AOMedia AV1 Codec
av1_common_int.h
1 /*
2  * Copyright (c) 2016, Alliance for Open Media. All rights reserved
3  *
4  * This source code is subject to the terms of the BSD 2 Clause License and
5  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6  * was not distributed with this source code in the LICENSE file, you can
7  * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8  * Media Patent License 1.0 was not distributed with this source code in the
9  * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10  */
11 
12 #ifndef AOM_AV1_COMMON_AV1_COMMON_INT_H_
13 #define AOM_AV1_COMMON_AV1_COMMON_INT_H_
14 
15 #include "config/aom_config.h"
16 #include "config/av1_rtcd.h"
17 
18 #include "aom/internal/aom_codec_internal.h"
19 #include "aom_util/aom_thread.h"
20 #include "av1/common/alloccommon.h"
21 #include "av1/common/av1_loopfilter.h"
22 #include "av1/common/entropy.h"
23 #include "av1/common/entropymode.h"
24 #include "av1/common/entropymv.h"
25 #include "av1/common/enums.h"
26 #include "av1/common/frame_buffers.h"
27 #include "av1/common/mv.h"
28 #include "av1/common/quant_common.h"
29 #include "av1/common/restoration.h"
30 #include "av1/common/tile_common.h"
31 #include "av1/common/timing.h"
32 #include "aom_dsp/grain_synthesis.h"
33 #include "aom_dsp/grain_table.h"
34 #include "aom_dsp/odintrin.h"
35 #ifdef __cplusplus
36 extern "C" {
37 #endif
38 
39 #if defined(__clang__) && defined(__has_warning)
40 #if __has_feature(cxx_attributes) && __has_warning("-Wimplicit-fallthrough")
41 #define AOM_FALLTHROUGH_INTENDED [[clang::fallthrough]] // NOLINT
42 #endif
43 #elif defined(__GNUC__) && __GNUC__ >= 7
44 #define AOM_FALLTHROUGH_INTENDED __attribute__((fallthrough)) // NOLINT
45 #endif
46 
47 #ifndef AOM_FALLTHROUGH_INTENDED
48 #define AOM_FALLTHROUGH_INTENDED \
49  do { \
50  } while (0)
51 #endif
52 
53 #define CDEF_MAX_STRENGTHS 16
54 
55 /* Constant values while waiting for the sequence header */
56 #define FRAME_ID_LENGTH 15
57 #define DELTA_FRAME_ID_LENGTH 14
58 
59 #define FRAME_CONTEXTS (FRAME_BUFFERS + 1)
60 // Extra frame context which is always kept at default values
61 #define FRAME_CONTEXT_DEFAULTS (FRAME_CONTEXTS - 1)
62 #define PRIMARY_REF_BITS 3
63 #define PRIMARY_REF_NONE 7
64 
65 #define NUM_PING_PONG_BUFFERS 2
66 
67 #define MAX_NUM_TEMPORAL_LAYERS 8
68 #define MAX_NUM_SPATIAL_LAYERS 4
69 /* clang-format off */
70 // clang-format seems to think this is a pointer dereference and not a
71 // multiplication.
72 #define MAX_NUM_OPERATING_POINTS \
73  (MAX_NUM_TEMPORAL_LAYERS * MAX_NUM_SPATIAL_LAYERS)
74 /* clang-format on */
75 
76 // TODO(jingning): Turning this on to set up transform coefficient
77 // processing timer.
78 #define TXCOEFF_TIMER 0
79 #define TXCOEFF_COST_TIMER 0
80 
83 enum {
84  SINGLE_REFERENCE = 0,
85  COMPOUND_REFERENCE = 1,
86  REFERENCE_MODE_SELECT = 2,
87  REFERENCE_MODES = 3,
88 } UENUM1BYTE(REFERENCE_MODE);
89 
90 enum {
94  REFRESH_FRAME_CONTEXT_DISABLED,
99  REFRESH_FRAME_CONTEXT_BACKWARD,
100 } UENUM1BYTE(REFRESH_FRAME_CONTEXT_MODE);
101 
102 #define MFMV_STACK_SIZE 3
103 typedef struct {
104  int_mv mfmv0;
105  uint8_t ref_frame_offset;
106 } TPL_MV_REF;
107 
108 typedef struct {
109  int_mv mv;
110  MV_REFERENCE_FRAME ref_frame;
111 } MV_REF;
112 
113 typedef struct RefCntBuffer {
114  // For a RefCntBuffer, the following are reference-holding variables:
115  // - cm->ref_frame_map[]
116  // - cm->cur_frame
117  // - cm->scaled_ref_buf[] (encoder only)
118  // - pbi->output_frame_index[] (decoder only)
119  // With that definition, 'ref_count' is the number of reference-holding
120  // variables that are currently referencing this buffer.
121  // For example:
122  // - suppose this buffer is at index 'k' in the buffer pool, and
123  // - Total 'n' of the variables / array elements above have value 'k' (that
124  // is, they are pointing to buffer at index 'k').
125  // Then, pool->frame_bufs[k].ref_count = n.
126  int ref_count;
127 
128  unsigned int order_hint;
129  unsigned int ref_order_hints[INTER_REFS_PER_FRAME];
130 
131  // These variables are used only in encoder and compare the absolute
132  // display order hint to compute the relative distance and overcome
133  // the limitation of get_relative_dist() which returns incorrect
134  // distance when a very old frame is used as a reference.
135  unsigned int display_order_hint;
136  unsigned int ref_display_order_hint[INTER_REFS_PER_FRAME];
137 #if CONFIG_FRAME_PARALLEL_ENCODE
138  // Frame's level within the hierarchical structure.
139  unsigned int pyramid_level;
140 #endif // CONFIG_FRAME_PARALLEL_ENCODE
141  MV_REF *mvs;
142  uint8_t *seg_map;
143  struct segmentation seg;
144  int mi_rows;
145  int mi_cols;
146  // Width and height give the size of the buffer (before any upscaling, unlike
147  // the sizes that can be derived from the buf structure)
148  int width;
149  int height;
150  WarpedMotionParams global_motion[REF_FRAMES];
151  int showable_frame; // frame can be used as show existing frame in future
152  uint8_t film_grain_params_present;
153  aom_film_grain_t film_grain_params;
154  aom_codec_frame_buffer_t raw_frame_buffer;
155  YV12_BUFFER_CONFIG buf;
156  int temporal_id; // Temporal layer ID of the frame
157  int spatial_id; // Spatial layer ID of the frame
158  FRAME_TYPE frame_type;
159 
160  // This is only used in the encoder but needs to be indexed per ref frame
161  // so it's extremely convenient to keep it here.
162  int interp_filter_selected[SWITCHABLE];
163 
164  // Inter frame reference frame delta for loop filter
165  int8_t ref_deltas[REF_FRAMES];
166 
167  // 0 = ZERO_MV, MV
168  int8_t mode_deltas[MAX_MODE_LF_DELTAS];
169 
170  FRAME_CONTEXT frame_context;
171 } RefCntBuffer;
172 
173 typedef struct BufferPool {
174 // Protect BufferPool from being accessed by several FrameWorkers at
175 // the same time during frame parallel decode.
176 // TODO(hkuang): Try to use atomic variable instead of locking the whole pool.
177 // TODO(wtc): Remove this. See
178 // https://chromium-review.googlesource.com/c/webm/libvpx/+/560630.
179 #if CONFIG_MULTITHREAD
180  pthread_mutex_t pool_mutex;
181 #endif
182 
183  // Private data associated with the frame buffer callbacks.
184  void *cb_priv;
185 
187  aom_release_frame_buffer_cb_fn_t release_fb_cb;
188 
189  RefCntBuffer frame_bufs[FRAME_BUFFERS];
190 
191  // Frame buffers allocated internally by the codec.
192  InternalFrameBufferList int_frame_buffers;
193 } BufferPool;
194 
198 typedef struct {
200  uint16_t *colbuf[MAX_MB_PLANE];
202  uint16_t *linebuf[MAX_MB_PLANE];
204  uint16_t *srcbuf;
206  size_t allocated_colbuf_size[MAX_MB_PLANE];
208  size_t allocated_linebuf_size[MAX_MB_PLANE];
216  int cdef_strengths[CDEF_MAX_STRENGTHS];
218  int cdef_uv_strengths[CDEF_MAX_STRENGTHS];
225 } CdefInfo;
226 
229 typedef struct {
230  int delta_q_present_flag;
231  // Resolution of delta quant
232  int delta_q_res;
233  int delta_lf_present_flag;
234  // Resolution of delta lf level
235  int delta_lf_res;
236  // This is a flag for number of deltas of loop filter level
237  // 0: use 1 delta, for y_vertical, y_horizontal, u, and v
238  // 1: use separate deltas for each filter level
239  int delta_lf_multi;
240 } DeltaQInfo;
241 
242 typedef struct {
243  int enable_order_hint; // 0 - disable order hint, and related tools
244  int order_hint_bits_minus_1; // dist_wtd_comp, ref_frame_mvs,
245  // frame_sign_bias
246  // if 0, enable_dist_wtd_comp and
247  // enable_ref_frame_mvs must be set as 0.
248  int enable_dist_wtd_comp; // 0 - disable dist-wtd compound modes
249  // 1 - enable it
250  int enable_ref_frame_mvs; // 0 - disable ref frame mvs
251  // 1 - enable it
252 } OrderHintInfo;
253 
254 // Sequence header structure.
