t result = 0;
1071  if (!is_numeral_u64(result)) {
1072  assert(ctx().enable_exceptions());
1073  if (!ctx().enable_exceptions()) return 0;
1074  Z3_THROW(exception("numeral does not fit in machine uint64_t"));
1075  }
1076  return result;
1077  }

◆ get_sort()

sort get_sort ( ) const
inline

Return the sort of this expression.

Definition at line 765 of file z3++.h.

765 { Z3_sort s = Z3_get_sort(*m_ctx, m_ast); check_error(); return sort(*m_ctx, s); }
context * m_ctx
Definition: z3++.h:419
Z3_sort Z3_API Z3_get_sort(Z3_context c, Z3_ast a)
Return the sort of an AST node.

Referenced by z3::ashr(), expr::is_arith(), expr::is_array(), expr::is_bool(), expr::is_bv(), expr::is_datatype(), expr::is_finite_domain(), expr::is_fpa(), expr::is_int(), expr::is_re(), expr::is_real(), expr::is_relation(), expr::is_seq(), z3::lshr(), z3::select(), z3::sge(), z3::sgt(), z3::shl(), z3::sle(), z3::slt(), z3::smod(), ModelRef::sorts(), z3::srem(), z3::store(), z3::udiv(), z3::uge(), z3::ugt(), z3::ule(), z3::ult(), and z3::urem().

◆ get_string()

std::string get_string ( ) const
inline

Definition at line 1117 of file z3++.h.

1117  {
1118  assert(is_string_value());
1119  unsigned n;
1120  char const* s = Z3_get_lstring(ctx(), m_ast, &n);
1121  check_error();
1122  return std::string(s, n);
1123  }
Z3_char_ptr Z3_API Z3_get_lstring(Z3_context c, Z3_ast s, unsigned *length)
Retrieve the unescaped string constant stored in s.

◆ hi()

unsigned hi ( ) const
inline

Definition at line 1345 of file z3++.h.

1345 { assert (is_app() && Z3_get_decl_num_parameters(ctx(), decl()) == 2); return static_cast<unsigned>(Z3_get_decl_int_parameter(ctx(), decl(), 0)); }
bool is_app() const
Return true if this expression is an application.
Definition: z3++.h:845
func_decl decl() const
Return the declaration associated with this application. This method assumes the expression is an app...
Definition: z3++.h:1133
unsigned Z3_API Z3_get_decl_num_parameters(Z3_context c, Z3_func_decl d)
Return the number of parameters associated with a declaration.
int Z3_API Z3_get_decl_int_parameter(Z3_context c, Z3_func_decl d, unsigned idx)
Return the integer value associated with an integer parameter.

Referenced by expr::extract(), and expr::loop().

◆ id()

unsigned id ( ) const
inline

retrieve unique identifier for expression.

Definition at line 1003 of file z3++.h.

1003 { unsigned r = Z3_get_ast_id(ctx(), m_ast); check_error(); return r; }
unsigned Z3_API Z3_get_ast_id(Z3_context c, Z3_ast t)
Return a unique identifier for t. The identifier is unique up to structural equality....

◆ is_algebraic()

bool is_algebraic ( ) const
inline

Return true if expression is an algebraic number.

Definition at line 875 of file z3++.h.

875 { return Z3_is_algebraic_number(ctx(), m_ast); }
bool Z3_API Z3_is_algebraic_number(Z3_context c, Z3_ast a)
Return true if the given AST is a real algebraic number.

Referenced by expr::algebraic_i(), expr::algebraic_lower(), expr::algebraic_poly(), expr::algebraic_upper(), and expr::get_decimal_string().

◆ is_and()

bool is_and ( ) const
inline

Definition at line 1223 of file z3++.h.

1223 { return is_app() && Z3_OP_AND == decl().decl_kind(); }
Z3_decl_kind decl_kind() const
Definition: z3++.h:726
@ Z3_OP_AND
Definition: z3_api.h:1007

◆ is_app()

bool is_app ( ) const
inline

Return true if this expression is an application.

Definition at line 845 of file z3++.h.

845 { return kind() == Z3_APP_AST || kind() == Z3_NUMERAL_AST; }
Z3_ast_kind kind() const
Definition: z3++.h:525
@ Z3_APP_AST
Definition: z3_api.h:182
@ Z3_NUMERAL_AST
Definition: z3_api.h:181

Referenced by expr::hi(), expr::is_and(), expr::is_const(), expr::is_distinct(), expr::is_eq(), expr::is_false(), expr::is_implies(), expr::is_ite(), expr::is_not(), expr::is_or(), expr::is_true(), expr::is_xor(), expr::lo(), and expr::operator Z3_app().

◆ is_arith()

bool is_arith ( ) const
inline

Return true if this is an integer or real expression.

Definition at line 782 of file z3++.h.

782 { return get_sort().is_arith(); }
sort get_sort() const
Return the sort of this expression.
Definition: z3++.h:765
bool is_arith() const
Return true if this sort is the Integer or Real sort.
Definition: z3++.h:647

◆ is_array()

bool is_array ( ) const
inline

Return true if this is a Array expression.

Definition at line 790 of file z3++.h.

790 { return get_sort().is_array(); }
bool is_array() const
Return true if this sort is a Array sort.
Definition: z3++.h:655

Referenced by expr::operator[]().

◆ is_bool()

bool is_bool ( ) const
inline

Return true if this is a Boolean expression.

Definition at line 770 of file z3++.h.

770 { return get_sort().is_bool(); }
bool is_bool() const
Return true if this sort is the Boolean sort.
Definition: z3++.h:635

Referenced by solver::add(), optimize::add(), and optimize::add_soft().

◆ is_bv()

bool is_bv ( ) const
inline

Return true if this is a Bit-vector expression.

Definition at line 786 of file z3++.h.

786 { return get_sort().is_bv(); }
bool is_bv() const
Return true if this sort is a Bit-vector sort.
Definition: z3++.h:651

Referenced by expr::mk_from_ieee_bv().

◆ is_const()

bool is_const ( ) const
inline

Return true if this expression is a constant (i.e., an application with 0 arguments).

Definition at line 849 of file z3++.h.

849 { return is_app() && num_args() == 0; }
unsigned num_args() const
Return the number of arguments in this application. This method assumes the expression is an applicat...
Definition: z3++.h:1140

Referenced by solver::add().

◆ is_datatype()

bool is_datatype ( ) const
inline

Return true if this is a Datatype expression.

Definition at line 794 of file z3++.h.

794 { return get_sort().is_datatype(); }
bool is_datatype() const
Return true if this sort is a Datatype sort.
Definition: z3++.h:659

◆ is_distinct()

bool is_distinct ( ) const
inline

Definition at line 1229 of file z3++.h.

1229 { return is_app() && Z3_OP_DISTINCT == decl().decl_kind(); }
@ Z3_OP_DISTINCT
Definition: z3_api.h:1005

◆ is_eq()

bool is_eq ( ) const
inline

Definition at line 1227 of file z3++.h.

1227 { return is_app() && Z3_OP_EQ == decl().decl_kind(); }
@ Z3_OP_EQ
Definition: z3_api.h:1004

◆ is_exists()

bool is_exists ( ) const
inline

Return true if this expression is an existential quantifier.

Definition at line 862 of file z3++.h.

862 { return Z3_is_quantifier_exists(ctx(), m_ast); }
bool Z3_API Z3_is_quantifier_exists(Z3_context c, Z3_ast a)
Determine if ast is an existential quantifier.

◆ is_false()

bool is_false ( ) const
inline

Definition at line 1221 of file z3++.h.

1221 { return is_app() && Z3_OP_FALSE == decl().decl_kind(); }
@ Z3_OP_FALSE
Definition: z3_api.h:1003

◆ is_finite_domain()

bool is_finite_domain ( ) const
inline

Return true if this is a Finite-domain expression.

Remarks
Finite-domain is special kind of interpreted sort: is_bool(), is_bv() and is_finite_domain() are mutually exclusive.

Definition at line 816 of file z3++.h.

816 { return get_sort().is_finite_domain(); }
bool is_finite_domain() const
Return true if this sort is a Finite domain sort.
Definition: z3++.h:675

◆ is_forall()

bool is_forall ( ) const
inline

Return true if this expression is a universal quantifier.

Definition at line 858 of file z3++.h.

858 { return Z3_is_quantifier_forall(ctx(), m_ast); }
bool Z3_API Z3_is_quantifier_forall(Z3_context c, Z3_ast a)
Determine if an ast is a universal quantifier.

◆ is_fpa()

bool is_fpa ( ) const
inline

Return true if this is a FloatingPoint expression. .

Definition at line 820 of file z3++.h.

820 { return get_sort().is_fpa(); }
bool is_fpa() const
Return true if this sort is a Floating point sort.
Definition: z3++.h:679

Referenced by expr::mk_is_inf(), expr::mk_is_nan(), expr::mk_is_normal(), expr::mk_is_subnormal(), expr::mk_is_zero(), expr::mk_to_ieee_bv(), z3::operator!=(), and z3::operator==().

◆ is_implies()

bool is_implies ( ) const
inline

Definition at line 1226 of file z3++.h.

1226 { return is_app() && Z3_OP_IMPLIES == decl().decl_kind(); }
@ Z3_OP_IMPLIES
Definition: z3_api.h:1012

◆ is_int()

bool is_int ( ) const
inline

Return true if this is an integer expression.

Definition at line 774 of file z3++.h.

774 { return get_sort().is_int(); }
bool is_int() const
Return true if this sort is the Integer sort.
Definition: z3++.h:639

Referenced by IntNumRef::as_long(), and ArithSortRef::subsort().

◆ is_ite()

bool is_ite ( ) const
inline

Definition at line 1228 of file z3++.h.

1228 { return is_app() && Z3_OP_ITE == decl().decl_kind(); }
@ Z3_OP_ITE
Definition: z3_api.h:1006

◆ is_lambda()

bool is_lambda ( ) const
inline

Return true if this expression is a lambda expression.

Definition at line 866 of file z3++.h.

866 { return Z3_is_lambda(ctx(), m_ast); }
bool Z3_API Z3_is_lambda(Z3_context c, Z3_ast a)
Determine if ast is a lambda expression.

Referenced by QuantifierRef::__getitem__(), and QuantifierRef::sort().

◆ is_not()

bool is_not ( ) const
inline

Definition at line 1222 of file z3++.h.

1222 { return is_app() && Z3_OP_NOT == decl().decl_kind(); }
@ Z3_OP_NOT
Definition: z3_api.h:1011

◆ is_numeral() [1/4]

bool is_numeral ( ) const
inline

Return true if this expression is a numeral. Specialized functions also return representations for the numerals as small integers, 64 bit integers or rational or decimal strings.

Definition at line 827 of file z3++.h.

