Description
Every module in Macaulay2 has, at least implicitly, a generator matrix and a matrix of relations, both of which are matrices between free modules. This function returns the generator matrix. The module is generated by (the images of) the columns of this matrix.
i1 : R = GF(8,Variable=>a)
o1 = R
o1 : GaloisField
|
i2 : f = R_0 ++ R_0^2 ++ R_0^3 ++ R_0^4
o2 = | a 0 0 0 |
| 0 a2 0 0 |
| 0 0 a+1 0 |
| 0 0 0 a2+a |
4 4
o2 : Matrix R <--- R
|
i3 : generators image f
o3 = | a 0 0 0 |
| 0 a2 0 0 |
| 0 0 a+1 0 |
| 0 0 0 a2+a |
4 4
o3 : Matrix R <--- R
|
i4 : generators cokernel f
o4 = | 1 0 0 0 |
| 0 1 0 0 |
| 0 0 1 0 |
| 0 0 0 1 |
4 4
o4 : Matrix R <--- R
|
Caveat
This function returns a matrix with the given generators. This set of generators may not be minimal, or sorted in any particular order. Use
trim(Module) (missing documentation) or
mingens(Module) instead.