255 // Note: All syntax elements of sequence_header_obu that need to be
256 // bit-identical across multiple sequence headers must be part of this struct,
257 // so that consistency is checked by are_seq_headers_consistent() function.
258 // One exception is the last member 'op_params' that is ignored by
259 // are_seq_headers_consistent() function.
260 typedef struct SequenceHeader {
261  int num_bits_width;
262  int num_bits_height;
263  int max_frame_width;
264  int max_frame_height;
265  // Whether current and reference frame IDs are signaled in the bitstream.
266  // Frame id numbers are additional information that do not affect the
267  // decoding process, but provide decoders with a way of detecting missing
268  // reference frames so that appropriate action can be taken.
269  uint8_t frame_id_numbers_present_flag;
270  int frame_id_length;
271  int delta_frame_id_length;
272  BLOCK_SIZE sb_size; // Size of the superblock used for this frame
273  int mib_size; // Size of the superblock in units of MI blocks
274  int mib_size_log2; // Log 2 of above.
275 
276  OrderHintInfo order_hint_info;
277 
278  uint8_t force_screen_content_tools; // 0 - force off
279  // 1 - force on
280  // 2 - adaptive
281  uint8_t still_picture; // Video is a single frame still picture
282  uint8_t reduced_still_picture_hdr; // Use reduced header for still picture
283  uint8_t force_integer_mv; // 0 - Don't force. MV can use subpel
284  // 1 - force to integer
285  // 2 - adaptive
286  uint8_t enable_filter_intra; // enables/disables filterintra
287  uint8_t enable_intra_edge_filter; // enables/disables edge upsampling
288  uint8_t enable_interintra_compound; // enables/disables interintra_compound
289  uint8_t enable_masked_compound; // enables/disables masked compound
290  uint8_t enable_dual_filter; // 0 - disable dual interpolation filter
291  // 1 - enable vert/horz filter selection
292  uint8_t enable_warped_motion; // 0 - disable warp for the sequence
293  // 1 - enable warp for the sequence
294  uint8_t enable_superres; // 0 - Disable superres for the sequence
295  // and no frame level superres flag
296  // 1 - Enable superres for the sequence
297  // enable per-frame superres flag
298  uint8_t enable_cdef; // To turn on/off CDEF
299  uint8_t enable_restoration; // To turn on/off loop restoration
300  BITSTREAM_PROFILE profile;
301 
302  // Color config.
303  aom_bit_depth_t bit_depth; // AOM_BITS_8 in profile 0 or 1,
304  // AOM_BITS_10 or AOM_BITS_12 in profile 2 or 3.
305  uint8_t use_highbitdepth; // If true, we need to use 16bit frame buffers.
306  uint8_t monochrome; // Monochorme video
307  aom_color_primaries_t color_primaries;
308  aom_transfer_characteristics_t transfer_characteristics;
309  aom_matrix_coefficients_t matrix_coefficients;
310  int color_range;
311  int subsampling_x; // Chroma subsampling for x
312  int subsampling_y; // Chroma subsampling for y
313  aom_chroma_sample_position_t chroma_sample_position;
314  uint8_t separate_uv_delta_q;
315  uint8_t film_grain_params_present;
316 
317  // Operating point info.
318  int operating_points_cnt_minus_1;
319  int operating_point_idc[MAX_NUM_OPERATING_POINTS];
320  int timing_info_present;
321  aom_timing_info_t timing_info;
322  uint8_t decoder_model_info_present_flag;
323  aom_dec_model_info_t decoder_model_info;
324  uint8_t display_model_info_present_flag;
325  AV1_LEVEL seq_level_idx[MAX_NUM_OPERATING_POINTS];
326  uint8_t tier[MAX_NUM_OPERATING_POINTS]; // seq_tier in spec. One bit: 0 or 1.
327 
328  // IMPORTANT: the op_params member must be at the end of the struct so that
329  // are_seq_headers_consistent() can be implemented with a memcmp() call.
330  // TODO(urvang): We probably don't need the +1 here.
331  aom_dec_model_op_parameters_t op_params[MAX_NUM_OPERATING_POINTS + 1];
332 } SequenceHeader;
333 
334 typedef struct {
335  int skip_mode_allowed;
336  int skip_mode_flag;
337  int ref_frame_idx_0;
338  int ref_frame_idx_1;
339 } SkipModeInfo;
340 
341 typedef struct {
342  FRAME_TYPE frame_type;
343  REFERENCE_MODE reference_mode;
344 
345  unsigned int order_hint;
346  unsigned int display_order_hint;
347 #if CONFIG_FRAME_PARALLEL_ENCODE
348  // Frame's level within the hierarchical structure.
349  unsigned int pyramid_level;
350 #endif // CONFIG_FRAME_PARALLEL_ENCODE
351  unsigned int frame_number;
352  SkipModeInfo skip_mode_info;
353  int refresh_frame_flags; // Which ref frames are overwritten by this frame
354  int frame_refs_short_signaling;
355 } CurrentFrame;
356 
362 typedef struct {
410  TX_MODE tx_mode;
411  InterpFilter interp_filter;
425  REFRESH_FRAME_CONTEXT_MODE refresh_frame_context;
426 } FeatureFlags;
427 
431 typedef struct CommonTileParams {
432  int cols;
433  int rows;
441 
448 
453  int log2_cols;
454  int log2_rows;
455  int width;
456  int height;
478  int min_log2;
483  int col_start_sb[MAX_TILE_COLS + 1];
488  int row_start_sb[MAX_TILE_ROWS + 1];
492  unsigned int large_scale;
498  unsigned int single_tile_decoding;
500 
510  int mb_rows;
515  int mb_cols;
516 
520  int MBs;
521 
526  int mi_rows;
531  int mi_cols;
532 
554  BLOCK_SIZE mi_alloc_bsize;
555 
572 
579  TX_TYPE *tx_type_map;
580 
589  void (*free_mi)(struct CommonModeInfoParams *mi_params);
594  void (*setup_mi)(struct CommonModeInfoParams *mi_params);
601  void (*set_mb_mi)(struct CommonModeInfoParams *mi_params, int width,
602  int height);
604 };
605 
606 typedef struct CommonQuantParams CommonQuantParams;
615 
621 
630 
641 
642  /*
643  * Note: The qindex per superblock may have a delta from the qindex obtained
644  * at frame level from parameters above, based on 'cm->delta_q_info'.
645  */
646 
654  int16_t y_dequant_QTX[MAX_SEGMENTS][2];
655  int16_t u_dequant_QTX[MAX_SEGMENTS][2];
656  int16_t v_dequant_QTX[MAX_SEGMENTS][2];
666  const qm_val_t *giqmatrix[NUM_QM_LEVELS][3][TX_SIZES_ALL];
670  const qm_val_t *gqmatrix[NUM_QM_LEVELS][3][TX_SIZES_ALL];
680  const qm_val_t *y_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL];
684  const qm_val_t *u_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL];
688  const qm_val_t *v_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL];
708 };
709 
710 typedef struct CommonContexts CommonContexts;
719  PARTITION_CONTEXT **partition;
720 
729  ENTROPY_CONTEXT **entropy[MAX_MB_PLANE];
730 
737  TXFM_CONTEXT **txfm;
738 
746 };
747 
751 typedef struct AV1Common {
755  CurrentFrame current_frame;
759  struct aom_internal_error_info *error;
760 
776  int width;
777  int height;
809 
816  uint32_t buffer_removal_times[MAX_NUM_OPERATING_POINTS + 1];
823 
827  RefCntBuffer *prev_frame;
828 
833  RefCntBuffer *cur_frame;
834 
855  int remapped_ref_idx[REF_FRAMES];
856 
862  struct scale_factors sf_identity;
863 
870  struct scale_factors ref_scale_factors[REF_FRAMES];
871 
879  RefCntBuffer *ref_frame_map[REF_FRAMES];
880 
887 
895 
902 
907 
912 
913 #if CONFIG_ENTROPY_STATS
917  int coef_cdf_category;
918 #endif // CONFIG_ENTROPY_STATS
919 
924 
928  struct segmentation seg;
929 
934 
939  loop_filter_info_n lf_info;
940  struct loopfilter lf;
947  RestorationInfo rst_info[MAX_MB_PLANE];
948  int32_t *rst_tmpbuf;
949  RestorationLineBuffers *rlbs;
957 
961  aom_film_grain_t film_grain_params;
962 
966  DeltaQInfo delta_q_info;
967 
971  WarpedMotionParams global_motion[REF_FRAMES];
972 
977  SequenceHeader *seq_params;
978 
982  FRAME_CONTEXT *fc;
988  FRAME_CONTEXT *default_frame_context;
989 
994 
998  BufferPool *buffer_pool;
999 
1007 
1013  int ref_frame_id[REF_FRAMES];
1023  TPL_MV_REF *tpl_mvs;
1032  int ref_frame_sign_bias[REF_FRAMES];
1038  int8_t ref_frame_side[REF_FRAMES];
1039 
1045 
1051 
1052 #if TXCOEFF_TIMER
1053  int64_t cum_txcoeff_timer;
1054  int64_t txcoeff_timer;
1055  int txb_count;
1056 #endif // TXCOEFF_TIMER
1057 
1058 #if TXCOEFF_COST_TIMER
1059  int64_t cum_txcoeff_cost_timer;
1060  int64_t txcoeff_cost_timer;
1061  int64_t txcoeff_cost_count;
1062 #endif // TXCOEFF_COST_TIMER
1063 } AV1_COMMON;
1064 
1067 // TODO(hkuang): Don't need to lock the whole pool after implementing atomic
1068 // frame reference count.