827 { return kind() == Z3_NUMERAL_AST; }

Referenced by expr::as_binary(), expr::as_double(), expr::denominator(), expr::get_decimal_string(), expr::get_numeral_int64(), expr::get_numeral_uint(), expr::get_numeral_uint64(), and expr::numerator().

◆ is_numeral() [2/4]

bool is_numeral ( double &  d) const
inline

Definition at line 834 of file z3++.h.

834 { if (!is_numeral()) return false; d = Z3_get_numeral_double(ctx(), m_ast); check_error(); return true; }
double Z3_API Z3_get_numeral_double(Z3_context c, Z3_ast a)
Return numeral as a double.

Referenced by expr::is_numeral().

◆ is_numeral() [3/4]

bool is_numeral ( std::string &  s) const
inline

Definition at line 832 of file z3++.h.

832 { if (!is_numeral()) return false; s = Z3_get_numeral_string(ctx(), m_ast); check_error(); return true; }
Z3_string Z3_API Z3_get_numeral_string(Z3_context c, Z3_ast a)
Return numeral value, as a decimal string of a numeric constant term.

Referenced by expr::is_numeral().

◆ is_numeral() [4/4]

bool is_numeral ( std::string &  s,
unsigned  precision 
) const
inline

Definition at line 833 of file z3++.h.

833 { if (!is_numeral()) return false; s = Z3_get_numeral_decimal_string(ctx(), m_ast, precision); check_error(); return true; }

Referenced by expr::is_numeral().

◆ is_numeral_i()

bool is_numeral_i ( int &  i) const
inline

Definition at line 830 of file z3++.h.

830 { bool r = Z3_get_numeral_int(ctx(), m_ast, &i); check_error(); return r;}
bool Z3_API Z3_get_numeral_int(Z3_context c, Z3_ast v, int *i)
Similar to Z3_get_numeral_string, but only succeeds if the value can fit in a machine int....

Referenced by expr::get_numeral_int().

◆ is_numeral_i64()

bool is_numeral_i64 ( int64_t &  i) const
inline

Definition at line 828 of file z3++.h.

828 { bool r = Z3_get_numeral_int64(ctx(), m_ast, &i); check_error(); return r;}
bool Z3_API Z3_get_numeral_int64(Z3_context c, Z3_ast v, int64_t *i)
Similar to Z3_get_numeral_string, but only succeeds if the value can fit in a machine int64_t int....

Referenced by expr::as_int64(), and expr::get_numeral_int64().

◆ is_numeral_u()

bool is_numeral_u ( unsigned &  i) const
inline

Definition at line 831 of file z3++.h.

831 { bool r = Z3_get_numeral_uint(ctx(), m_ast, &i); check_error(); return r;}
bool Z3_API Z3_get_numeral_uint(Z3_context c, Z3_ast v, unsigned *u)
Similar to Z3_get_numeral_string, but only succeeds if the value can fit in a machine unsigned int....

Referenced by expr::get_numeral_uint().

◆ is_numeral_u64()

bool is_numeral_u64 ( uint64_t &  i) const
inline

Definition at line 829 of file z3++.h.

829 { bool r = Z3_get_numeral_uint64(ctx(), m_ast, &i); check_error(); return r;}
bool Z3_API Z3_get_numeral_uint64(Z3_context c, Z3_ast v, uint64_t *u)
Similar to Z3_get_numeral_string, but only succeeds if the value can fit in a machine uint64_t int....

Referenced by expr::as_uint64(), and expr::get_numeral_uint64().

◆ is_or()

bool is_or ( ) const
inline

Definition at line 1224 of file z3++.h.

1224 { return is_app() && Z3_OP_OR == decl().decl_kind(); }
@ Z3_OP_OR
Definition: z3_api.h:1008

◆ is_quantifier()

bool is_quantifier ( ) const
inline

Return true if this expression is a quantifier.

Definition at line 853 of file z3++.h.

853 { return kind() == Z3_QUANTIFIER_AST; }
@ Z3_QUANTIFIER_AST
Definition: z3_api.h:184

Referenced by expr::body().

◆ is_re()

bool is_re ( ) const
inline

Return true if this is a regular expression.

Definition at line 806 of file z3++.h.

806 { return get_sort().is_re(); }
bool is_re() const
Return true if this sort is a regular expression sort.
Definition: z3++.h:671

◆ is_real()

bool is_real ( ) const
inline

Return true if this is a real expression.

Definition at line 778 of file z3++.h.

778 { return get_sort().is_real(); }
bool is_real() const
Return true if this sort is the Real sort.
Definition: z3++.h:643

◆ is_relation()

bool is_relation ( ) const
inline

Return true if this is a Relation expression.

Definition at line 798 of file z3++.h.

798 { return get_sort().is_relation(); }
bool is_relation() const
Return true if this sort is a Relation sort.
Definition: z3++.h:663

◆ is_seq()

bool is_seq ( ) const
inline

Return true if this is a sequence expression.

Definition at line 802 of file z3++.h.

802 { return get_sort().is_seq(); }
bool is_seq() const
Return true if this sort is a Sequence sort.
Definition: z3++.h:667

Referenced by expr::operator[]().

◆ is_string_value()

bool is_string_value ( ) const
inline

Return true if this expression is a string literal. The string can be accessed using get_string() and get_escaped_string()

Definition at line 1103 of file z3++.h.

1103 { return Z3_is_string(ctx(), m_ast); }
bool Z3_API Z3_is_string(Z3_context c, Z3_ast s)
Determine if s is a string constant.

Referenced by SeqRef::as_string(), expr::get_escaped_string(), and expr::get_string().

◆ is_true()

bool is_true ( ) const
inline

Definition at line 1220 of file z3++.h.

1220 { return is_app() && Z3_OP_TRUE == decl().decl_kind(); }
@ Z3_OP_TRUE
Definition: z3_api.h:1002

◆ is_var()

bool is_var ( ) const
inline

Return true if this expression is a variable.

Definition at line 871 of file z3++.h.

871 { return kind() == Z3_VAR_AST; }
@ Z3_VAR_AST
Definition: z3_api.h:183

◆ is_well_sorted()

bool is_well_sorted ( ) const
inline

Return true if this expression is well sorted (aka type correct).

Definition at line 880 of file z3++.h.

880 { bool r = Z3_is_well_sorted(ctx(), m_ast); check_error(); return r; }
bool Z3_API Z3_is_well_sorted(Z3_context c, Z3_ast t)
Return true if the given expression t is well sorted.

◆ is_xor()

bool is_xor ( ) const
inline

Definition at line 1225 of file z3++.h.

1225 { return is_app() && Z3_OP_XOR == decl().decl_kind(); }
@ Z3_OP_XOR
Definition: z3_api.h:1010

◆ itos()

expr itos ( ) const
inline

Definition at line 1435 of file z3++.h.

1435  {
1436  Z3_ast r = Z3_mk_int_to_str(ctx(), *this);
1437  check_error();
1438  return expr(ctx(), r);
1439  }
Z3_ast Z3_API Z3_mk_int_to_str(Z3_context c, Z3_ast s)
Integer to string conversion.

◆ length()

expr length ( ) const
inline

Definition at line 1425 of file z3++.h.

1425  {
1426  Z3_ast r = Z3_mk_seq_length(ctx(), *this);
1427  check_error();
1428  return expr(ctx(), r);
1429  }
Z3_ast Z3_API Z3_mk_seq_length(Z3_context c, Z3_ast s)
Return the length of the sequence s.

Referenced by expr::extract().

◆ lo()

unsigned lo ( ) const
inline

Definition at line 1344 of file z3++.h.

1344 { assert (is_app() && Z3_get_decl_num_parameters(ctx(), decl()) == 2); return static_cast<unsigned>(Z3_get_decl_int_parameter(ctx(), decl(), 1)); }

Referenced by expr::extract(), and expr::loop().

◆ loop() [1/2]

expr loop ( unsigned  lo)
inline

create a looping regular expression.

Definition at line 1445 of file z3++.h.

1445  {
1446  Z3_ast r = Z3_mk_re_loop(ctx(), m_ast, lo, 0);
1447  check_error();
1448  return expr(ctx(), r);
1449  }
Z3_ast Z3_API Z3_mk_re_loop(Z3_context c, Z3_ast r, unsigned lo, unsigned hi)
Create a regular expression loop. The supplied regular expression r is repeated between lo and hi tim...

◆ loop() [2/2]

expr loop ( unsigned  lo,
unsigned  hi 
)
inline

Definition at line 1450 of file z3++.h.

1450  {
1451  Z3_ast r = Z3_mk_re_loop(ctx(), m_ast, lo, hi);
1452  check_error();
1453  return expr(ctx(), r);
1454  }

◆ mk_from_ieee_bv()

expr mk_from_ieee_bv ( sort const &  s) const
inline

Convert this IEEE BV into a fpa.

Definition at line 945 of file z3++.h.

945  {
946  assert(is_bv());
947  Z3_ast r = Z3_mk_fpa_to_fp_bv(ctx(), m_ast, s);
948  check_error();
949  return expr(ctx(), r);
950  }
bool is_bv() const
Return true if this is a Bit-vector expression.
Definition: z3++.h:786
Z3_ast Z3_API Z3_mk_fpa_to_fp_bv(Z3_context c, Z3_ast bv, Z3_sort s)
Conversion of a single IEEE 754-2008 bit-vector into a floating-point number.

◆ mk_is_inf()

expr mk_is_inf ( ) const
inline

Return Boolean expression to test for whether an FP expression is inf.

Definition at line 885 of file z3++.h.

885  {
886  assert(is_fpa());
887  Z3_ast r = Z3_mk_fpa_is_infinite(ctx(), m_ast);
888  check_error();
889  return expr(ctx(), r);
890  }
bool is_fpa() const
Return true if this is a FloatingPoint expression. .
Definition: z3++.h:820
Z3_ast Z3_API Z3_mk_fpa_is_infinite(Z3_context c, Z3_ast t)
Predicate indicating whether t is a floating-point number representing +oo or -oo.

◆ mk_is_nan()

expr mk_is_nan ( ) const
inline

Return Boolean expression to test for whether an FP expression is a NaN.

Definition at line 895 of file z3++.h.

895  {
896  assert(is_fpa());
897  Z3_ast r = Z3_mk_fpa_is_nan(ctx(), m_ast);
898  check_error();
899  return expr(ctx(), r);
900  }
Z3_ast Z3_API Z3_mk_fpa_is_nan(Z3_context c, Z3_ast t)
Predicate indicating whether t is a NaN.

◆ mk_is_normal()

expr mk_is_normal ( ) const
inline

Return Boolean expression to test for whether an FP expression is a normal.

Definition at line 905 of file z3++.h.

905  {
906  assert(is_fpa());
907  Z3_ast r = Z3_mk_fpa_is_normal(ctx(), m_ast);
908  check_error();
909  return expr(ctx(), r);
910  }
Z3_ast Z3_API Z3_mk_fpa_is_normal(Z3_context c, Z3_ast t)
Predicate indicating whether t is a normal floating-point number.

