As of January 1, 2020 this library no longer supports Python 2 on the latest released version. Library versions released prior to that date will continue to be available. For more information please visit Python 2 support on Google Cloud.

Source code for google.cloud.automl_v1.types.model

# -*- coding: utf-8 -*-
# Copyright 2020 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import proto  # type: ignore

from google.cloud.automl_v1.types import image
from google.cloud.automl_v1.types import text
from google.cloud.automl_v1.types import translation
from google.protobuf import timestamp_pb2  # type: ignore


__protobuf__ = proto.module(package="google.cloud.automl.v1", manifest={"Model",},)


[docs]class Model(proto.Message): r"""API proto representing a trained machine learning model. Attributes: translation_model_metadata (google.cloud.automl_v1.types.TranslationModelMetadata): Metadata for translation models. image_classification_model_metadata (google.cloud.automl_v1.types.ImageClassificationModelMetadata): Metadata for image classification models. text_classification_model_metadata (google.cloud.automl_v1.types.TextClassificationModelMetadata): Metadata for text classification models. image_object_detection_model_metadata (google.cloud.automl_v1.types.ImageObjectDetectionModelMetadata): Metadata for image object detection models. text_extraction_model_metadata (google.cloud.automl_v1.types.TextExtractionModelMetadata): Metadata for text extraction models. text_sentiment_model_metadata (google.cloud.automl_v1.types.TextSentimentModelMetadata): Metadata for text sentiment models. name (str): Output only. Resource name of the model. Format: ``projects/{project_id}/locations/{location_id}/models/{model_id}`` display_name (str): Required. The name of the model to show in the interface. The name can be up to 32 characters long and can consist only of ASCII Latin letters A-Z and a-z, underscores (_), and ASCII digits 0-9. It must start with a letter. dataset_id (str): Required. The resource ID of the dataset used to create the model. The dataset must come from the same ancestor project and location. create_time (google.protobuf.timestamp_pb2.Timestamp): Output only. Timestamp when the model training finished and can be used for prediction. update_time (google.protobuf.timestamp_pb2.Timestamp): Output only. Timestamp when this model was last updated. deployment_state (google.cloud.automl_v1.types.Model.DeploymentState): Output only. Deployment state of the model. A model can only serve prediction requests after it gets deployed. etag (str): Used to perform a consistent read-modify- rite updates. If not set, a blind "overwrite" update happens. labels (Sequence[google.cloud.automl_v1.types.Model.LabelsEntry]): Optional. The labels with user-defined metadata to organize your model. Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed. Label values are optional. Label keys must start with a letter. See https://goo.gl/xmQnxf for more information on and examples of labels. """
[docs] class DeploymentState(proto.Enum): r"""Deployment state of the model.""" DEPLOYMENT_STATE_UNSPECIFIED = 0 DEPLOYED = 1 UNDEPLOYED = 2
translation_model_metadata = proto.Field( proto.MESSAGE, number=15, oneof="model_metadata", message=translation.TranslationModelMetadata, ) image_classification_model_metadata = proto.Field( proto.MESSAGE, number=13, oneof="model_metadata", message=image.ImageClassificationModelMetadata, ) text_classification_model_metadata = proto.Field( proto.MESSAGE, number=14, oneof="model_metadata", message=text.TextClassificationModelMetadata, ) image_object_detection_model_metadata = proto.Field( proto.MESSAGE, number=20, oneof="model_metadata", message=image.ImageObjectDetectionModelMetadata, ) text_extraction_model_metadata = proto.Field( proto.MESSAGE, number=19, oneof="model_metadata", message=text.TextExtractionModelMetadata, ) text_sentiment_model_metadata = proto.Field( proto.MESSAGE, number=22, oneof="model_metadata", message=text.TextSentimentModelMetadata, ) name = proto.Field(proto.STRING, number=1,) display_name = proto.Field(proto.STRING, number=2,) dataset_id = proto.Field(proto.STRING, number=3,) create_time = proto.Field(proto.MESSAGE, number=7, message=timestamp_pb2.Timestamp,) update_time = proto.Field( proto.MESSAGE, number=11, message=timestamp_pb2.Timestamp, ) deployment_state = proto.Field(proto.ENUM, number=8, enum=DeploymentState,) etag = proto.Field(proto.STRING, number=10,) labels = proto.MapField(proto.STRING, proto.STRING, number=34,)
__all__ = tuple(sorted(__protobuf__.manifest))