i1 : (d,n) := (2,3); |
i2 : time Disc = denseDiscriminant(d,n) -- used 0.200562 seconds o2 = sparse discriminant associated to | 0 0 0 0 0 0 1 1 1 2 | over ZZ | 0 0 0 1 1 2 0 0 1 0 | | 0 1 2 0 1 0 0 1 0 0 | o2 : SparseDiscriminant |
i3 : f = first genericLaurentPolynomials prepend(d,n:0) 2 2 2 o3 = a x + a x x + a x + a x x + a x x + a x + a x + a x + a x + a 9 1 8 1 2 5 2 7 1 3 4 2 3 2 3 6 1 3 2 1 3 0 o3 : ZZ[a , a , a , a , a , a , a , a , a , a , b , c , d ][x , x , x ] 0 1 2 3 4 5 6 7 8 9 0 0 0 1 2 3 |
i4 : assert(Disc(f) == denseDiscriminant(f)) |