◆ mk_is_subnormal()

expr mk_is_subnormal ( ) const
inline

Return Boolean expression to test for whether an FP expression is a subnormal.

Definition at line 915 of file z3++.h.

915  {
916  assert(is_fpa());
917  Z3_ast r = Z3_mk_fpa_is_subnormal(ctx(), m_ast);
918  check_error();
919  return expr(ctx(), r);
920  }
Z3_ast Z3_API Z3_mk_fpa_is_subnormal(Z3_context c, Z3_ast t)
Predicate indicating whether t is a subnormal floating-point number.

◆ mk_is_zero()

expr mk_is_zero ( ) const
inline

Return Boolean expression to test for whether an FP expression is a zero.

Definition at line 925 of file z3++.h.

925  {
926  assert(is_fpa());
927  Z3_ast r = Z3_mk_fpa_is_zero(ctx(), m_ast);
928  check_error();
929  return expr(ctx(), r);
930  }
Z3_ast Z3_API Z3_mk_fpa_is_zero(Z3_context c, Z3_ast t)
Predicate indicating whether t is a floating-point number with zero value, i.e., +zero or -zero.

◆ mk_to_ieee_bv()

expr mk_to_ieee_bv ( ) const
inline

Convert this fpa into an IEEE BV.

Definition at line 935 of file z3++.h.

935  {
936  assert(is_fpa());
937  Z3_ast r = Z3_mk_fpa_to_ieee_bv(ctx(), m_ast);
938  check_error();
939  return expr(ctx(), r);
940  }
Z3_ast Z3_API Z3_mk_fpa_to_ieee_bv(Z3_context c, Z3_ast t)
Conversion of a floating-point term into a bit-vector term in IEEE 754-2008 format.

◆ nth()

expr nth ( expr const &  index) const
inline

Definition at line 1419 of file z3++.h.

1419  {
1420  check_context(*this, index);
1421  Z3_ast r = Z3_mk_seq_nth(ctx(), *this, index);
1422  check_error();
1423  return expr(ctx(), r);
1424  }
Z3_ast Z3_API Z3_mk_seq_nth(Z3_context c, Z3_ast s, Z3_ast index)
Retrieve from s the element positioned at position index. The function is under-specified if the inde...

Referenced by expr::operator[]().

◆ num_args()

unsigned num_args ( ) const
inline

Return the number of arguments in this application. This method assumes the expression is an application.

Precondition
is_app()

Definition at line 1140 of file z3++.h.

1140 { unsigned r = Z3_get_app_num_args(ctx(), *this); check_error(); return r; }
unsigned Z3_API Z3_get_app_num_args(Z3_context c, Z3_app a)
Return the number of argument of an application. If t is an constant, then the number of arguments is...

Referenced by AstRef::__bool__(), ExprRef::arg(), FuncEntry::arg_value(), FuncEntry::as_list(), ExprRef::children(), and expr::is_const().

◆ numerator()

expr numerator ( ) const
inline

Definition at line 1083 of file z3++.h.

1083  {
1084  assert(is_numeral());
1085  Z3_ast r = Z3_get_numerator(ctx(), m_ast);
1086  check_error();
1087  return expr(ctx(),r);
1088  }
Z3_ast Z3_API Z3_get_numerator(Z3_context c, Z3_ast a)
Return the numerator (as a numeral AST) of a numeral AST of sort Real.

Referenced by RatNumRef::numerator_as_long().

◆ operator Z3_app()

operator Z3_app ( ) const
inline

Definition at line 1125 of file z3++.h.

1125 { assert(is_app()); return reinterpret_cast<Z3_app>(m_ast); }

◆ operator[]() [1/2]

expr operator[] ( expr const &  index) const
inline

index operator defined on arrays and sequences.

Definition at line 1459 of file z3++.h.

1459  {
1460  assert(is_array() || is_seq());
1461  if (is_array()) {
1462  return select(*this, index);
1463  }
1464  return nth(index);
1465  }
bool is_array() const
Return true if this is a Array expression.
Definition: z3++.h:790
expr nth(expr const &index) const
Definition: z3++.h:1419
bool is_seq() const
Return true if this is a sequence expression.
Definition: z3++.h:802
expr select(expr const &a, expr const &i)
forward declarations
Definition: z3++.h:3550

◆ operator[]() [2/2]

expr operator[] ( expr_vector const &  index) const
inline

Definition at line 1467 of file z3++.h.

1467  {
1468  return select(*this, index);
1469  }

◆ repeat()

expr repeat ( unsigned  i)
inline

Definition at line 1333 of file z3++.h.

1333 { Z3_ast r = Z3_mk_repeat(ctx(), i, *this); ctx().check_error(); return expr(ctx(), r); }
Z3_ast Z3_API Z3_mk_repeat(Z3_context c, unsigned i, Z3_ast t1)
Repeat the given bit-vector up length i.

◆ replace()

expr replace ( expr const &  src,
expr const &  dst 
) const
inline

Definition at line 1396 of file z3++.h.

1396  {
1397  check_context(*this, src); check_context(src, dst);
1398  Z3_ast r = Z3_mk_seq_replace(ctx(), *this, src, dst);
1399  check_error();
1400  return expr(ctx(), r);
1401  }
Z3_ast Z3_API Z3_mk_seq_replace(Z3_context c, Z3_ast s, Z3_ast src, Z3_ast dst)
Replace the first occurrence of src with dst in s.

◆ rotate_left()

expr rotate_left ( unsigned  i)
inline

Definition at line 1331 of file z3++.h.

1331 { Z3_ast r = Z3_mk_rotate_left(ctx(), i, *this); ctx().check_error(); return expr(ctx(), r); }
Z3_ast Z3_API Z3_mk_rotate_left(Z3_context c, unsigned i, Z3_ast t1)
Rotate bits of t1 to the left i times.

◆ rotate_right()

expr rotate_right ( unsigned  i)
inline

Definition at line 1332 of file z3++.h.

1332 { Z3_ast r = Z3_mk_rotate_right(ctx(), i, *this); ctx().check_error(); return expr(ctx(), r); }
Z3_ast Z3_API Z3_mk_rotate_right(Z3_context c, unsigned i, Z3_ast t1)
Rotate bits of t1 to the right i times.

◆ simplify() [1/2]

expr simplify ( ) const
inline

Return a simplified version of this expression.

Definition at line 1474 of file z3++.h.

1474 { Z3_ast r = Z3_simplify(ctx(), m_ast); check_error(); return expr(ctx(), r); }
Z3_ast Z3_API Z3_simplify(Z3_context c, Z3_ast a)
Interface to simplifier.

◆ simplify() [2/2]

expr simplify ( params const &  p) const
inline

Return a simplified version of this expression. The parameter p is a set of parameters for the Z3 simplifier.

Definition at line 1478 of file z3++.h.

1478 { Z3_ast r = Z3_simplify_ex(ctx(), m_ast, p); check_error(); return expr(ctx(), r); }
Z3_ast Z3_API Z3_simplify_ex(Z3_context c, Z3_ast a, Z3_params p)
Interface to simplifier.

◆ stoi()

expr stoi ( ) const
inline

Definition at line 1430 of file z3++.h.

1430  {
1431  Z3_ast r = Z3_mk_str_to_int(ctx(), *this);
1432  check_error();
1433  return expr(ctx(), r);
1434  }
Z3_ast Z3_API Z3_mk_str_to_int(Z3_context c, Z3_ast s)
Convert string to integer.

◆ substitute() [1/2]

expr substitute ( expr_vector const &  dst)
inline

Apply substitution. Replace bound variables by expressions.

Definition at line 3795 of file z3++.h.

3795  {
3796  array<Z3_ast> _dst(dst.size());
3797  for (unsigned i = 0; i < dst.size(); ++i) {
3798  _dst[i] = dst[i];
3799  }
3800  Z3_ast r = Z3_substitute_vars(ctx(), m_ast, dst.size(), _dst.ptr());
3801  check_error();
3802  return expr(ctx(), r);
3803  }
Z3_ast Z3_API Z3_substitute_vars(Z3_context c, Z3_ast a, unsigned num_exprs, Z3_ast const to[])
Substitute the free variables in a with the expressions in to. For every i smaller than num_exprs,...

◆ substitute() [2/2]

expr substitute ( expr_vector const &  src,
expr_vector const &  dst 
)
inline

Apply substitution. Replace src expressions by dst.

Definition at line 3782 of file z3++.h.

3782  {
3783  assert(src.size() == dst.size());
3784  array<Z3_ast> _src(src.size());
3785  array<Z3_ast> _dst(dst.size());
3786  for (unsigned i = 0; i < src.size(); ++i) {
3787  _src[i] = src[i];
3788  _dst[i] = dst[i];
3789  }
3790  Z3_ast r = Z3_substitute(ctx(), m_ast, src.size(), _src.ptr(), _dst.ptr());
3791  check_error();
3792  return expr(ctx(), r);
3793  }
Z3_ast Z3_API Z3_substitute(Z3_context c, Z3_ast a, unsigned num_exprs, Z3_ast const from[], Z3_ast const to[])
Substitute every occurrence of from[i] in a with to[i], for i smaller than num_exprs....

◆ unit()

expr unit ( ) const
inline

Definition at line 1402 of file z3++.h.

1402  {
1403  Z3_ast r = Z3_mk_seq_unit(ctx(), *this);
1404  check_error();
1405  return expr(ctx(), r);
1406  }
Z3_ast Z3_API Z3_mk_seq_unit(Z3_context c, Z3_ast a)
Create a unit sequence of a.

Friends And Related Function Documentation

◆ abs

expr abs ( expr const &  a)
friend

Definition at line 1863 of file z3++.h.

1863  {
1864  Z3_ast r;
1865  if (a.is_int()) {
1866  expr zero = a.ctx().int_val(0);
1867  r = Z3_mk_ite(a.ctx(), Z3_mk_ge(a.ctx(), a, zero), a, -a);
1868  }
1869  else if (a.is_real()) {
1870  expr zero = a.ctx().real_val(0);
1871  r = Z3_mk_ite(a.ctx(), Z3_mk_ge(a.ctx(), a, zero), a, -a);
1872  }
1873  else {
1874  r = Z3_mk_fpa_abs(a.ctx(), a);
1875  }
1876  a.check_error();
1877  return expr(a.ctx(), r);
1878  }
Z3_ast Z3_API Z3_mk_ge(Z3_context c, Z3_ast t1, Z3_ast t2)
Create greater than or equal to.
Z3_ast Z3_API Z3_mk_ite(Z3_context c, Z3_ast t1, Z3_ast t2, Z3_ast t3)
Create an AST node representing an if-then-else: ite(t1, t2, t3).
Z3_ast Z3_API Z3_mk_fpa_abs(Z3_context c, Z3_ast t)
Floating-point absolute value.