1069 static void lock_buffer_pool(BufferPool *const pool) {
1070 #if CONFIG_MULTITHREAD
1071  pthread_mutex_lock(&pool->pool_mutex);
1072 #else
1073  (void)pool;
1074 #endif
1075 }
1076 
1077 static void unlock_buffer_pool(BufferPool *const pool) {
1078 #if CONFIG_MULTITHREAD
1079  pthread_mutex_unlock(&pool->pool_mutex);
1080 #else
1081  (void)pool;
1082 #endif
1083 }
1084 
1085 static INLINE YV12_BUFFER_CONFIG *get_ref_frame(AV1_COMMON *cm, int index) {
1086  if (index < 0 || index >= REF_FRAMES) return NULL;
1087  if (cm->ref_frame_map[index] == NULL) return NULL;
1088  return &cm->ref_frame_map[index]->buf;
1089 }
1090 
1091 static INLINE int get_free_fb(AV1_COMMON *cm) {
1092  RefCntBuffer *const frame_bufs = cm->buffer_pool->frame_bufs;
1093  int i;
1094 
1095  lock_buffer_pool(cm->buffer_pool);
1096  for (i = 0; i < FRAME_BUFFERS; ++i)
1097  if (frame_bufs[i].ref_count == 0) break;
1098 
1099  if (i != FRAME_BUFFERS) {
1100  if (frame_bufs[i].buf.use_external_reference_buffers) {
1101  // If this frame buffer's y_buffer, u_buffer, and v_buffer point to the
1102  // external reference buffers. Restore the buffer pointers to point to the
1103  // internally allocated memory.
1104  YV12_BUFFER_CONFIG *ybf = &frame_bufs[i].buf;
1105  ybf->y_buffer = ybf->store_buf_adr[0];
1106  ybf->u_buffer = ybf->store_buf_adr[1];
1107  ybf->v_buffer = ybf->store_buf_adr[2];
1108  ybf->use_external_reference_buffers = 0;
1109  }
1110 
1111  frame_bufs[i].ref_count = 1;
1112  } else {
1113  // We should never run out of free buffers. If this assertion fails, there
1114  // is a reference leak.
1115  assert(0 && "Ran out of free frame buffers. Likely a reference leak.");
1116  // Reset i to be INVALID_IDX to indicate no free buffer found.
1117  i = INVALID_IDX;
1118  }
1119 
1120  unlock_buffer_pool(cm->buffer_pool);
1121  return i;
1122 }
1123 
1124 static INLINE RefCntBuffer *assign_cur_frame_new_fb(AV1_COMMON *const cm) {
1125  // Release the previously-used frame-buffer
1126  if (cm->cur_frame != NULL) {
1127  --cm->cur_frame->ref_count;
1128  cm->cur_frame = NULL;
1129  }
1130 
1131  // Assign a new framebuffer
1132  const int new_fb_idx = get_free_fb(cm);
1133  if (new_fb_idx == INVALID_IDX) return NULL;
1134 
1135  cm->cur_frame = &cm->buffer_pool->frame_bufs[new_fb_idx];
1136  cm->cur_frame->buf.buf_8bit_valid = 0;
1137  av1_zero(cm->cur_frame->interp_filter_selected);
1138  return cm->cur_frame;
1139 }
1140 
1141 // Modify 'lhs_ptr' to reference the buffer at 'rhs_ptr', and update the ref
1142 // counts accordingly.
1143 static INLINE void assign_frame_buffer_p(RefCntBuffer **lhs_ptr,
1144  RefCntBuffer *rhs_ptr) {
1145  RefCntBuffer *const old_ptr = *lhs_ptr;
1146  if (old_ptr != NULL) {
1147  assert(old_ptr->ref_count > 0);
1148  // One less reference to the buffer at 'old_ptr', so decrease ref count.
1149  --old_ptr->ref_count;
1150  }
1151 
1152  *lhs_ptr = rhs_ptr;
1153  // One more reference to the buffer at 'rhs_ptr', so increase ref count.
1154  ++rhs_ptr->ref_count;
1155 }
1156 
1157 static INLINE int frame_is_intra_only(const AV1_COMMON *const cm) {
1158  return cm->current_frame.frame_type == KEY_FRAME ||
1159  cm->current_frame.frame_type == INTRA_ONLY_FRAME;
1160 }
1161 
1162 static INLINE int frame_is_sframe(const AV1_COMMON *cm) {
1163  return cm->current_frame.frame_type == S_FRAME;
1164 }
1165 
1166 // These functions take a reference frame label between LAST_FRAME and
1167 // EXTREF_FRAME inclusive. Note that this is different to the indexing
1168 // previously used by the frame_refs[] array.
1169 static INLINE int get_ref_frame_map_idx(const AV1_COMMON *const cm,
1170  const MV_REFERENCE_FRAME ref_frame) {
1171  return (ref_frame >= LAST_FRAME && ref_frame <= EXTREF_FRAME)
1172  ? cm->remapped_ref_idx[ref_frame - LAST_FRAME]
1173  : INVALID_IDX;
1174 }
1175 
1176 static INLINE RefCntBuffer *get_ref_frame_buf(
1177  const AV1_COMMON *const cm, const MV_REFERENCE_FRAME ref_frame) {
1178  const int map_idx = get_ref_frame_map_idx(cm, ref_frame);
1179  return (map_idx != INVALID_IDX) ? cm->ref_frame_map[map_idx] : NULL;
1180 }
1181 
1182 // Both const and non-const versions of this function are provided so that it
1183 // can be used with a const AV1_COMMON if needed.
1184 static INLINE const struct scale_factors *get_ref_scale_factors_const(
1185  const AV1_COMMON *const cm, const MV_REFERENCE_FRAME ref_frame) {
1186  const int map_idx = get_ref_frame_map_idx(cm, ref_frame);
1187  return (map_idx != INVALID_IDX) ? &cm->ref_scale_factors[map_idx] : NULL;
1188 }
1189 
1190 static INLINE struct scale_factors *get_ref_scale_factors(
1191  AV1_COMMON *const cm, const MV_REFERENCE_FRAME ref_frame) {
1192  const int map_idx = get_ref_frame_map_idx(cm, ref_frame);
1193  return (map_idx != INVALID_IDX) ? &cm->ref_scale_factors[map_idx] : NULL;
1194 }
1195 
1196 static INLINE RefCntBuffer *get_primary_ref_frame_buf(
1197  const AV1_COMMON *const cm) {
1198  const int primary_ref_frame = cm->features.primary_ref_frame;
1199  if (primary_ref_frame == PRIMARY_REF_NONE) return NULL;
1200  const int map_idx = get_ref_frame_map_idx(cm, primary_ref_frame + 1);
1201  return (map_idx != INVALID_IDX) ? cm->ref_frame_map[map_idx] : NULL;
1202 }
1203 
1204 // Returns 1 if this frame might allow mvs from some reference frame.
