
Documentation for List.h and List.c

Steven Andrews, © 2015

Description

This library supports basic list management for unsorted lists. These lists are

designed to be very simple to use, somewhat like the Python list data type. They use
dynamic memory allocation, so that they expand themselves as needed.

The code that calls these lists should call the functions here for adding elements to
lists and manipulating lists. However, it is fine for the code to read the list directly rather
than through functions.

Currently supported list types are as follows

abbreviation list
li long integers
v void*

Dependencies

List.h
string2.h

History

10/7/15 Started. Wrote support for long integers.
8/22/16 Updated. Added void* list type.

Data structures

typedef struct liststructli{
 int max;
 int n;
 long int *xs;
 } *listptrli;

typedef struct liststructv{
 int max;
 int n;
 void **xs;
 } *listptrv;

In the data structure, max gives the allocated size of the list. It is allowed to equal 0, in
which case xs is equal to NULL. n is the number of elements currently in the list. xs is the

actual list, which is allocated to size max and filled from element 0 to element n-1. If their
is a dual list, then its element is xd; this list has the same allocation size and number of
elements in the list, and these elements correspond to the ones in the first list.

Code documentation

Internal functions

int List_ExpandLI(listptrli list,int spaces);
 Expands memory allocated for existing list list by spaces spaces, without

changing list contents. spaces is allowed to be negative for list shrinking. The list
can be shrunk sufficiently that some contents are lost. Returns 0 for success or 1 for
unable to allocate memory.

int List_ExpandV(listptrv list,int spaces);
 Expands memory allocated for existing list list by spaces spaces, without

changing list contents. spaces is allowed to be negative for list shrinking. The list
can be shrunk sufficiently that some contents are lost. Returns 0 for success or 1 for
unable to allocate memory.

Memory management

listptrli List_AllocLI(int max);
 Allocates a new empty list, set up for max spaces. max is allowed to equal 0.

Returns the list or NULL if unable to allocate memory.

listptrv List_AllocV(int max);
 Allocates a new empty list, set up for max spaces. max is allowed to equal 0.

Returns the list or NULL if unable to allocate memory.

void List_FreeLI(listptrli list);
 Frees all memory allocated for list list. list is allowed to be NULL, in which case

this does nothing.

void List_FreeV(listptrv list);
 Frees all memory allocated for list list. list is allowed to be NULL, in which case

this does nothing.

Reading lists

int List_MemberLI(const listptrli list,long int x);
 Tests to see if x is a member of list list, returning 1 if so and 0 if not.

Adding elements to lists

listptrli List_ReadStringLI(char *string);

 Reads a string of elements of the given type (e.g. long integers for the LI suffix)
from string and returns them in a newly created list. Returns the list for success or
NULL for failure, where this failure could arise from a memory allocation error
(unlikely) or a string reading error (likely).

listptrv ListAppendItemV(listptrv list,void *newitem);
 Appends item newitem to list list, returning list on success or NULL on failure to

allocate memory. If list is entered as NULL, then a new list is created and is
returned.

Combining lists

int List_AppendListLI(listptrli list,const listptrli newstuff);
 Appends the contents of the list newstuff to the end of the existing list list,

expanding list as needed. Returns 0 for success or 1 for memory allocation error.

int List_RemoveListLI(listptrli list,const listptrli remove);
 Removes items that are in the list remove from the list list. For each item that is in

remove, if it is in list in multiple copies, then only the last copy is removed. If an
item that is in remove is not found in list, then this simply continues on to the next
item. Returns the number of items that were removed from list list.