◆ atleast

expr atleast ( expr_vector const &  es,
unsigned  bound 
)
friend

Definition at line 2294 of file z3++.h.

2294  {
2295  assert(es.size() > 0);
2296  context& ctx = es[0].ctx();
2297  array<Z3_ast> _es(es);
2298  Z3_ast r = Z3_mk_atleast(ctx, _es.size(), _es.ptr(), bound);
2299  ctx.check_error();
2300  return expr(ctx, r);
2301  }
Z3_ast Z3_API Z3_mk_atleast(Z3_context c, unsigned num_args, Z3_ast const args[], unsigned k)
Pseudo-Boolean relations.

◆ atmost

expr atmost ( expr_vector const &  es,
unsigned  bound 
)
friend

Definition at line 2286 of file z3++.h.

2286  {
2287  assert(es.size() > 0);
2288  context& ctx = es[0].ctx();
2289  array<Z3_ast> _es(es);
2290  Z3_ast r = Z3_mk_atmost(ctx, _es.size(), _es.ptr(), bound);
2291  ctx.check_error();
2292  return expr(ctx, r);
2293  }
Z3_ast Z3_API Z3_mk_atmost(Z3_context c, unsigned num_args, Z3_ast const args[], unsigned k)
Pseudo-Boolean relations.

◆ bv2int

expr bv2int ( expr const &  a,
bool  is_signed 
)
friend

bit-vector and integer conversions.

Definition at line 2097 of file z3++.h.

2097 { Z3_ast r = Z3_mk_bv2int(a.ctx(), a, is_signed); a.check_error(); return expr(a.ctx(), r); }
Z3_ast Z3_API Z3_mk_bv2int(Z3_context c, Z3_ast t1, bool is_signed)
Create an integer from the bit-vector argument t1. If is_signed is false, then the bit-vector t1 is t...

◆ bvadd_no_overflow

expr bvadd_no_overflow ( expr const &  a,
expr const &  b,
bool  is_signed 
)
friend

bit-vector overflow/underflow checks

Definition at line 2103 of file z3++.h.

2103  {
2104  check_context(a, b); Z3_ast r = Z3_mk_bvadd_no_overflow(a.ctx(), a, b, is_signed); a.check_error(); return expr(a.ctx(), r);
2105  }
Z3_ast Z3_API Z3_mk_bvadd_no_overflow(Z3_context c, Z3_ast t1, Z3_ast t2, bool is_signed)
Create a predicate that checks that the bit-wise addition of t1 and t2 does not overflow.

◆ bvadd_no_underflow

expr bvadd_no_underflow ( expr const &  a,
expr const &  b 
)
friend

Definition at line 2106 of file z3++.h.

2106  {
2107  check_context(a, b); Z3_ast r = Z3_mk_bvadd_no_underflow(a.ctx(), a, b); a.check_error(); return expr(a.ctx(), r);
2108  }
Z3_ast Z3_API Z3_mk_bvadd_no_underflow(Z3_context c, Z3_ast t1, Z3_ast t2)
Create a predicate that checks that the bit-wise signed addition of t1 and t2 does not underflow.

◆ bvmul_no_overflow

expr bvmul_no_overflow ( expr const &  a,
expr const &  b,
bool  is_signed 
)
friend

Definition at line 2121 of file z3++.h.

2121  {
2122  check_context(a, b); Z3_ast r = Z3_mk_bvmul_no_overflow(a.ctx(), a, b, is_signed); a.check_error(); return expr(a.ctx(), r);
2123  }
Z3_ast Z3_API Z3_mk_bvmul_no_overflow(Z3_context c, Z3_ast t1, Z3_ast t2, bool is_signed)
Create a predicate that checks that the bit-wise multiplication of t1 and t2 does not overflow.

◆ bvmul_no_underflow

expr bvmul_no_underflow ( expr const &  a,
expr const &  b 
)
friend

Definition at line 2124 of file z3++.h.

2124  {
2125  check_context(a, b); Z3_ast r = Z3_mk_bvmul_no_underflow(a.ctx(), a, b); a.check_error(); return expr(a.ctx(), r);
2126  }
Z3_ast Z3_API Z3_mk_bvmul_no_underflow(Z3_context c, Z3_ast t1, Z3_ast t2)
Create a predicate that checks that the bit-wise signed multiplication of t1 and t2 does not underflo...

◆ bvneg_no_overflow

expr bvneg_no_overflow ( expr const &  a)
friend

Definition at line 2118 of file z3++.h.

2118  {
2119  Z3_ast r = Z3_mk_bvneg_no_overflow(a.ctx(), a); a.check_error(); return expr(a.ctx(), r);
2120  }
Z3_ast Z3_API Z3_mk_bvneg_no_overflow(Z3_context c, Z3_ast t1)
Check that bit-wise negation does not overflow when t1 is interpreted as a signed bit-vector.

◆ bvredand

expr bvredand ( expr const &  a)
friend

Definition at line 1857 of file z3++.h.

1857  {
1858  assert(a.is_bv());
1859  Z3_ast r = Z3_mk_bvredor(a.ctx(), a);
1860  a.check_error();
1861  return expr(a.ctx(), r);
1862  }
Z3_ast Z3_API Z3_mk_bvredor(Z3_context c, Z3_ast t1)
Take disjunction of bits in vector, return vector of length 1.

◆ bvredor

expr bvredor ( expr const &  a)
friend

Definition at line 1851 of file z3++.h.

1851  {
1852  assert(a.is_bv());
1853  Z3_ast r = Z3_mk_bvredor(a.ctx(), a);
1854  a.check_error();
1855  return expr(a.ctx(), r);
1856  }

◆ bvsdiv_no_overflow

expr bvsdiv_no_overflow ( expr const &  a,
expr const &  b 
)
friend

Definition at line 2115 of file z3++.h.

2115  {
2116  check_context(a, b); Z3_ast r = Z3_mk_bvsdiv_no_overflow(a.ctx(), a, b); a.check_error(); return expr(a.ctx(), r);
2117  }
Z3_ast Z3_API Z3_mk_bvsdiv_no_overflow(Z3_context c, Z3_ast t1, Z3_ast t2)
Create a predicate that checks that the bit-wise signed division of t1 and t2 does not overflow.

◆ bvsub_no_overflow

expr bvsub_no_overflow ( expr const &  a,
expr const &  b 
)
friend

Definition at line 2109 of file z3++.h.

2109  {
2110  check_context(a, b); Z3_ast r = Z3_mk_bvsub_no_overflow(a.ctx(), a, b); a.check_error(); return expr(a.ctx(), r);
2111  }
Z3_ast Z3_API Z3_mk_bvsub_no_overflow(Z3_context c, Z3_ast t1, Z3_ast t2)
Create a predicate that checks that the bit-wise signed subtraction of t1 and t2 does not overflow.

◆ bvsub_no_underflow

expr bvsub_no_underflow ( expr const &  a,
expr const &  b,
bool  is_signed 
)
friend

Definition at line 2112 of file z3++.h.

2112  {
2113  check_context(a, b); Z3_ast r = Z3_mk_bvsub_no_underflow(a.ctx(), a, b, is_signed); a.check_error(); return expr(a.ctx(), r);
2114  }
Z3_ast Z3_API Z3_mk_bvsub_no_underflow(Z3_context c, Z3_ast t1, Z3_ast t2, bool is_signed)
Create a predicate that checks that the bit-wise subtraction of t1 and t2 does not underflow.

◆ concat [1/2]

expr concat ( expr const &  a,
expr const &  b 
)
friend

Definition at line 2320 of file z3++.h.

2320  {
2321  check_context(a, b);
2322  Z3_ast r;
2323  if (Z3_is_seq_sort(a.ctx(), a.get_sort())) {
2324  Z3_ast _args[2] = { a, b };
2325  r = Z3_mk_seq_concat(a.ctx(), 2, _args);
2326  }
2327  else if (Z3_is_re_sort(a.ctx(), a.get_sort())) {
2328  Z3_ast _args[2] = { a, b };
2329  r = Z3_mk_re_concat(a.ctx(), 2, _args);
2330  }
2331  else {
2332  r = Z3_mk_concat(a.ctx(), a, b);
2333  }
2334  a.ctx().check_error();
2335  return expr(a.ctx(), r);
2336  }
bool Z3_API Z3_is_seq_sort(Z3_context c, Z3_sort s)
Check if s is a sequence sort.
Z3_ast Z3_API Z3_mk_seq_concat(Z3_context c, unsigned n, Z3_ast const args[])
Concatenate sequences.
Z3_ast Z3_API Z3_mk_re_concat(Z3_context c, unsigned n, Z3_ast const args[])
Create the concatenation of the regular languages.
Z3_ast Z3_API Z3_mk_concat(Z3_context c, Z3_ast t1, Z3_ast t2)
Concatenate the given bit-vectors.
bool Z3_API Z3_is_re_sort(Z3_context c, Z3_sort s)
Check if s is a regular expression sort.

◆ concat [2/2]

expr concat ( expr_vector const &  args)
friend

Definition at line 2338 of file z3++.h.

2338  {
2339  Z3_ast r;
2340  assert(args.size() > 0);
2341  if (args.size() == 1) {
2342  return args[0];
2343  }
2344  context& ctx = args[0].ctx();
2345  array<Z3_ast> _args(args);
2346  if (Z3_is_seq_sort(ctx, args[0].get_sort())) {
2347  r = Z3_mk_seq_concat(ctx, _args.size(), _args.ptr());
2348  }
2349  else if (Z3_is_re_sort(ctx, args[0].get_sort())) {
2350  r = Z3_mk_re_concat(ctx, _args.size(), _args.ptr());
2351  }
2352  else {
2353  r = _args[args.size()-1];
2354  for (unsigned i = args.size()-1; i > 0; ) {
2355  --i;
2356  r = Z3_mk_concat(ctx, _args[i], r);
2357  ctx.check_error();
2358  }
2359  }
2360  ctx.check_error();
2361  return expr(ctx, r);
2362  }

◆ distinct

expr distinct ( expr_vector const &  args)
friend

Definition at line 2311 of file z3++.h.

2311  {
2312  assert(args.size() > 0);
2313  context& ctx = args[0].ctx();
2314  array<Z3_ast> _args(args);
2315  Z3_ast r = Z3_mk_distinct(ctx, _args.size(), _args.ptr());
2316  ctx.check_error();
2317  return expr(ctx, r);
2318  }
Z3_ast Z3_API Z3_mk_distinct(Z3_context c, unsigned num_args, Z3_ast const args[])
Create an AST node representing distinct(args[0], ..., args[num_args-1]).

◆ fma

expr fma ( expr const &  a,
expr const &  b,
expr const &  c,
expr const &  rm 
)
friend

FloatingPoint fused multiply-add.