1205 static INLINE int frame_might_allow_ref_frame_mvs(const AV1_COMMON *cm) {
1206  return !cm->features.error_resilient_mode &&
1207  cm->seq_params->order_hint_info.enable_ref_frame_mvs &&
1208  cm->seq_params->order_hint_info.enable_order_hint &&
1209  !frame_is_intra_only(cm);
1210 }
1211 
1212 // Returns 1 if this frame might use warped_motion
1213 static INLINE int frame_might_allow_warped_motion(const AV1_COMMON *cm) {
1214  return !cm->features.error_resilient_mode && !frame_is_intra_only(cm) &&
1215  cm->seq_params->enable_warped_motion;
1216 }
1217 
1218 static INLINE void ensure_mv_buffer(RefCntBuffer *buf, AV1_COMMON *cm) {
1219  const int buf_rows = buf->mi_rows;
1220  const int buf_cols = buf->mi_cols;
1221  const CommonModeInfoParams *const mi_params = &cm->mi_params;
1222 
1223  if (buf->mvs == NULL || buf_rows != mi_params->mi_rows ||
1224  buf_cols != mi_params->mi_cols) {
1225  aom_free(buf->mvs);
1226  buf->mi_rows = mi_params->mi_rows;
1227  buf->mi_cols = mi_params->mi_cols;
1228  CHECK_MEM_ERROR(cm, buf->mvs,
1229  (MV_REF *)aom_calloc(((mi_params->mi_rows + 1) >> 1) *
1230  ((mi_params->mi_cols + 1) >> 1),
1231  sizeof(*buf->mvs)));
1232  aom_free(buf->seg_map);
1233  CHECK_MEM_ERROR(
1234  cm, buf->seg_map,
1235  (uint8_t *)aom_calloc(mi_params->mi_rows * mi_params->mi_cols,
1236  sizeof(*buf->seg_map)));
1237  }
1238 
1239  const int mem_size =
1240  ((mi_params->mi_rows + MAX_MIB_SIZE) >> 1) * (mi_params->mi_stride >> 1);
1241  int realloc = cm->tpl_mvs == NULL;
1242  if (cm->tpl_mvs) realloc |= cm->tpl_mvs_mem_size < mem_size;
1243 
1244  if (realloc) {
1245  aom_free(cm->tpl_mvs);
1246  CHECK_MEM_ERROR(cm, cm->tpl_mvs,
1247  (TPL_MV_REF *)aom_calloc(mem_size, sizeof(*cm->tpl_mvs)));
1248  cm->tpl_mvs_mem_size = mem_size;
1249  }
1250 }
1251 
1252 void cfl_init(CFL_CTX *cfl, const SequenceHeader *seq_params);
1253 
1254 static INLINE int av1_num_planes(const AV1_COMMON *cm) {
1255  return cm->seq_params->monochrome ? 1 : MAX_MB_PLANE;
1256 }
1257 
1258 static INLINE void av1_init_above_context(CommonContexts *above_contexts,
1259  int num_planes, int tile_row,
1260  MACROBLOCKD *xd) {
1261  for (int i = 0; i < num_planes; ++i) {
1262  xd->above_entropy_context[i] = above_contexts->entropy[i][tile_row];
1263  }
1264  xd->above_partition_context = above_contexts->partition[tile_row];
1265  xd->above_txfm_context = above_contexts->txfm[tile_row];
1266 }
1267 
1268 static INLINE void av1_init_macroblockd(AV1_COMMON *cm, MACROBLOCKD *xd) {
1269  const int num_planes = av1_num_planes(cm);
1270  const CommonQuantParams *const quant_params = &cm->quant_params;
1271 
1272  for (int i = 0; i < num_planes; ++i) {
1273  if (xd->plane[i].plane_type == PLANE_TYPE_Y) {
1274  memcpy(xd->plane[i].seg_dequant_QTX, quant_params->y_dequant_QTX,
1275  sizeof(quant_params->y_dequant_QTX));
1276  memcpy(xd->plane[i].seg_iqmatrix, quant_params->y_iqmatrix,
1277  sizeof(quant_params->y_iqmatrix));
1278 
1279  } else {
1280  if (i == AOM_PLANE_U) {
1281  memcpy(xd->plane[i].seg_dequant_QTX, quant_params->u_dequant_QTX,
1282  sizeof(quant_params->u_dequant_QTX));
1283  memcpy(xd->plane[i].seg_iqmatrix, quant_params->u_iqmatrix,
1284  sizeof(quant_params->u_iqmatrix));
1285  } else {
1286  memcpy(xd->plane[i].seg_dequant_QTX, quant_params->v_dequant_QTX,
1287  sizeof(quant_params->v_dequant_QTX));
1288  memcpy(xd->plane[i].seg_iqmatrix, quant_params->v_iqmatrix,
1289  sizeof(quant_params->v_iqmatrix));
1290  }
1291  }
1292  }
1293  xd->mi_stride = cm->mi_params.mi_stride;
1294  xd->error_info = cm->error;
1295  cfl_init(&xd->cfl, cm->seq_params);
1296 }
1297 
1298 static INLINE void set_entropy_context(MACROBLOCKD *xd, int mi_row, int mi_col,
1299  const int num_planes) {
1300  int i;
1301  int row_offset = mi_row;
1302  int col_offset = mi_col;
1303  for (i = 0; i < num_planes; ++i) {
1304  struct macroblockd_plane *const pd = &xd->plane[i];
1305  // Offset the buffer pointer
1306  const BLOCK_SIZE bsize = xd->mi[0]->bsize;
1307  if (pd->subsampling_y && (mi_row & 0x01) && (mi_size_high[bsize] == 1))
1308  row_offset = mi_row - 1;
1309  if (pd->subsampling_x && (mi_col & 0x01) && (mi_size_wide[bsize] == 1))
1310  col_offset = mi_col - 1;
1311  int above_idx = col_offset;
1312  int left_idx = row_offset & MAX_MIB_MASK;
1313  pd->above_entropy_context =
1314  &xd->above_entropy_context[i][above_idx >> pd->subsampling_x];
1315  pd->left_entropy_context =
1316  &xd->left_entropy_context[i][left_idx >> pd->subsampling_y];
1317  }
1318 }
1319 
1320 static INLINE int calc_mi_size(int len) {
1321  // len is in mi units. Align to a multiple of SBs.
1322  return ALIGN_POWER_OF_TWO(len, MAX_MIB_SIZE_LOG2);
1323 }
1324 
1325 static INLINE void set_plane_n4(MACROBLOCKD *const xd, int bw, int bh,
1326  const int num_planes) {
1327  int i;
1328  for (i = 0; i < num_planes; i++) {
1329  xd->plane[i].width = (bw * MI_SIZE) >> xd->plane[i].subsampling_x;
1330  xd->plane[i].height = (bh * MI_SIZE) >> xd->plane[i].subsampling_y;
1331 
1332  xd->plane[i].width = AOMMAX(xd->plane[i].width, 4);
1333  xd->plane[i].height = AOMMAX(xd->plane[i].height, 4);
1334  }
1335 }
1336 
1337 static INLINE void set_mi_row_col(MACROBLOCKD *xd, const TileInfo *const tile,
1338  int mi_row, int bh, int mi_col, int bw,
1339  int mi_rows, int mi_cols) {
1340  xd->mb_to_top_edge = -GET_MV_SUBPEL(mi_row * MI_SIZE);
1341  xd->mb_to_bottom_edge = GET_MV_SUBPEL((mi_rows - bh - mi_row) * MI_SIZE);
1342  xd->mb_to_left_edge = -GET_MV_SUBPEL((mi_col * MI_SIZE));
1343  xd->mb_to_right_edge = GET_MV_SUBPEL((mi_cols - bw - mi_col) * MI_SIZE);
1344 
1345  xd->mi_row = mi_row;
1346  xd->mi_col = mi_col;
1347 
1348  // Are edges available for intra prediction?
1349  xd->up_available = (mi_row > tile->mi_row_start);
1350 
1351  const int ss_x = xd->plane[1].subsampling_x;
1352  const int ss_y = xd->plane[1].subsampling_y;
1353 
1354  xd->left_available = (mi_col > tile->mi_col_start);
1357  if (ss_x && bw < mi_size_wide[BLOCK_8X8])
1358  xd->chroma_left_available = (mi_col - 1) > tile->mi_col_start;
1359  if (ss_y && bh < mi_size_high[BLOCK_8X8])
1360  xd->chroma_up_available = (mi_row - 1) > tile->mi_row_start;
1361  if (xd->up_available) {
1362  xd->above_mbmi = xd->mi[-xd->mi_stride];
1363  } else {
1364  xd->above_mbmi = NULL;
1365  }
1366 
1367  if (xd->left_available) {
1368  xd->left_mbmi = xd->mi[-1];
1369  } else {
1370  xd->left_mbmi = NULL;
1371  }
1372 
1373  const int chroma_ref = ((mi_row & 0x01) || !(bh & 0x01) || !ss_y) &&
1374  ((mi_col & 0x01) || !(bw & 0x01) || !ss_x);
1375  xd->is_chroma_ref = chroma_ref;
1376  if (chroma_ref) {
1377  // To help calculate the "above" and "left" chroma blocks, note that the
1378  // current block may cover multiple luma blocks (eg, if partitioned into
1379  // 4x4 luma blocks).
1380  // First, find the top-left-most luma block covered by this chroma block
1381  MB_MODE_INFO **base_mi =
1382  &xd->mi[-(mi_row & ss_y) * xd->mi_stride - (mi_col & ss_x)];
1383 
1384  // Then, we consider the luma region covered by the left or above 4x4 chroma
1385  // prediction. We want to point to the chroma reference block in that
1386  // region, which is the bottom-right-most mi unit.
