FrobeniusRootStrategy -- an option for various functions
Description
An option for various functions, and in particular for frobeniusRoot. The valid values are Substitution and MonomialBasis.
Functions with optional argument named FrobeniusRootStrategy :
ascendIdeal(..., FrobeniusRootStrategy => ...), see ascendIdeal -- find the smallest ideal containing a given ideal which is compatible with a given Cartier linear map
compatibleIdeals(..., FrobeniusRootStrategy => ...), see compatibleIdeals -- find all prime ideals compatible with a Frobenius near-splitting
descendIdeal(..., FrobeniusRootStrategy => ...), see descendIdeal -- finds the maximal F-pure Cartier submodule of an ideal viewed as a Cartier module
FPureModule(..., FrobeniusRootStrategy => ...), see FPureModule -- compute the submodule of the canonical module stable under the image of the trace of Frobenius
frobenius(..., FrobeniusRootStrategy => ...), see frobenius -- compute a Frobenius power of an ideal or a matrix
frobeniusPower(..., FrobeniusRootStrategy => ...), see frobeniusPower -- compute a (generalized) Frobenius power of an ideal
frobeniusRoot(..., FrobeniusRootStrategy => ...), see frobeniusRoot -- compute a Frobenius root
isFInjective(..., FrobeniusRootStrategy => ...), see isFInjective -- whether a ring is F-injective
isFPure(..., FrobeniusRootStrategy => ...), see isFPure -- whether a ring is F-pure
isFRational(..., FrobeniusRootStrategy => ...), see isFRational -- whether a ring is F-rational
isFRegular(..., FrobeniusRootStrategy => ...), see isFRegular -- whether a ring or pair is strongly F-regular
parameterTestIdeal(..., FrobeniusRootStrategy => ...), see parameterTestIdeal -- compute the parameter test ideal of a Cohen-Macaulay ring
testIdeal(..., FrobeniusRootStrategy => ...), see testIdeal -- compute a test ideal in a Q-Gorenstein ring
testModule(..., FrobeniusRootStrategy => ...), see testModule -- find the parameter test module of a reduced ring