Definition at line 1895 of file z3++.h.

1895  {
1896  check_context(a, b); check_context(a, c); check_context(a, rm);
1897  assert(a.is_fpa() && b.is_fpa() && c.is_fpa());
1898  Z3_ast r = Z3_mk_fpa_fma(a.ctx(), rm, a, b, c);
1899  a.check_error();
1900  return expr(a.ctx(), r);
1901  }
Z3_ast Z3_API Z3_mk_fpa_fma(Z3_context c, Z3_ast rm, Z3_ast t1, Z3_ast t2, Z3_ast t3)
Floating-point fused multiply-add.

◆ fp_eq

expr fp_eq ( expr const &  a,
expr const &  b 
)
friend

Definition at line 1886 of file z3++.h.

1886  {
1887  check_context(a, b);
1888  assert(a.is_fpa());
1889  Z3_ast r = Z3_mk_fpa_eq(a.ctx(), a, b);
1890  a.check_error();
1891  return expr(a.ctx(), r);
1892  }
Z3_ast Z3_API Z3_mk_fpa_eq(Z3_context c, Z3_ast t1, Z3_ast t2)
Floating-point equality.

◆ fpa_fp

expr fpa_fp ( expr const &  sgn,
expr const &  exp,
expr const &  sig 
)
friend

Create an expression of FloatingPoint sort from three bit-vector expressions.

Definition at line 1903 of file z3++.h.

1903  {
1904  check_context(sgn, exp); check_context(exp, sig);
1905  assert(sgn.is_bv() && exp.is_bv() && sig.is_bv());
1906  Z3_ast r = Z3_mk_fpa_fp(sgn.ctx(), sgn, exp, sig);
1907  sgn.check_error();
1908  return expr(sgn.ctx(), r);
1909  }
Z3_ast Z3_API Z3_mk_fpa_fp(Z3_context c, Z3_ast sgn, Z3_ast exp, Z3_ast sig)
Create an expression of FloatingPoint sort from three bit-vector expressions.

◆ fpa_to_fpa

expr fpa_to_fpa ( expr const &  t,
sort  s 
)
friend

Conversion of a floating-point term into another floating-point.

Definition at line 1939 of file z3++.h.

1939  {
1940  assert(t.is_fpa());
1941  Z3_ast r = Z3_mk_fpa_to_fp_float(t.ctx(), t.ctx().fpa_rounding_mode(), t, s);
1942  t.check_error();
1943  return expr(t.ctx(), r);
1944  }
Z3_ast Z3_API Z3_mk_fpa_to_fp_float(Z3_context c, Z3_ast rm, Z3_ast t, Z3_sort s)
Conversion of a FloatingPoint term into another term of different FloatingPoint sort.

◆ fpa_to_sbv

expr fpa_to_sbv ( expr const &  t,
unsigned  sz 
)
friend

Conversion of a floating-point term into a signed bit-vector.

Definition at line 1911 of file z3++.h.

1911  {
1912  assert(t.is_fpa());
1913  Z3_ast r = Z3_mk_fpa_to_sbv(t.ctx(), t.ctx().fpa_rounding_mode(), t, sz);
1914  t.check_error();
1915  return expr(t.ctx(), r);
1916  }
Z3_ast Z3_API Z3_mk_fpa_to_sbv(Z3_context c, Z3_ast rm, Z3_ast t, unsigned sz)
Conversion of a floating-point term into a signed bit-vector.

◆ fpa_to_ubv

expr fpa_to_ubv ( expr const &  t,
unsigned  sz 
)
friend

Conversion of a floating-point term into an unsigned bit-vector.

Definition at line 1918 of file z3++.h.

1918  {
1919  assert(t.is_fpa());
1920  Z3_ast r = Z3_mk_fpa_to_ubv(t.ctx(), t.ctx().fpa_rounding_mode(), t, sz);
1921  t.check_error();
1922  return expr(t.ctx(), r);
1923  }
Z3_ast Z3_API Z3_mk_fpa_to_ubv(Z3_context c, Z3_ast rm, Z3_ast t, unsigned sz)
Conversion of a floating-point term into an unsigned bit-vector.

◆ implies [1/3]

expr implies ( bool  a,
expr const &  b 
)
friend

Definition at line 1504 of file z3++.h.

1504 { return implies(b.ctx().bool_val(a), b); }
friend expr implies(expr const &a, expr const &b)
Definition: z3++.h:1499

◆ implies [2/3]

expr implies ( expr const &  a,
bool  b 
)
friend

Definition at line 1503 of file z3++.h.

1503 { return implies(a, a.ctx().bool_val(b)); }

◆ implies [3/3]

expr implies ( expr const &  a,
expr const &  b 
)
friend

Definition at line 1499 of file z3++.h.

1499  {
1500  assert(a.is_bool() && b.is_bool());
1501  _Z3_MK_BIN_(a, b, Z3_mk_implies);
1502  }
#define _Z3_MK_BIN_(a, b, binop)
Definition: z3++.h:1492
Z3_ast Z3_API Z3_mk_implies(Z3_context c, Z3_ast t1, Z3_ast t2)
Create an AST node representing t1 implies t2.

◆ int2bv

expr int2bv ( unsigned  n,
expr const &  a 
)
friend

Definition at line 2098 of file z3++.h.

2098 { Z3_ast r = Z3_mk_int2bv(a.ctx(), n, a); a.check_error(); return expr(a.ctx(), r); }
Z3_ast Z3_API Z3_mk_int2bv(Z3_context c, unsigned n, Z3_ast t1)
Create an n bit bit-vector from the integer argument t1.

◆ is_int

expr is_int ( expr const &  e)
friend

Definition at line 1547 of file z3++.h.

1547 { _Z3_MK_UN_(e, Z3_mk_is_int); }
#define _Z3_MK_UN_(a, mkun)
Definition: z3++.h:1539
Z3_ast Z3_API Z3_mk_is_int(Z3_context c, Z3_ast t1)
Check if a real number is an integer.

Referenced by IntNumRef::as_long(), and ArithSortRef::subsort().

◆ ite

expr ite ( expr const &  c,
expr const &  t,
expr const &  e 
)
friend

Create the if-then-else expression ite(c, t, e)

Precondition
c.is_bool()

Definition at line 1958 of file z3++.h.

1958  {
1959  check_context(c, t); check_context(c, e);
1960  assert(c.is_bool());
1961  Z3_ast r = Z3_mk_ite(c.ctx(), c, t, e);
1962  c.check_error();
1963  return expr(c.ctx(), r);
1964  }

◆ max

expr max ( expr const &  a,
expr const &  b 
)
friend

Definition at line 1836 of file z3++.h.

1836  {
1837  check_context(a, b);
1838  Z3_ast r;
1839  if (a.is_arith()) {
1840  r = Z3_mk_ite(a.ctx(), Z3_mk_ge(a.ctx(), a, b), a, b);
1841  }
1842  else if (a.is_bv()) {
1843  r = Z3_mk_ite(a.ctx(), Z3_mk_bvuge(a.ctx(), a, b), a, b);
1844  }
1845  else {
1846  assert(a.is_fpa());
1847  r = Z3_mk_fpa_max(a.ctx(), a, b);
1848  }
1849  return expr(a.ctx(), r);
1850  }
Z3_ast Z3_API Z3_mk_bvuge(Z3_context c, Z3_ast t1, Z3_ast t2)
Unsigned greater than or equal to.
Z3_ast Z3_API Z3_mk_fpa_max(Z3_context c, Z3_ast t1, Z3_ast t2)
Maximum of floating-point numbers.

◆ min

expr min ( expr const &  a,
expr const &  b 
)
friend

Definition at line 1821 of file z3++.h.

1821  {
1822  check_context(a, b);
1823  Z3_ast r;
1824  if (a.is_arith()) {
1825  r = Z3_mk_ite(a.ctx(), Z3_mk_ge(a.ctx(), a, b), b, a);
1826  }
1827  else if (a.is_bv()) {
1828  r = Z3_mk_ite(a.ctx(), Z3_mk_bvuge(a.ctx(), a, b), b, a);
1829  }
1830  else {
1831  assert(a.is_fpa());
1832  r = Z3_mk_fpa_min(a.ctx(), a, b);
1833  }
1834  return expr(a.ctx(), r);
1835  }
Z3_ast Z3_API Z3_mk_fpa_min(Z3_context c, Z3_ast t1, Z3_ast t2)
Minimum of floating-point numbers.

◆ mk_and

expr mk_and ( expr_vector const &  args)
friend

Definition at line 2370 of file z3++.h.

2370  {
2371  array<Z3_ast> _args(args);
2372  Z3_ast r = Z3_mk_and(args.ctx(), _args.size(), _args.ptr());
2373  args.check_error();
2374  return expr(args.ctx(), r);
2375  }
Z3_ast Z3_API Z3_mk_and(Z3_context c, unsigned num_args, Z3_ast const args[])
Create an AST node representing args[0] and ... and args[num_args-1].

◆ mk_or

expr mk_or ( expr_vector const &  args)
friend

Definition at line 2364 of file z3++.h.

2364  {
2365  array<Z3_ast> _args(args);
2366  Z3_ast r = Z3_mk_or(args.ctx(), _args.size(), _args.ptr());
2367  args.check_error();
2368  return expr(args.ctx(), r);
2369  }
Z3_ast Z3_API Z3_mk_or(Z3_context c, unsigned num_args, Z3_ast const args[])
Create an AST node representing args[0] or ... or args[num_args-1].

◆ mod [1/3]

expr mod ( expr const &  a,
expr const &  b 
)
friend

Definition at line 1511 of file z3++.h.

1511  {
1512  if (a.is_bv()) {
1513  _Z3_MK_BIN_(a, b, Z3_mk_bvsmod);
1514  }
1515  else {
1516  _Z3_MK_BIN_(a, b, Z3_mk_mod);
1517  }
1518  }
Z3_ast Z3_API Z3_mk_mod(Z3_context c, Z3_ast arg1, Z3_ast arg2)
Create an AST node representing arg1 mod arg2.
Z3_ast Z3_API Z3_mk_bvsmod(Z3_context c, Z3_ast t1, Z3_ast t2)
Two's complement signed remainder (sign follows divisor).

◆ mod [2/3]

expr mod ( expr const &  a,
int  b 
)
friend

Definition at line 1519 of file z3++.h.

1519 { return mod(a, a.ctx().num_val(b, a.get_sort())); }
friend expr mod(expr const &a, expr const &b)
Definition: z3++.h:1511

◆ mod [3/3]

expr mod ( int  a,
expr const &  b 
)
friend

Definition at line 1520 of file z3++.h.

1520 { return mod(b.ctx().num_val(a, b.get_sort()), b); }

◆ nand

expr nand ( expr const &  a,
expr const &  b 
)
friend

Definition at line 1818 of file z3++.h.

