Given an element x in a noncommutative ring R, this method returns true if Rx=xR.
i1 : A = QQ<|a,b,c|> o1 = A o1 : FreeAlgebra |
i2 : I = ideal {a*b+b*a,a*c+c*a,b*c+c*b} o2 = ideal (a*b + b*a, a*c + c*a, b*c + c*b) o2 : Ideal of A |
i3 : B = A/I o3 = B o3 : FreeAlgebraQuotient |
i4 : sigma = map(B,B,{b,c,a}) o4 = map (B, B, {b, c, a}) o4 : RingMap B <--- B |
i5 : C = oreExtension(B,sigma,w) o5 = C o5 : FreeAlgebraQuotient |
i6 : isCentral w o6 = false |
i7 : isNormal w o7 = true |