1387  // This leads to the following offsets:
1388  MB_MODE_INFO *chroma_above_mi =
1389  xd->chroma_up_available ? base_mi[-xd->mi_stride + ss_x] : NULL;
1390  xd->chroma_above_mbmi = chroma_above_mi;
1391 
1392  MB_MODE_INFO *chroma_left_mi =
1393  xd->chroma_left_available ? base_mi[ss_y * xd->mi_stride - 1] : NULL;
1394  xd->chroma_left_mbmi = chroma_left_mi;
1395  }
1396 
1397  xd->height = bh;
1398  xd->width = bw;
1399 
1400  xd->is_last_vertical_rect = 0;
1401  if (xd->width < xd->height) {
1402  if (!((mi_col + xd->width) & (xd->height - 1))) {
1403  xd->is_last_vertical_rect = 1;
1404  }
1405  }
1406 
1407  xd->is_first_horizontal_rect = 0;
1408  if (xd->width > xd->height)
1409  if (!(mi_row & (xd->width - 1))) xd->is_first_horizontal_rect = 1;
1410 }
1411 
1412 static INLINE aom_cdf_prob *get_y_mode_cdf(FRAME_CONTEXT *tile_ctx,
1413  const MB_MODE_INFO *above_mi,
1414  const MB_MODE_INFO *left_mi) {
1415  const PREDICTION_MODE above = av1_above_block_mode(above_mi);
1416  const PREDICTION_MODE left = av1_left_block_mode(left_mi);
1417  const int above_ctx = intra_mode_context[above];
1418  const int left_ctx = intra_mode_context[left];
1419  return tile_ctx->kf_y_cdf[above_ctx][left_ctx];
1420 }
1421 
1422 static INLINE void update_partition_context(MACROBLOCKD *xd, int mi_row,
1423  int mi_col, BLOCK_SIZE subsize,
1424  BLOCK_SIZE bsize) {
1425  PARTITION_CONTEXT *const above_ctx = xd->above_partition_context + mi_col;
1426  PARTITION_CONTEXT *const left_ctx =
1427  xd->left_partition_context + (mi_row & MAX_MIB_MASK);
1428 
1429  const int bw = mi_size_wide[bsize];
1430  const int bh = mi_size_high[bsize];
1431  memset(above_ctx, partition_context_lookup[subsize].above, bw);
1432  memset(left_ctx, partition_context_lookup[subsize].left, bh);
1433 }
1434 
1435 static INLINE int is_chroma_reference(int mi_row, int mi_col, BLOCK_SIZE bsize,
1436  int subsampling_x, int subsampling_y) {
1437  assert(bsize < BLOCK_SIZES_ALL);
1438  const int bw = mi_size_wide[bsize];
1439  const int bh = mi_size_high[bsize];
1440  int ref_pos = ((mi_row & 0x01) || !(bh & 0x01) || !subsampling_y) &&
1441  ((mi_col & 0x01) || !(bw & 0x01) || !subsampling_x);
1442  return ref_pos;
1443 }
1444 
1445 static INLINE aom_cdf_prob cdf_element_prob(const aom_cdf_prob *cdf,
1446  size_t element) {
1447  assert(cdf != NULL);
1448  return (element > 0 ? cdf[element - 1] : CDF_PROB_TOP) - cdf[element];
1449 }
1450 
1451 static INLINE void partition_gather_horz_alike(aom_cdf_prob *out,
1452  const aom_cdf_prob *const in,
1453  BLOCK_SIZE bsize) {
1454  (void)bsize;
1455  out[0] = CDF_PROB_TOP;
1456  out[0] -= cdf_element_prob(in, PARTITION_HORZ);
1457  out[0] -= cdf_element_prob(in, PARTITION_SPLIT);
1458  out[0] -= cdf_element_prob(in, PARTITION_HORZ_A);
1459  out[0] -= cdf_element_prob(in, PARTITION_HORZ_B);
1460  out[0] -= cdf_element_prob(in, PARTITION_VERT_A);
1461  if (bsize != BLOCK_128X128) out[0] -= cdf_element_prob(in, PARTITION_HORZ_4);
1462  out[0] = AOM_ICDF(out[0]);
1463  out[1] = AOM_ICDF(CDF_PROB_TOP);
1464 }
1465 
1466 static INLINE void partition_gather_vert_alike(aom_cdf_prob *out,
1467  const aom_cdf_prob *const in,
1468  BLOCK_SIZE bsize) {
1469  (void)bsize;
1470  out[0] = CDF_PROB_TOP;
1471  out[0] -= cdf_element_prob(in, PARTITION_VERT);
1472  out[0] -= cdf_element_prob(in, PARTITION_SPLIT);
1473  out[0] -= cdf_element_prob(in, PARTITION_HORZ_A);
1474  out[0] -= cdf_element_prob(in, PARTITION_VERT_A);
1475  out[0] -= cdf_element_prob(in, PARTITION_VERT_B);
1476  if (bsize != BLOCK_128X128) out[0] -= cdf_element_prob(in, PARTITION_VERT_4);
1477  out[0] = AOM_ICDF(out[0]);
1478  out[1] = AOM_ICDF(CDF_PROB_TOP);
1479 }
1480 
1481 static INLINE void update_ext_partition_context(MACROBLOCKD *xd, int mi_row,
1482  int mi_col, BLOCK_SIZE subsize,
1483  BLOCK_SIZE bsize,
1484  PARTITION_TYPE partition) {
1485  if (bsize >= BLOCK_8X8) {
1486  const int hbs = mi_size_wide[bsize] / 2;
1487  BLOCK_SIZE bsize2 = get_partition_subsize(bsize, PARTITION_SPLIT);
1488  switch (partition) {
1489  case PARTITION_SPLIT:
1490  if (bsize != BLOCK_8X8) break;
1491  AOM_FALLTHROUGH_INTENDED;
1492  case PARTITION_NONE:
1493  case PARTITION_HORZ:
1494  case PARTITION_VERT:
1495  case PARTITION_HORZ_4:
1496  case PARTITION_VERT_4:
1497  update_partition_context(xd, mi_row, mi_col, subsize, bsize);
1498  break;
1499  case PARTITION_HORZ_A:
1500  update_partition_context(xd, mi_row, mi_col, bsize2, subsize);
1501  update_partition_context(xd, mi_row + hbs, mi_col, subsize, subsize);
1502  break;
1503  case PARTITION_HORZ_B:
1504  update_partition_context(xd, mi_row, mi_col, subsize, subsize);
1505  update_partition_context(xd, mi_row + hbs, mi_col, bsize2, subsize);
1506  break;
1507  case PARTITION_VERT_A:
1508  update_partition_context(xd, mi_row, mi_col, bsize2, subsize);
1509  update_partition_context(xd, mi_row, mi_col + hbs, subsize, subsize);
1510  break;
1511  case PARTITION_VERT_B:
1512  update_partition_context(xd, mi_row, mi_col, subsize, subsize);
1513  update_partition_context(xd, mi_row, mi_col + hbs, bsize2, subsize);
1514  break;
1515  default: assert(0 && "Invalid partition type");
1516  }
1517  }
1518 }
1519 
1520 static INLINE int partition_plane_context(const MACROBLOCKD *xd, int mi_row,
1521  int mi_col, BLOCK_SIZE bsize) {
1522  const PARTITION_CONTEXT *above_ctx = xd->above_partition_context + mi_col;
1523  const PARTITION_CONTEXT *left_ctx =
1524  xd->left_partition_context + (mi_row & MAX_MIB_MASK);
1525  // Minimum partition point is 8x8. Offset the bsl accordingly.
1526  const int bsl = mi_size_wide_log2[bsize] - mi_size_wide_log2[BLOCK_8X8];
1527  int above = (*above_ctx >> bsl) & 1, left = (*left_ctx >> bsl) & 1;
1528 
1529  assert(mi_size_wide_log2[bsize] == mi_size_high_log2[bsize]);
1530  assert(bsl >= 0);
1531 
1532  return (left * 2 + above) + bsl * PARTITION_PLOFFSET;
1533 }
1534 
1535 // Return the number of elements in the partition CDF when
1536 // partitioning the (square) block with luma block size of bsize.
1537 static INLINE int partition_cdf_length(BLOCK_SIZE bsize) {
1538  if (bsize <= BLOCK_8X8)
1539  return PARTITION_TYPES;
1540  else if (bsize == BLOCK_128X128)
1541  return EXT_PARTITION_TYPES - 2;
1542  else
1543  return EXT_PARTITION_TYPES;
1544 }
1545 
1546 static INLINE int max_block_wide(const MACROBLOCKD *xd, BLOCK_SIZE bsize,
1547  int plane) {
1548  assert(bsize < BLOCK_SIZES_ALL);
1549  int max_blocks_wide = block_size_wide[bsize];
1550 
1551  if (xd->mb_to_right_edge < 0) {
1552  const struct macroblockd_plane *const pd = &xd->plane[plane];
1553  max_blocks_wide += xd->mb_to_right_edge >> (3 + pd->subsampling_x);
1554  }
1555 
1556  // Scale the width in the transform block unit.
1557  return max_blocks_wide >> MI_SIZE_LOG2;
1558 }
1559 
1560 static INLINE int max_block_high(const MACROBLOCKD *xd, BLOCK_SIZE bsize,
1561  int plane) {
1562  int max_blocks_high = block_size_high[bsize];
1563 
1564  if (xd->mb_to_bottom_edge < 0) {
1565  const struct macroblockd_plane *const pd = &xd->plane[plane];
1566  max_blocks_high += xd->mb_to_bottom_edge >> (3 + pd->subsampling_y);
1567  }
1568 
1569  // Scale the height in the transform block unit.
1570  return max_blocks_high >> MI_SIZE_LOG2;
1571 }
1572 
1573 static INLINE void av1_zero_above_context(AV1_COMMON *const cm,
1574  const MACROBLOCKD *xd,
1575  int mi_col_start, int mi_col_end,
1576  const int tile_row) {
1577  const SequenceHeader *const seq_params = cm->seq_params;
1578  const int num_planes = av1_num_planes(cm);
1579  const int width = mi_col_end - mi_col_start;
1580  const int aligned_width =
1581  ALIGN_POWER_OF_TWO(width, seq_params->mib_size_log2);
1582  const int offset_y = mi_col_start;
1583  const int width_y = aligned_width;
1584  const int offset_uv = offset_y >> seq_params->subsampling_x;
1585  const int width_uv = width_y >> seq_params->subsampling_x;
1586  CommonContexts *const above_contexts = &cm->above_contexts;
1587 
1588  av1_zero_array(above_contexts->entropy[0][tile_row] + offset_y, width_y);
1589  if (num_planes > 1) {
1590  if (above_contexts->entropy[1][tile_row] &&
1591  above_contexts->entropy[2][tile_row]) {
1592  av1_zero_array(above_contexts->entropy[1][tile_row] + offset_uv,
1593  width_uv);
1594  av1_zero_array(above_contexts->entropy[2][tile_row] + offset_uv,
1595  width_uv);
1596  } else {
1597  aom_internal_error(xd->error_info, AOM_CODEC_CORRUPT_FRAME,
1598  "Invalid value of planes");
1599  }
1600  }
1601 
1602  av1_zero_array(above_contexts->partition[tile_row] + mi_col_start,
1603  aligned_width);
1604 
1605  memset(above_contexts->txfm[tile_row] + mi_col_start,
1606  tx_size_wide[TX_SIZES_LARGEST], aligned_width * sizeof(TXFM_CONTEXT));
1607 }
1608 
1609 static INLINE void av1_zero_left_context(MACROBLOCKD *const xd) {
1610  av1_zero(xd->left_entropy_context);
1611  av1_zero(xd->left_partition_context);
1612 
1613  memset(xd->left_txfm_context_buffer, tx_size_high[TX_SIZES_LARGEST],
1614  sizeof(xd->left_txfm_context_buffer));
1615 }
1616 
1617 // Disable array-bounds checks as the TX_SIZE enum contains values larger than
1618 // TX_SIZES_ALL (TX_INVALID) which make extending the array as a workaround
1619 // infeasible. The assert is enough for static analysis and this or other tools
1620 // asan, valgrind would catch oob access at runtime.