1818 { if (a.is_bool()) return !(a && b); check_context(a, b); Z3_ast r = Z3_mk_bvnand(a.ctx(), a, b); return expr(a.ctx(), r); }
Z3_ast Z3_API Z3_mk_bvnand(Z3_context c, Z3_ast t1, Z3_ast t2)
Bitwise nand.

◆ nor

expr nor ( expr const &  a,
expr const &  b 
)
friend

Definition at line 1819 of file z3++.h.

1819 { if (a.is_bool()) return !(a || b); check_context(a, b); Z3_ast r = Z3_mk_bvnor(a.ctx(), a, b); return expr(a.ctx(), r); }
Z3_ast Z3_API Z3_mk_bvnor(Z3_context c, Z3_ast t1, Z3_ast t2)
Bitwise nor.

◆ operator!

expr operator! ( expr const &  a)
friend

Return an expression representing not(a).

Precondition
a.is_bool()

Definition at line 1545 of file z3++.h.

1545 { assert(a.is_bool()); _Z3_MK_UN_(a, Z3_mk_not); }
Z3_ast Z3_API Z3_mk_not(Z3_context c, Z3_ast a)
Create an AST node representing not(a).

◆ operator!= [1/3]

expr operator!= ( expr const &  a,
expr const &  b 
)
friend

Definition at line 1587 of file z3++.h.

1587  {
1588  check_context(a, b);
1589  Z3_ast args[2] = { a, b };
1590  Z3_ast r = Z3_mk_distinct(a.ctx(), 2, args);
1591  a.check_error();
1592  return expr(a.ctx(), r);
1593  }

◆ operator!= [2/3]

expr operator!= ( expr const &  a,
int  b 
)
friend

Definition at line 1594 of file z3++.h.

1594 { assert(a.is_arith() || a.is_bv() || a.is_fpa()); return a != a.ctx().num_val(b, a.get_sort()); }

◆ operator!= [3/3]

expr operator!= ( int  a,
expr const &  b 
)
friend

Definition at line 1595 of file z3++.h.

1595 { assert(b.is_arith() || b.is_bv() || b.is_fpa()); return b.ctx().num_val(a, b.get_sort()) != b; }

◆ operator& [1/3]

expr operator& ( expr const &  a,
expr const &  b 
)
friend

Definition at line 1806 of file z3++.h.

1806 { if (a.is_bool()) return a && b; check_context(a, b); Z3_ast r = Z3_mk_bvand(a.ctx(), a, b); return expr(a.ctx(), r); }
Z3_ast Z3_API Z3_mk_bvand(Z3_context c, Z3_ast t1, Z3_ast t2)
Bitwise and.

◆ operator& [2/3]

expr operator& ( expr const &  a,
int  b 
)
friend

Definition at line 1807 of file z3++.h.

1807 { return a & a.ctx().num_val(b, a.get_sort()); }

◆ operator& [3/3]

expr operator& ( int  a,
expr const &  b 
)
friend

Definition at line 1808 of file z3++.h.

1808 { return b.ctx().num_val(a, b.get_sort()) & b; }

◆ operator&& [1/3]

expr operator&& ( bool  a,
expr const &  b 
)
friend

Return an expression representing a and b. The C++ Boolean value a is automatically converted into a Z3 Boolean constant.

Precondition
b.is_bool()

Definition at line 1561 of file z3++.h.

1561 { return b.ctx().bool_val(a) && b; }

◆ operator&& [2/3]

expr operator&& ( expr const &  a,
bool  b 
)
friend

Return an expression representing a and b. The C++ Boolean value b is automatically converted into a Z3 Boolean constant.

Precondition
a.is_bool()

Definition at line 1560 of file z3++.h.

1560 { return a && a.ctx().bool_val(b); }

◆ operator&& [3/3]

expr operator&& ( expr const &  a,
expr const &  b 
)
friend

Return an expression representing a and b.

Precondition
a.is_bool()
b.is_bool()

Definition at line 1551 of file z3++.h.

1551  {
1552  check_context(a, b);
1553  assert(a.is_bool() && b.is_bool());
1554  Z3_ast args[2] = { a, b };
1555  Z3_ast r = Z3_mk_and(a.ctx(), 2, args);
1556  a.check_error();
1557  return expr(a.ctx(), r);
1558  }

◆ operator* [1/3]

expr operator* ( expr const &  a,
expr const &  b 
)
friend

Definition at line 1629 of file z3++.h.

1629  {
1630  check_context(a, b);
1631  Z3_ast r = 0;
1632  if (a.is_arith() && b.is_arith()) {
1633  Z3_ast args[2] = { a, b };
1634  r = Z3_mk_mul(a.ctx(), 2, args);
1635  }
1636  else if (a.is_bv() && b.is_bv()) {
1637  r = Z3_mk_bvmul(a.ctx(), a, b);
1638  }
1639  else if (a.is_fpa() && b.is_fpa()) {
1640  r = Z3_mk_fpa_mul(a.ctx(), a.ctx().fpa_rounding_mode(), a, b);
1641  }
1642  else {
1643  // operator is not supported by given arguments.
1644  assert(false);
1645  }
1646  a.check_error();
1647  return expr(a.ctx(), r);
1648  }
Z3_ast Z3_API Z3_mk_mul(Z3_context c, unsigned num_args, Z3_ast const args[])
Create an AST node representing args[0] * ... * args[num_args-1].
Z3_ast Z3_API Z3_mk_bvmul(Z3_context c, Z3_ast t1, Z3_ast t2)
Standard two's complement multiplication.
Z3_ast Z3_API Z3_mk_fpa_mul(Z3_context c, Z3_ast rm, Z3_ast t1, Z3_ast t2)
Floating-point multiplication.

◆ operator* [2/3]

expr operator* ( expr const &  a,
int  b 
)
friend

Definition at line 1649 of file z3++.h.

1649 { return a * a.ctx().num_val(b, a.get_sort()); }

◆ operator* [3/3]

expr operator* ( int  a,
expr const &  b 
)
friend

Definition at line 1650 of file z3++.h.

1650 { return b.ctx().num_val(a, b.get_sort()) * b; }

◆ operator+ [1/3]

expr operator+ ( expr const &  a,
expr const &  b 
)
friend

Definition at line 1599 of file z3++.h.

1599  {
1600  check_context(a, b);
1601  Z3_ast r = 0;
1602  if (a.is_arith() && b.is_arith()) {
1603  Z3_ast args[2] = { a, b };
1604  r = Z3_mk_add(a.ctx(), 2, args);
1605  }
1606  else if (a.is_bv() && b.is_bv()) {
1607  r = Z3_mk_bvadd(a.ctx(), a, b);
1608  }
1609  else if (a.is_seq() && b.is_seq()) {
1610  return concat(a, b);
1611  }
1612  else if (a.is_re() && b.is_re()) {
1613  Z3_ast _args[2] = { a, b };
1614  r = Z3_mk_re_union(a.ctx(), 2, _args);
1615  }
1616  else if (a.is_fpa() && b.is_fpa()) {
1617  r = Z3_mk_fpa_add(a.ctx(), a.ctx().fpa_rounding_mode(), a, b);
1618  }
1619  else {
1620  // operator is not supported by given arguments.
1621  assert(false);
1622  }
1623  a.check_error();
1624  return expr(a.ctx(), r);
1625  }
friend expr concat(expr const &a, expr const &b)
Definition: z3++.h:2320
Z3_ast Z3_API Z3_mk_re_union(Z3_context c, unsigned n, Z3_ast const args[])
Create the union of the regular languages.
Z3_ast Z3_API Z3_mk_bvadd(Z3_context c, Z3_ast t1, Z3_ast t2)
Standard two's complement addition.
Z3_ast Z3_API Z3_mk_add(Z3_context c, unsigned num_args, Z3_ast const args[])
Create an AST node representing args[0] + ... + args[num_args-1].
Z3_ast Z3_API Z3_mk_fpa_add(Z3_context c, Z3_ast rm, Z3_ast t1, Z3_ast t2)
Floating-point addition.

◆ operator+ [2/3]

expr operator+ ( expr const &  a,
int  b 
)
friend

Definition at line 1626 of file z3++.h.

1626 { return a + a.ctx().num_val(b, a.get_sort()); }

◆ operator+ [3/3]

expr operator+ ( int  a,
expr const &  b 
)
friend

Definition at line 1627 of file z3++.h.

1627 { return b.ctx().num_val(a, b.get_sort()) + b; }

◆ operator- [1/4]

expr operator- ( expr const &  a)
friend

Definition at line 1695 of file z3++.h.

1695  {
1696  Z3_ast r = 0;
1697  if (a.is_arith()) {
1698  r = Z3_mk_unary_minus(a.ctx(), a);
1699  }
1700  else if (a.is_bv()) {
1701  r = Z3_mk_bvneg(a.ctx(), a);
1702  }
1703  else if (a.is_fpa()) {
1704  r = Z3_mk_fpa_neg(a.ctx(), a);
1705  }
1706  else {
1707  // operator is not supported by given arguments.
1708  assert(false);
1709  }
1710  a.check_error();
1711  return expr(a.ctx(), r);
1712  }
Z3_ast Z3_API Z3_mk_unary_minus(Z3_context c, Z3_ast arg)
Create an AST node representing - arg.
Z3_ast Z3_API Z3_mk_bvneg(Z3_context c, Z3_ast t1)
Standard two's complement unary minus.
Z3_ast Z3_API Z3_mk_fpa_neg(Z3_context c, Z3_ast t)
Floating-point negation.

◆ operator- [2/4]

expr operator- ( expr const &  a,
expr const &  b 
)
friend

Definition at line 1714 of file z3++.h.

1714  {
1715  check_context(a, b);
1716  Z3_ast r = 0;
1717  if (a.is_arith() && b.is_arith()) {
1718  Z3_ast args[2] = { a, b };
1719  r = Z3_mk_sub(a.ctx(), 2, args);
1720  }
1721  else if (a.is_bv() && b.is_bv()) {
1722  r = Z3_mk_bvsub(a.ctx(), a, b);
1723  }
1724  else if (a.is_fpa() && b.is_fpa()) {
1725  r = Z3_mk_fpa_sub(a.ctx(), a.ctx().fpa_rounding_mode(), a, b);
1726  }
1727  else {
1728  // operator is not supported by given arguments.
1729  assert(false);
1730  }
1731  a.check_error();
1732  return expr(a.ctx(), r);
1733  }
Z3_ast Z3_API Z3_mk_bvsub(Z3_context c, Z3_ast t1, Z3_ast t2)
Standard two's complement subtraction.
Z3_ast Z3_API Z3_mk_sub(Z3_context c, unsigned num_args, Z3_ast const args[])
Create an AST node representing args[0] - ... - args[num_args - 1].
Z3_ast Z3_API Z3_mk_fpa_sub(Z3_context c, Z3_ast rm, Z3_ast t1, Z3_ast t2)
Floating-point subtraction.