1621 #if defined(__GNUC__) && __GNUC__ >= 4
1622 #pragma GCC diagnostic ignored "-Warray-bounds"
1623 #endif
1624 
1625 #if defined(__GNUC__) && __GNUC__ >= 4
1626 #pragma GCC diagnostic warning "-Warray-bounds"
1627 #endif
1628 
1629 static INLINE void set_txfm_ctx(TXFM_CONTEXT *txfm_ctx, uint8_t txs, int len) {
1630  int i;
1631  for (i = 0; i < len; ++i) txfm_ctx[i] = txs;
1632 }
1633 
1634 static INLINE void set_txfm_ctxs(TX_SIZE tx_size, int n4_w, int n4_h, int skip,
1635  const MACROBLOCKD *xd) {
1636  uint8_t bw = tx_size_wide[tx_size];
1637  uint8_t bh = tx_size_high[tx_size];
1638 
1639  if (skip) {
1640  bw = n4_w * MI_SIZE;
1641  bh = n4_h * MI_SIZE;
1642  }
1643 
1644  set_txfm_ctx(xd->above_txfm_context, bw, n4_w);
1645  set_txfm_ctx(xd->left_txfm_context, bh, n4_h);
1646 }
1647 
1648 static INLINE int get_mi_grid_idx(const CommonModeInfoParams *const mi_params,
1649  int mi_row, int mi_col) {
1650  return mi_row * mi_params->mi_stride + mi_col;
1651 }
1652 
1653 static INLINE int get_alloc_mi_idx(const CommonModeInfoParams *const mi_params,
1654  int mi_row, int mi_col) {
1655  const int mi_alloc_size_1d = mi_size_wide[mi_params->mi_alloc_bsize];
1656  const int mi_alloc_row = mi_row / mi_alloc_size_1d;
1657  const int mi_alloc_col = mi_col / mi_alloc_size_1d;
1658 
1659  return mi_alloc_row * mi_params->mi_alloc_stride + mi_alloc_col;
1660 }
1661 
1662 // For this partition block, set pointers in mi_params->mi_grid_base and xd->mi.
1663 static INLINE void set_mi_offsets(const CommonModeInfoParams *const mi_params,
1664  MACROBLOCKD *const xd, int mi_row,
1665  int mi_col) {
1666  // 'mi_grid_base' should point to appropriate memory in 'mi'.
1667  const int mi_grid_idx = get_mi_grid_idx(mi_params, mi_row, mi_col);
1668  const int mi_alloc_idx = get_alloc_mi_idx(mi_params, mi_row, mi_col);
1669  mi_params->mi_grid_base[mi_grid_idx] = &mi_params->mi_alloc[mi_alloc_idx];
1670  // 'xd->mi' should point to an offset in 'mi_grid_base';
1671  xd->mi = mi_params->mi_grid_base + mi_grid_idx;
1672  // 'xd->tx_type_map' should point to an offset in 'mi_params->tx_type_map'.
1673  xd->tx_type_map = mi_params->tx_type_map + mi_grid_idx;
1674  xd->tx_type_map_stride = mi_params->mi_stride;
1675 }
1676 
1677 static INLINE void txfm_partition_update(TXFM_CONTEXT *above_ctx,
1678  TXFM_CONTEXT *left_ctx,
1679  TX_SIZE tx_size, TX_SIZE txb_size) {
1680  BLOCK_SIZE bsize = txsize_to_bsize[txb_size];
1681  int bh = mi_size_high[bsize];
1682  int bw = mi_size_wide[bsize];
1683  uint8_t txw = tx_size_wide[tx_size];
1684  uint8_t txh = tx_size_high[tx_size];
1685  int i;
1686  for (i = 0; i < bh; ++i) left_ctx[i] = txh;
1687  for (i = 0; i < bw; ++i) above_ctx[i] = txw;
1688 }
1689 
1690 static INLINE TX_SIZE get_sqr_tx_size(int tx_dim) {
1691  switch (tx_dim) {
1692  case 128:
1693  case 64: return TX_64X64; break;
1694  case 32: return TX_32X32; break;
1695  case 16: return TX_16X16; break;
1696  case 8: return TX_8X8; break;
1697  default: return TX_4X4;
1698  }
1699 }
1700 
1701 static INLINE TX_SIZE get_tx_size(int width, int height) {
1702  if (width == height) {
1703  return get_sqr_tx_size(width);
1704  }
1705  if (width < height) {
1706  if (width + width == height) {
1707  switch (width) {
1708  case 4: return TX_4X8; break;
1709  case 8: return TX_8X16; break;
1710  case 16: return TX_16X32; break;
1711  case 32: return TX_32X64; break;
1712  }
1713  } else {
1714  switch (width) {
1715  case 4: return TX_4X16; break;
1716  case 8: return TX_8X32; break;
1717  case 16: return TX_16X64; break;
1718  }
1719  }
1720  } else {
1721  if (height + height == width) {
1722  switch (height) {
1723  case 4: return TX_8X4; break;
1724  case 8: return TX_16X8; break;
1725  case 16: return TX_32X16; break;
1726  case 32: return TX_64X32; break;
1727  }
1728  } else {
1729  switch (height) {
1730  case 4: return TX_16X4; break;
1731  case 8: return TX_32X8; break;
1732  case 16: return TX_64X16; break;
1733  }
1734  }
1735  }
1736  assert(0);
1737  return TX_4X4;
1738 }
1739 
1740 static INLINE int txfm_partition_context(const TXFM_CONTEXT *const above_ctx,
1741  const TXFM_CONTEXT *const left_ctx,
1742  BLOCK_SIZE bsize, TX_SIZE tx_size) {
1743  const uint8_t txw = tx_size_wide[tx_size];
1744  const uint8_t txh = tx_size_high[tx_size];
1745  const int above = *above_ctx < txw;
1746  const int left = *left_ctx < txh;
1747  int category = TXFM_PARTITION_CONTEXTS;
1748 
1749  // dummy return, not used by others.
1750  if (tx_size <= TX_4X4) return 0;
1751 
1752  TX_SIZE max_tx_size =
1753  get_sqr_tx_size(AOMMAX(block_size_wide[bsize], block_size_high[bsize]));
1754 
1755  if (max_tx_size >= TX_8X8) {
1756  category =
1757  (txsize_sqr_up_map[tx_size] != max_tx_size && max_tx_size > TX_8X8) +
1758  (TX_SIZES - 1 - max_tx_size) * 2;
1759  }
1760  assert(category != TXFM_PARTITION_CONTEXTS);
1761  return category * 3 + above + left;
1762 }
1763 
1764 // Compute the next partition in the direction of the sb_type stored in the mi
1765 // array, starting with bsize.
1766 static INLINE PARTITION_TYPE get_partition(const AV1_COMMON *const cm,
1767  int mi_row, int mi_col,
1768  BLOCK_SIZE bsize) {
1769  const CommonModeInfoParams *const mi_params = &cm->mi_params;
1770  if (mi_row >= mi_params->mi_rows || mi_col >= mi_params->mi_cols)
1771  return PARTITION_INVALID;
1772 
1773  const int offset = mi_row * mi_params->mi_stride + mi_col;
1774  MB_MODE_INFO **mi = mi_params->mi_grid_base + offset;
1775  const BLOCK_SIZE subsize = mi[0]->bsize;
1776 
1777  assert(bsize < BLOCK_SIZES_ALL);
1778 
1779  if (subsize == bsize) return PARTITION_NONE;
1780 
1781  const int bhigh = mi_size_high[bsize];
1782  const int bwide = mi_size_wide[bsize];
1783  const int sshigh = mi_size_high[subsize];
1784  const int sswide = mi_size_wide[subsize];
1785 
1786  if (bsize > BLOCK_8X8 && mi_row + bwide / 2 < mi_params->mi_rows &&
1787  mi_col + bhigh / 2 < mi_params->mi_cols) {
1788  // In this case, the block might be using an extended partition
1789  // type.
1790  const MB_MODE_INFO *const mbmi_right = mi[bwide / 2];
1791  const MB_MODE_INFO *const mbmi_below = mi[bhigh / 2 * mi_params->mi_stride];
1792 
1793  if (sswide == bwide) {
1794  // Smaller height but same width. Is PARTITION_HORZ_4, PARTITION_HORZ or
1795  // PARTITION_HORZ_B. To distinguish the latter two, check if the lower
1796  // half was split.
1797  if (sshigh * 4 == bhigh) return PARTITION_HORZ_4;
1798  assert(sshigh * 2 == bhigh);
1799 
1800  if (mbmi_below->bsize == subsize)
1801  return PARTITION_HORZ;
1802  else
1803  return PARTITION_HORZ_B;
1804  } else if (sshigh == bhigh) {
1805  // Smaller width but same height. Is PARTITION_VERT_4, PARTITION_VERT or
1806  // PARTITION_VERT_B. To distinguish the latter two, check if the right
1807  // half was split.
1808  if (sswide * 4 == bwide) return PARTITION_VERT_4;
1809  assert(sswide * 2 == bhigh);
1810 
1811  if (mbmi_right->bsize == subsize)
1812  return PARTITION_VERT;
1813  else
1814  return PARTITION_VERT_B;
1815  } else {
1816  // Smaller width and smaller height. Might be PARTITION_SPLIT or could be
1817  // PARTITION_HORZ_A or PARTITION_VERT_A. If subsize isn't halved in both
1818  // dimensions, we immediately know this is a split (which will recurse to
1819  // get to subsize). Otherwise look down and to the right. With
1820  // PARTITION_VERT_A, the right block will have height bhigh; with
1821  // PARTITION_HORZ_A, the lower block with have width bwide. Otherwise
1822  // it's PARTITION_SPLIT.
1823  if (sswide * 2 != bwide || sshigh * 2 != bhigh) return PARTITION_SPLIT;
1824 
1825  if (mi_size_wide[mbmi_below->bsize] == bwide) return PARTITION_HORZ_A;
1826  if (mi_size_high[mbmi_right->bsize] == bhigh) return PARTITION_VERT_A;
1827 
1828  return PARTITION_SPLIT;
1829  }
1830  }
1831  const int vert_split = sswide < bwide;
1832  const int horz_split = sshigh < bhigh;
1833  const int split_idx = (vert_split << 1) | horz_split;
1834  assert(split_idx != 0);
1835 
1836  static const PARTITION_TYPE base_partitions[4] = {
1837  PARTITION_INVALID, PARTITION_HORZ, PARTITION_VERT, PARTITION_SPLIT
1838  };
1839 
1840  return base_partitions[split_idx];
1841 }
1842 
1843 static INLINE void set_sb_size(SequenceHeader *const seq_params,
1844  BLOCK_SIZE sb_size) {
1845  seq_params->sb_size = sb_size;
1846  seq_params->mib_size = mi_size_wide[seq_params->sb_size];
1847  seq_params->mib_size_log2 = mi_size_wide_log2[seq_params->sb_size];
1848 }
1849 
1850 // Returns true if the frame is fully lossless at the coded resolution.
1851 // Note: If super-resolution is used, such a frame will still NOT be lossless at
1852 // the upscaled resolution.
1853 static INLINE int is_coded_lossless(const AV1_COMMON *cm,
1854  const MACROBLOCKD *xd) {
1855  int coded_lossless = 1;
1856  if (cm->seg.enabled) {
1857  for (int i = 0; i < MAX_SEGMENTS; ++i) {
1858  if (!xd->lossless[i]) {
1859  coded_lossless = 0;
1860  break;
1861  }
1862  }
1863  } else {
1864  coded_lossless = xd->lossless[0];
1865  }
1866  return coded_lossless;
1867 }
1868 
1869 static INLINE int is_valid_seq_level_idx(AV1_LEVEL seq_level_idx) {
1870  return seq_level_idx == SEQ_LEVEL_MAX ||
1871  (seq_level_idx < SEQ_LEVELS &&
1872  // The following levels are currently undefined.
1873  seq_level_idx != SEQ_LEVEL_2_2 && seq_level_idx != SEQ_LEVEL_2_3 &&
1874  seq_level_idx != SEQ_LEVEL_3_2 && seq_level_idx != SEQ_LEVEL_3_3 &&
1875  seq_level_idx != SEQ_LEVEL_4_2 && seq_level_idx != SEQ_LEVEL_4_3 &&
1876  seq_level_idx != SEQ_LEVEL_7_0 && seq_level_idx != SEQ_LEVEL_7_1 &&
1877  seq_level_idx != SEQ_LEVEL_7_2 && seq_level_idx != SEQ_LEVEL_7_3);
1878 }
1879 
1882 #ifdef __cplusplus
1883 } // extern "C"
1884 #endif
1885 
1886 #endif // AOM_AV1_COMMON_AV1_COMMON_INT_H_
int(* aom_get_frame_buffer_cb_fn_t)(void *priv, size_t min_size, aom_codec_frame_buffer_t *fb)
get frame buffer callback prototype
Definition: aom_frame_buffer.h:64
int(* aom_release_frame_buffer_cb_fn_t)(void *priv, aom_codec_frame_buffer_t *fb)
release frame buffer callback prototype
Definition: aom_frame_buffer.h:77
#define AOM_PLANE_U
Definition: aom_image.h:200
enum aom_chroma_sample_position aom_chroma_sample_position_t
List of chroma sample positions.
enum aom_transfer_characteristics aom_transfer_characteristics_t
List of supported transfer functions.
enum aom_color_primaries aom_color_primaries_t
List of supported color primaries.
enum aom_matrix_coefficients aom_matrix_coefficients_t
List of supported matrix coefficients.
enum aom_bit_depth aom_bit_depth_t
Bit depth for codecThis enumeration determines the bit depth of the codec.
@ AOM_CODEC_CORRUPT_FRAME
The coded data for this stream is corrupt or incomplete.
Definition: aom_codec.h:195
Top level common structure used by both encoder and decoder.
Definition: av1_common_int.h:751
uint8_t * last_frame_seg_map
Definition: av1_common_int.h:933
RestorationInfo rst_info[3]
Definition: av1_common_int.h:947
WarpedMotionParams global_motion[REF_FRAMES]
Definition: av1_common_int.h:971
int superres_upscaled_width
Definition: av1_common_int.h:800
int8_t ref_frame_side[REF_FRAMES]
Definition: av1_common_int.h:1038
struct scale_factors ref_scale_factors[REF_FRAMES]
Definition: av1_common_int.h:870
RefCntBuffer * prev_frame
Definition: av1_common_int.h:827
FRAME_CONTEXT * default_frame_context
Definition: av1_common_int.h:988
int ref_frame_id[REF_FRAMES]
Definition: av1_common_int.h:1013
int superres_upscaled_height
Definition: av1_common_int.h:801
DeltaQInfo delta_q_info
Definition: av1_common_int.h:966
SequenceHeader * seq_params
Definition: av1_common_int.h:977
int width
Definition: av1_common_int.h:776
RefCntBuffer * cur_frame
Definition: av1_common_int.h:833
CdefInfo cdef_info
Definition: av1_common_int.h:956
loop_filter_info_n lf_info
Definition: av1_common_int.h:939
CurrentFrame current_frame
Definition: av1_common_int.h:755
int remapped_ref_idx[REF_FRAMES]
Definition: av1_common_int.h:855
RestorationLineBuffers * rlbs
Definition: av1_common_int.h:949
aom_film_grain_t film_grain_params
Definition: av1_common_int.h:961
int show_existing_frame
Definition: av1_common_int.h:901
uint32_t buffer_removal_times[(8 *4)+1]
Definition: av1_common_int.h:816
int temporal_layer_id
Definition: av1_common_int.h:1044
struct aom_internal_error_info * error
Definition: av1_common_int.h:759
int showable_frame
Definition: av1_common_int.h:894
int tpl_mvs_mem_size
Definition: av1_common_int.h:1027
uint32_t frame_presentation_time
Definition: av1_common_int.h:822
struct loopfilter lf
Definition: av1_common_int.h:940
int spatial_layer_id
Definition: av1_common_int.h:1050
FeatureFlags features
Definition: av1_common_int.h:906
struct scale_factors sf_identity
Definition: av1_common_int.h:862
YV12_BUFFER_CONFIG rst_frame
Definition: av1_common_int.h:950
CommonModeInfoParams mi_params
Definition: av1_common_int.h:911
uint8_t superres_scale_denominator
Definition: av1_common_int.h:808
int show_frame
Definition: av1_common_int.h:886
struct segmentation seg
Definition: av1_common_int.h:928
CommonQuantParams quant_params
Definition: av1_common_int.h:923
TPL_MV_REF * tpl_mvs
Definition: av1_common_int.h:1023
int current_frame_id
Definition: av1_common_int.h:1012
int32_t * rst_tmpbuf
Definition: av1_common_int.h:948
RefCntBuffer * ref_frame_map[REF_FRAMES]
Definition: av1_common_int.h:879
CommonContexts above_contexts
Definition: av1_common_int.h:1006
CommonTileParams tiles
Definition: av1_common_int.h:993
BufferPool * buffer_pool
Definition: av1_common_int.h:998
int ref_frame_sign_bias[REF_FRAMES]
Definition: av1_common_int.h:1032
FRAME_CONTEXT * fc
Definition: av1_common_int.h:982
int height
Definition: av1_common_int.h:777
int render_width
Definition: av1_common_int.h:787
int render_height
Definition: av1_common_int.h:788
Parameters related to CDEF.