◆ operator- [3/4]

expr operator- ( expr const &  a,
int  b 
)
friend

Definition at line 1734 of file z3++.h.

1734 { return a - a.ctx().num_val(b, a.get_sort()); }

◆ operator- [4/4]

expr operator- ( int  a,
expr const &  b 
)
friend

Definition at line 1735 of file z3++.h.

1735 { return b.ctx().num_val(a, b.get_sort()) - b; }

◆ operator/ [1/3]

expr operator/ ( expr const &  a,
expr const &  b 
)
friend

Definition at line 1673 of file z3++.h.

1673  {
1674  check_context(a, b);
1675  Z3_ast r = 0;
1676  if (a.is_arith() && b.is_arith()) {
1677  r = Z3_mk_div(a.ctx(), a, b);
1678  }
1679  else if (a.is_bv() && b.is_bv()) {
1680  r = Z3_mk_bvsdiv(a.ctx(), a, b);
1681  }
1682  else if (a.is_fpa() && b.is_fpa()) {
1683  r = Z3_mk_fpa_div(a.ctx(), a.ctx().fpa_rounding_mode(), a, b);
1684  }
1685  else {
1686  // operator is not supported by given arguments.
1687  assert(false);
1688  }
1689  a.check_error();
1690  return expr(a.ctx(), r);
1691  }
Z3_ast Z3_API Z3_mk_div(Z3_context c, Z3_ast arg1, Z3_ast arg2)
Create an AST node representing arg1 div arg2.
Z3_ast Z3_API Z3_mk_bvsdiv(Z3_context c, Z3_ast t1, Z3_ast t2)
Two's complement signed division.
Z3_ast Z3_API Z3_mk_fpa_div(Z3_context c, Z3_ast rm, Z3_ast t1, Z3_ast t2)
Floating-point division.

◆ operator/ [2/3]

expr operator/ ( expr const &  a,
int  b 
)
friend

Definition at line 1692 of file z3++.h.

1692 { return a / a.ctx().num_val(b, a.get_sort()); }

◆ operator/ [3/3]

expr operator/ ( int  a,
expr const &  b 
)
friend

Definition at line 1693 of file z3++.h.

1693 { return b.ctx().num_val(a, b.get_sort()) / b; }

◆ operator< [1/3]

expr operator< ( expr const &  a,
expr const &  b 
)
friend

Definition at line 1762 of file z3++.h.

1762  {
1763  check_context(a, b);
1764  Z3_ast r = 0;
1765  if (a.is_arith() && b.is_arith()) {
1766  r = Z3_mk_lt(a.ctx(), a, b);
1767  }
1768  else if (a.is_bv() && b.is_bv()) {
1769  r = Z3_mk_bvslt(a.ctx(), a, b);
1770  }
1771  else if (a.is_fpa() && b.is_fpa()) {
1772  r = Z3_mk_fpa_lt(a.ctx(), a, b);
1773  }
1774  else {
1775  // operator is not supported by given arguments.
1776  assert(false);
1777  }
1778  a.check_error();
1779  return expr(a.ctx(), r);
1780  }
Z3_ast Z3_API Z3_mk_bvslt(Z3_context c, Z3_ast t1, Z3_ast t2)
Two's complement signed less than.
Z3_ast Z3_API Z3_mk_lt(Z3_context c, Z3_ast t1, Z3_ast t2)
Create less than.
Z3_ast Z3_API Z3_mk_fpa_lt(Z3_context c, Z3_ast t1, Z3_ast t2)
Floating-point less than.

◆ operator< [2/3]

expr operator< ( expr const &  a,
int  b 
)
friend

Definition at line 1781 of file z3++.h.

1781 { return a < a.ctx().num_val(b, a.get_sort()); }

◆ operator< [3/3]

expr operator< ( int  a,
expr const &  b 
)
friend

Definition at line 1782 of file z3++.h.

1782 { return b.ctx().num_val(a, b.get_sort()) < b; }

◆ operator<= [1/3]

expr operator<= ( expr const &  a,
expr const &  b 
)
friend

Definition at line 1737 of file z3++.h.

1737  {
1738  check_context(a, b);
1739  Z3_ast r = 0;
1740  if (a.is_arith() && b.is_arith()) {
1741  r = Z3_mk_le(a.ctx(), a, b);
1742  }
1743  else if (a.is_bv() && b.is_bv()) {
1744  r = Z3_mk_bvsle(a.ctx(), a, b);
1745  }
1746  else if (a.is_fpa() && b.is_fpa()) {
1747  r = Z3_mk_fpa_leq(a.ctx(), a, b);
1748  }
1749  else {
1750  // operator is not supported by given arguments.
1751  assert(false);
1752  }
1753  a.check_error();
1754  return expr(a.ctx(), r);
1755  }
Z3_ast Z3_API Z3_mk_bvsle(Z3_context c, Z3_ast t1, Z3_ast t2)
Two's complement signed less than or equal to.
Z3_ast Z3_API Z3_mk_le(Z3_context c, Z3_ast t1, Z3_ast t2)
Create less than or equal to.
Z3_ast Z3_API Z3_mk_fpa_leq(Z3_context c, Z3_ast t1, Z3_ast t2)
Floating-point less than or equal.

◆ operator<= [2/3]

expr operator<= ( expr const &  a,
int  b 
)
friend

Definition at line 1756 of file z3++.h.

1756 { return a <= a.ctx().num_val(b, a.get_sort()); }

◆ operator<= [3/3]

expr operator<= ( int  a,
expr const &  b 
)
friend

Definition at line 1757 of file z3++.h.

1757 { return b.ctx().num_val(a, b.get_sort()) <= b; }

◆ operator== [1/3]

expr operator== ( expr const &  a,
expr const &  b 
)
friend

Definition at line 1576 of file z3++.h.

1576  {
1577  check_context(a, b);
1578  Z3_ast r = Z3_mk_eq(a.ctx(), a, b);
1579  a.check_error();
1580  return expr(a.ctx(), r);
1581  }
Z3_ast Z3_API Z3_mk_eq(Z3_context c, Z3_ast l, Z3_ast r)
Create an AST node representing l = r.

◆ operator== [2/3]

expr operator== ( expr const &  a,
int  b 
)
friend

Definition at line 1582 of file z3++.h.

1582 { assert(a.is_arith() || a.is_bv() || a.is_fpa()); return a == a.ctx().num_val(b, a.get_sort()); }

◆ operator== [3/3]

expr operator== ( int  a,
expr const &  b 
)
friend

Definition at line 1583 of file z3++.h.

1583 { assert(b.is_arith() || b.is_bv() || b.is_fpa()); return b.ctx().num_val(a, b.get_sort()) == b; }

◆ operator> [1/3]

expr operator> ( expr const &  a,
expr const &  b 
)
friend

Definition at line 1784 of file z3++.h.

1784  {
1785  check_context(a, b);
1786  Z3_ast r = 0;
1787  if (a.is_arith() && b.is_arith()) {
1788  r = Z3_mk_gt(a.ctx(), a, b);
1789  }
1790  else if (a.is_bv() && b.is_bv()) {
1791  r = Z3_mk_bvsgt(a.ctx(), a, b);
1792  }
1793  else if (a.is_fpa() && b.is_fpa()) {
1794  r = Z3_mk_fpa_gt(a.ctx(), a, b);
1795  }
1796  else {
1797  // operator is not supported by given arguments.
1798  assert(false);
1799  }
1800  a.check_error();
1801  return expr(a.ctx(), r);
1802  }
Z3_ast Z3_API Z3_mk_bvsgt(Z3_context c, Z3_ast t1, Z3_ast t2)
Two's complement signed greater than.
Z3_ast Z3_API Z3_mk_gt(Z3_context c, Z3_ast t1, Z3_ast t2)
Create greater than.
Z3_ast Z3_API Z3_mk_fpa_gt(Z3_context c, Z3_ast t1, Z3_ast t2)
Floating-point greater than.

◆ operator> [2/3]

expr operator> ( expr const &  a,
int  b 
)
friend

Definition at line 1803 of file z3++.h.

1803 { return a > a.ctx().num_val(b, a.get_sort()); }

◆ operator> [3/3]

expr operator> ( int  a,
expr const &  b 
)
friend

Definition at line 1804 of file z3++.h.

1804 { return b.ctx().num_val(a, b.get_sort()) > b; }

◆ operator>= [1/3]

expr operator>= ( expr const &  a,
expr const &  b 
)
friend

Definition at line 1653 of file z3++.h.

1653  {
1654  check_context(a, b);
1655  Z3_ast r = 0;
1656  if (a.is_arith() && b.is_arith()) {
1657  r = Z3_mk_ge(a.ctx(), a, b);
1658  }
1659  else if (a.is_bv() && b.is_bv()) {
1660  r = Z3_mk_bvsge(a.ctx(), a, b);
1661  }
1662  else if (a.is_fpa() && b.is_fpa()) {
1663  r = Z3_mk_fpa_geq(a.ctx(), a, b);
1664  }
1665  else {
1666  // operator is not supported by given arguments.
1667  assert(false);
1668  }
1669  a.check_error();
1670  return expr(a.ctx(), r);
1671  }
Z3_ast Z3_API Z3_mk_bvsge(Z3_context c, Z3_ast t1, Z3_ast t2)
Two's complement signed greater than or equal to.
Z3_ast Z3_API Z3_mk_fpa_geq(Z3_context c, Z3_ast t1, Z3_ast t2)
Floating-point greater than or equal.

◆ operator>= [2/3]

expr operator>= ( expr const &  a,
int  b 
)
friend

Definition at line 1759 of file z3++.h.

1759 { return a >= a.ctx().num_val(b, a.get_sort()); }

◆ operator>= [3/3]

expr operator>= ( int  a,
expr const &  b 
)
friend

Definition at line 1760 of file z3++.h.

1760 { return b.ctx().num_val(a, b.get_sort()) >= b; }

◆ operator^ [1/3]

expr operator^ ( expr const &  a,
expr const &  b 
)
friend

Definition at line 1810 of file z3++.h.

1810 { check_context(a, b); Z3_ast r = a.is_bool() ? Z3_mk_xor(a.ctx(), a, b) : Z3_mk_bvxor(a.ctx(), a, b); return expr(a.ctx(), r); }
Z3_ast Z3_API Z3_mk_bvxor(Z3_context c, Z3_ast t1, Z3_ast t2)
Bitwise exclusive-or.
Z3_ast Z3_API Z3_mk_xor(Z3_context c, Z3_ast t1, Z3_ast t2)
Create an AST node representing t1 xor t2.

◆ operator^ [2/3]

expr operator^ ( expr const &  a,
int  b 
)
friend

Definition at line 1811 of file z3++.h.

1811 { return a ^ a.ctx().num_val(b, a.get_sort()); }

◆ operator^ [3/3]

expr operator^ ( int  a,
expr const &  b 
)
friend

Definition at line 1812 of file z3++.h.

1812 { return b.ctx().num_val(a, b.get_sort()) ^ b; }

◆ operator| [1/3]

expr operator| ( expr const &  a,
expr const &  b 
)
friend

Definition at line 1814 of file z3++.h.

1814 { if (a.is_bool()) return a || b; check_context(a, b); Z3_ast r = Z3_mk_bvor(a.ctx(), a, b); return expr(a.ctx(), r); }
Z3_ast Z3_API Z3_mk_bvor(Z3_context c, Z3_ast t1, Z3_ast t2)
Bitwise or.

◆ operator| [2/3]

expr operator| ( expr const &  a,
int  b 
)
friend

Definition at line 1815 of file z3++.h.

1815 { return a | a.ctx().num_val(b, a.get_sort()); }

◆ operator| [3/3]

expr operator| ( int  a,
expr const &  b 
)
friend

Definition at line 1816 of file z3++.h.

1816 { return b.ctx().num_val(a, b.get_sort()) | b; }

◆ operator|| [1/3]

expr operator|| ( bool  a,
expr const &  b 
)
friend

Return an expression representing a or b. The C++ Boolean value a is automatically converted into a Z3 Boolean constant.

Precondition
b.is_bool()

Definition at line 1574 of file z3++.h.

1574 { return b.ctx().bool_val(a) || b; }

◆ operator|| [2/3]

expr operator|| ( expr const &  a,
bool  b 
)
friend

Return an expression representing a or b. The C++ Boolean value b is automatically converted into a Z3 Boolean constant.

Precondition
a.is_bool()

Definition at line 1572 of file z3++.h.

1572 { return a || a.ctx().bool_val(b); }

◆ operator|| [3/3]

expr operator|| ( expr const &  a,
expr const &  b 
)
friend

Return an expression representing a or b.

Precondition
a.is_bool()
b.is_bool()

Definition at line 1563 of file z3++.h.

1563  {
1564  check_context(a, b);
1565  assert(a.is_bool() && b.is_bool());
1566  Z3_ast args[2] = { a, b };
1567  Z3_ast r = Z3_mk_or(a.ctx(), 2, args);
1568  a.check_error();
1569  return expr(a.ctx(), r);
1570  }

◆ operator~

expr operator~ ( expr const &  a)
friend

Definition at line 1893 of file z3++.h.

1893 { Z3_ast r = Z3_mk_bvnot(a.ctx(), a); return expr(a.ctx(), r); }
Z3_ast Z3_API Z3_mk_bvnot(Z3_context c, Z3_ast t1)
Bitwise negation.

◆ pbeq

expr pbeq ( expr_vector const &  es,
int const *  coeffs,
int  bound 
)
friend

Definition at line 2278 of file z3++.h.

2278  {
2279  assert(es.size() > 0);
2280  context& ctx = es[0].ctx();
2281  array<Z3_ast> _es(es);
2282  Z3_ast r = Z3_mk_pbeq(ctx, _es.size(), _es.ptr(), coeffs, bound);
2283  ctx.check_error();
2284  return expr(ctx, r);
2285  }
Z3_ast Z3_API Z3_mk_pbeq(Z3_context c, unsigned num_args, Z3_ast const args[], int const coeffs[], int k)
Pseudo-Boolean relations.

◆ pbge

expr pbge ( expr_vector const &  es,
int const *  coeffs,
int  bound 
)
friend

Definition at line 2270 of file z3++.h.

2270  {
2271  assert(es.size() > 0);
2272  context& ctx = es[0].ctx();
2273  array<Z3_ast> _es(es);
2274  Z3_ast r = Z3_mk_pbge(ctx, _es.size(), _es.ptr(), coeffs, bound);
2275  ctx.check_error();
2276  return expr(ctx, r);
2277  }
Z3_ast Z3_API Z3_mk_pbge(Z3_context c, unsigned num_args, Z3_ast const args[], int const coeffs[], int k)
Pseudo-Boolean relations.

◆ pble

expr pble ( expr_vector const &  es,
int const *  coeffs,
int  bound 
)
friend

Definition at line 2262 of file z3++.h.

2262  {
2263  assert(es.size() > 0);
2264  context& ctx = es[0].ctx();
2265  array<Z3_ast> _es(es);
2266  Z3_ast r = Z3_mk_pble(ctx, _es.size(), _es.ptr(), coeffs, bound);
2267  ctx.check_error();
2268  return expr(ctx, r);
2269  }
Z3_ast Z3_API Z3_mk_pble(Z3_context c, unsigned num_args, Z3_ast const args[], int const coeffs[], int k)
Pseudo-Boolean relations.

◆ pw [1/3]

expr pw ( expr const &  a,
expr const &  b 
)
friend

Definition at line 1507 of file z3++.h.

1507 { _Z3_MK_BIN_(a, b, Z3_mk_power); }
Z3_ast Z3_API Z3_mk_power(Z3_context c, Z3_ast arg1, Z3_ast arg2)
Create an AST node representing arg1 ^ arg2.

◆ pw [2/3]

expr pw ( expr const &  a,
int  b 
)
friend

Definition at line 1508 of file z3++.h.

1508 { return pw(a, a.ctx().num_val(b, a.get_sort())); }
friend expr pw(expr const &a, expr const &b)
Definition: z3++.h:1507

◆ pw [3/3]

expr pw ( int  a,
expr const &  b 
)
friend

Definition at line 1509 of file z3++.h.

1509 { return pw(b.ctx().num_val(a, b.get_sort()), b); }

◆ range

expr range ( expr const &  lo,
expr const &  hi 
)
friend

Definition at line 3725 of file z3++.h.

3725  {
3726  check_context(lo, hi);
3727  Z3_ast r = Z3_mk_re_range(lo.ctx(), lo, hi);
3728  lo.check_error();
3729  return expr(lo.ctx(), r);
3730  }
Z3_ast Z3_API Z3_mk_re_range(Z3_context c, Z3_ast lo, Z3_ast hi)
Create the range regular expression over two sequences of length 1.

◆ rem [1/3]

expr rem ( expr const &  a,
expr const &  b 
)
friend

Definition at line 1527 of file z3++.h.

1527  {
1528  if (a.is_fpa() && b.is_fpa()) {
1529  _Z3_MK_BIN_(a, b, Z3_mk_fpa_rem);
1530  } else {
1531  _Z3_MK_BIN_(a, b, Z3_mk_rem);
1532  }
1533  }
Z3_ast Z3_API Z3_mk_rem(Z3_context c, Z3_ast arg1, Z3_ast arg2)
Create an AST node representing arg1 rem arg2.
Z3_ast Z3_API Z3_mk_fpa_rem(Z3_context c, Z3_ast t1, Z3_ast t2)
Floating-point remainder.

◆ rem [2/3]

expr rem ( expr const &  a,
int  b 
)
friend

Definition at line 1534 of file z3++.h.

1534 { return rem(a, a.ctx().num_val(b, a.get_sort())); }
friend expr rem(expr const &a, expr const &b)
Definition: z3++.h:1527

◆ rem [3/3]

expr rem ( int  a,
expr const &  b 
)
friend

Definition at line 1535 of file z3++.h.

1535 { return rem(b.ctx().num_val(a, b.get_sort()), b); }

◆ round_fpa_to_closest_integer

expr round_fpa_to_closest_integer ( expr const &  t)
friend

Round a floating-point term into its closest integer.

Definition at line 1946 of file z3++.h.

1946  {
1947  assert(t.is_fpa());
1948  Z3_ast r = Z3_mk_fpa_round_to_integral(t.ctx(), t.ctx().fpa_rounding_mode(), t);
1949  t.check_error();
1950  return expr(t.ctx(), r);
1951  }
Z3_ast Z3_API Z3_mk_fpa_round_to_integral(Z3_context c, Z3_ast rm, Z3_ast t)
Floating-point roundToIntegral. Rounds a floating-point number to the closest integer,...

◆ sbv_to_fpa

expr sbv_to_fpa ( expr const &  t,
sort  s 
)
friend

Conversion of a signed bit-vector term into a floating-point.

Definition at line 1925 of file z3++.h.

1925  {
1926  assert(t.is_bv());
1927  Z3_ast r = Z3_mk_fpa_to_fp_signed(t.ctx(), t.ctx().fpa_rounding_mode(), t, s);
1928  t.check_error();
1929  return expr(t.ctx(), r);
1930  }
Z3_ast Z3_API Z3_mk_fpa_to_fp_signed(Z3_context c, Z3_ast rm, Z3_ast t, Z3_sort s)
Conversion of a 2's complement signed bit-vector term into a term of FloatingPoint sort.

◆ sqrt

expr sqrt ( expr const &  a,
expr const &  rm 
)
friend

Definition at line 1879 of file z3++.h.

1879  {
1880  check_context(a, rm);
1881  assert(a.is_fpa());
1882  Z3_ast r = Z3_mk_fpa_sqrt(a.ctx(), rm, a);
1883  a.check_error();
1884  return expr(a.ctx(), r);
1885  }
Z3_ast Z3_API Z3_mk_fpa_sqrt(Z3_context c, Z3_ast rm, Z3_ast t)
Floating-point square root.

◆ sum

expr sum ( expr_vector const &  args)
friend

Definition at line 2302 of file z3++.h.

2302  {
2303  assert(args.size() > 0);
2304  context& ctx = args[0].ctx();
2305  array<Z3_ast> _args(args);
2306  Z3_ast r = Z3_mk_add(ctx, _args.size(), _args.ptr());
2307  ctx.check_error();
2308  return expr(ctx, r);
2309  }

◆ ubv_to_fpa

expr ubv_to_fpa ( expr const &  t,
sort  s 
)
friend

Conversion of an unsigned bit-vector term into a floating-point.

Definition at line 1932 of file z3++.h.

1932  {
1933  assert(t.is_bv());
1934  Z3_ast r = Z3_mk_fpa_to_fp_unsigned(t.ctx(), t.ctx().fpa_rounding_mode(), t, s);
1935  t.check_error();
1936  return expr(t.ctx(), r);
1937  }
Z3_ast Z3_API Z3_mk_fpa_to_fp_unsigned(Z3_context c, Z3_ast rm, Z3_ast t, Z3_sort s)
Conversion of a 2's complement unsigned bit-vector term into a term of FloatingPoint sort.

◆ xnor

expr xnor ( expr const &  a,
expr const &  b 
)
friend

Definition at line 1820 of file z3++.h.

1820 { if (a.is_bool()) return !(a ^ b); check_context(a, b); Z3_ast r = Z3_mk_bvxnor(a.ctx(), a, b); return expr(a.ctx(), r); }
Z3_ast Z3_API Z3_mk_bvxnor(Z3_context c, Z3_ast t1, Z3_ast t2)
Bitwise xnor.