Definition: av1_common_int.h:198
int cdef_bits
Number of CDEF strength values in bits.
Definition: av1_common_int.h:220
int allocated_mi_rows
Number of rows in the frame in 4 pixel.
Definition: av1_common_int.h:222
int allocated_num_workers
Number of CDEF workers.
Definition: av1_common_int.h:224
size_t allocated_srcbuf_size
CDEF intermediate buffer size.
Definition: av1_common_int.h:210
int nb_cdef_strengths
Number of CDEF strength values.
Definition: av1_common_int.h:214
int cdef_damping
CDEF damping factor.
Definition: av1_common_int.h:212
uint16_t * srcbuf
CDEF intermediate buffer.
Definition: av1_common_int.h:204
Contexts used for transmitting various symbols in the bitstream.
Definition: av1_common_int.h:714
PARTITION_CONTEXT ** partition
Definition: av1_common_int.h:719
int num_planes
Definition: av1_common_int.h:743
ENTROPY_CONTEXT ** entropy[3]
Definition: av1_common_int.h:729
int num_tile_rows
Definition: av1_common_int.h:744
int num_mi_cols
Definition: av1_common_int.h:745
TXFM_CONTEXT ** txfm
Definition: av1_common_int.h:737
Params related to MB_MODE_INFO arrays and related info.
Definition: av1_common_int.h:505
int mb_cols
Definition: av1_common_int.h:515
MB_MODE_INFO * mi_alloc
Definition: av1_common_int.h:539
int mi_rows
Definition: av1_common_int.h:526
void(* setup_mi)(struct CommonModeInfoParams *mi_params)
Definition: av1_common_int.h:594
void(* free_mi)(struct CommonModeInfoParams *mi_params)
Definition: av1_common_int.h:589
int mi_cols
Definition: av1_common_int.h:531
int mi_alloc_size
Definition: av1_common_int.h:543
int MBs
Definition: av1_common_int.h:520
TX_TYPE * tx_type_map
Definition: av1_common_int.h:579
void(* set_mb_mi)(struct CommonModeInfoParams *mi_params, int width, int height)
Definition: av1_common_int.h:601
int mi_alloc_stride
Definition: av1_common_int.h:547
int mi_grid_size
Definition: av1_common_int.h:567
int mi_stride
Definition: av1_common_int.h:571
int mb_rows
Definition: av1_common_int.h:510
MB_MODE_INFO ** mi_grid_base
Definition: av1_common_int.h:563
BLOCK_SIZE mi_alloc_bsize
Definition: av1_common_int.h:554
Parameters related to quantization at the frame level.
Definition: av1_common_int.h:610
int u_ac_delta_q
Definition: av1_common_int.h:635
const qm_val_t * u_iqmatrix[8][TX_SIZES_ALL]
Definition: av1_common_int.h:684
int qmatrix_level_v
Definition: av1_common_int.h:706
const qm_val_t * giqmatrix[(1<< 4)][3][TX_SIZES_ALL]
Definition: av1_common_int.h:666
int16_t u_dequant_QTX[8][2]
Definition: av1_common_int.h:655
const qm_val_t * y_iqmatrix[8][TX_SIZES_ALL]
Definition: av1_common_int.h:680
int qmatrix_level_y
Definition: av1_common_int.h:704
int v_ac_delta_q
Definition: av1_common_int.h:640
bool using_qmatrix
Definition: av1_common_int.h:697
int u_dc_delta_q
Definition: av1_common_int.h:625
int qmatrix_level_u
Definition: av1_common_int.h:705
int base_qindex
Definition: av1_common_int.h:614
int16_t v_dequant_QTX[8][2]
Definition: av1_common_int.h:656
const qm_val_t * v_iqmatrix[8][TX_SIZES_ALL]
Definition: av1_common_int.h:688
int16_t y_dequant_QTX[8][2]
Definition: av1_common_int.h:654
int v_dc_delta_q
Definition: av1_common_int.h:629
int y_dc_delta_q
Definition: av1_common_int.h:620
const qm_val_t * gqmatrix[(1<< 4)][3][TX_SIZES_ALL]
Definition: av1_common_int.h:670
Params related to tiles.
Definition: av1_common_int.h:431
int uniform_spacing
Definition: av1_common_int.h:447
int max_width_sb
Definition: av1_common_int.h:434
int log2_rows
Definition: av1_common_int.h:454
int min_log2_rows
Definition: av1_common_int.h:466
int width
Definition: av1_common_int.h:455
int max_log2_rows
Definition: av1_common_int.h:474
int row_start_sb[MAX_TILE_ROWS+1]
Definition: av1_common_int.h:488
int cols
Definition: av1_common_int.h:432
int max_height_sb
Definition: av1_common_int.h:435
unsigned int large_scale
Definition: av1_common_int.h:492
unsigned int single_tile_decoding
Definition: av1_common_int.h:498
int max_log2_cols
Definition: av1_common_int.h:470
int log2_cols
Definition: av1_common_int.h:453
int min_log2
Definition: av1_common_int.h:478
int rows
Definition: av1_common_int.h:433
int min_inner_width
Definition: av1_common_int.h:440
int min_log2_cols
Definition: av1_common_int.h:462
int col_start_sb[MAX_TILE_COLS+1]
Definition: av1_common_int.h:483
int height
Definition: av1_common_int.h:456
Frame level features.
Definition: av1_common_int.h:362
InterpFilter interp_filter
Definition: av1_common_int.h:411
bool allow_ref_frame_mvs
Definition: av1_common_int.h:385
bool allow_warped_motion
Definition: av1_common_int.h:381
bool allow_screen_content_tools
Definition: av1_common_int.h:379
bool switchable_motion_mode
Definition: av1_common_int.h:409
TX_MODE tx_mode
Definition: av1_common_int.h:410
bool reduced_tx_set_used
Definition: av1_common_int.h:398
bool allow_intrabc
Definition: av1_common_int.h:380
int byte_alignment
Definition: av1_common_int.h:420
bool coded_lossless
Definition: av1_common_int.h:389
REFRESH_FRAME_CONTEXT_MODE refresh_frame_context
Definition: av1_common_int.h:425
bool error_resilient_mode
Definition: av1_common_int.h:404
int primary_ref_frame
Definition: av1_common_int.h:416
bool disable_cdf_update
Definition: av1_common_int.h:366
bool allow_high_precision_mv
Definition: av1_common_int.h:371
bool cur_frame_force_integer_mv
Definition: av1_common_int.h:375
bool all_lossless
Definition: av1_common_int.h:393
Stores the prediction/txfm mode of the current coding block.
Definition: blockd.h:222
BLOCK_SIZE bsize
The block size of the current coding block.
Definition: blockd.h:228
Parameters related to Restoration Info.
Definition: restoration.h:255
External frame buffer.
Definition: aom_frame_buffer.h:40
Variables related to current coding block.
Definition: blockd.h:577
bool left_available
Definition: blockd.h:633
uint8_t * tx_type_map
Definition: blockd.h:673
int mb_to_bottom_edge
Definition: blockd.h:687
TXFM_CONTEXT * left_txfm_context
Definition: blockd.h:747
struct macroblockd_plane plane[3]
Definition: blockd.h:613
int mb_to_top_edge
Definition: blockd.h:686
int mb_to_right_edge
Definition: blockd.h:685
bool up_available
Definition: blockd.h:629
MB_MODE_INFO * above_mbmi
Definition: blockd.h:652
bool chroma_up_available
Definition: blockd.h:637
TXFM_CONTEXT * above_txfm_context
Definition: blockd.h:740
bool chroma_left_available
Definition: blockd.h:641
PARTITION_CONTEXT * above_partition_context
Definition: blockd.h:725
MB_MODE_INFO * chroma_left_mbmi
Definition: blockd.h:659
TXFM_CONTEXT left_txfm_context_buffer[MAX_MIB_SIZE]
Definition: blockd.h:754
int tx_type_map_stride
Definition: blockd.h:678
MB_MODE_INFO * chroma_above_mbmi
Definition: blockd.h:666
int mi_row
Definition: blockd.h:582
int mi_stride
Definition: blockd.h:589
bool is_last_vertical_rect
Definition: blockd.h:794
bool is_first_horizontal_rect
Definition: blockd.h:799
uint8_t width
Definition: blockd.h:772
struct aom_internal_error_info * error_info
Definition: blockd.h:845
CFL_CTX cfl
Definition: blockd.h:901
int lossless[8]
Definition: blockd.h:824
ENTROPY_CONTEXT left_entropy_context[3][MAX_MIB_SIZE]
Definition: blockd.h:717
ENTROPY_CONTEXT * above_entropy_context[3]
Definition: blockd.h:710
MB_MODE_INFO ** mi
Definition: blockd.h:624
uint8_t height
Definition: blockd.h:773
MB_MODE_INFO * left_mbmi
Definition: blockd.h:647
PARTITION_CONTEXT left_partition_context[MAX_MIB_SIZE]
Definition: blockd.h:732
bool is_chroma_ref
Definition: blockd.h:608
int mi_col
Definition: blockd.h:583
int mb_to_left_edge
Definition: blockd.h:684
YV12 frame buffer data structure.
Definition: yv12config.h:38